# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 581 | 0 | 0.8908 | Inorganic polyphosphates and heavy metal resistance in microorganisms. The mechanisms of heavy metal resistance in microbial cells involve multiple pathways. They include the formation of complexes with specific proteins and other compounds, the excretion from the cells via plasma membrane transporters in case of procaryotes, and the compartmentalization of toxic ions in vacuoles, cell wall and other organelles in case of eukaryotes. The relationship between heavy metal tolerance and inorganic polyphosphate metabolism was demonstrated both in prokaryotic and eukaryotic microorganisms. Polyphosphates, being polyanions, are involved in detoxification of heavy metals through complex formation and compartmentalization. The bacteria and fungi cultivated in the presence of some heavy metal cations contain the enhanced levels of polyphosphate. In bacteria, polyphosphate sequesters heavy metals; some of metal cations stimulate an exopolyphosphatase activity, which releases phosphate from polyphosphates, and MeHPO(4)(-) ions are then transported out of the cells. In fungi, the overcoming of heavy metal stresses is associated with the accumulation of polyphosphates in cytoplasmic inclusions, vacuoles and cell wall and the formation of cation/polyphosphate complexes. The effects of knockout mutations and overexpression of the genes encoding polyphosphate-metabolizing enzymes on heavy metal resistance are discussed. | 2018 | 30151754 |
| 507 | 1 | 0.8876 | Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Seven species of obligately aerobic photosynthetic bacteria of the genera Erythromicrobium, Erythrobacter, and Roseococcus demonstrated high-level resistance to tellurite and accumulation of metallic tellurium crystals. High-level resistance without tellurite reduction was observed for Roseococcus thiosulfatophilus and Erythromicrobium ezovicum grown with certain organic carbon sources, implying that tellurite reduction is not essential to confer tellurite resistance. | 1996 | 16535446 |
| 517 | 2 | 0.8860 | Adaptation to metal(loid)s in strain Mucilaginibacter rubeus P2 involves novel arsenic resistance genes and mechanisms. Arsenic is a ubiquitous environmental toxi substance that affects human health. Compared to inorganic arsenicals, reduced organoarsenicals are more toxic, and some of them are recognized as antibiotics, such as methylarsenite [MAs(III)] and arsinothricin (2-amino-4-(hydroxymethylarsinoyl)butanoate, or AST). To date, organoarsenicals such as MAs(V) and roxarsone [Rox(V)] are still used in agriculture and animal husbandry. How bacteria deal with both inorganic and organoarsenic species is unclear. Recently, we identified an environmental isolate Mucilaginibacter rubeus P2 that has adapted to high arsenic and antinomy levels by triplicating an arsR-mrarsU(Bact)-arsN-arsC-(arsRhp)-hp-acr3-mrme1(Bact)-mrme2(Bact)gene cluster. Heterologous expression of mrarsM(Bact), mrarsU(Bact), mrme1(Bact) and mrme2(Bact), encoding putative arsenic resistance determinants, in the arsenic hypersensitive strain Escherichia coli AW3110 conferred resistance to As(III), As(V), MAs(III) or Rox(III). Our data suggest that metalloid exposure promotes plasticity in arsenic resistance systems, enhancing host organism adaptation to metalloid stress. | 2024 | 37865075 |
| 8638 | 3 | 0.8855 | Enhancing phytoremediation through the use of transgenics and endophytes. In the last decade, there has been an increase in research on improving the ability of plants to remove environmental pollution. Genes from microbes, plants, and animals are being used successfully to enhance the ability of plants to tolerate, remove, and degrade pollutants. Through expression of specific bacterial genes in transgenic plants, the phytotoxic effects of nitroaromatic pollutants were overcome, resulting in increased removal of these chemicals. Overexpression of mammalian genes encoding cytochrome P450s led to increased metabolism and removal of a variety of organic pollutants and herbicides. Genes involved in the uptake or detoxification of metal pollutants were used to enhance phytoremediation of this important class of pollutants. Transgenic plants containing specific bacterial genes converted mercury and selenium to less toxic forms. In addition to these transgenic approaches, the use of microbes that live within plants, termed endophytes, also led to improved tolerance to normally phytotoxic chemicals and increased removal of the pollutants. Bacteria that degraded a herbicide imparted resistance to the herbicide when inoculated into plants. In another study, plants harboring bacteria capable of degrading toluene were more tolerant to normally phytotoxic concentrations of the chemical, and transpired less of it into the atmosphere. This review examines the recent advances in enhancing phytoremediation through transgenic plant research and through the use of symbiotic endophytic microorganisms within plant tissues. | 2008 | 19086174 |
| 514 | 4 | 0.8850 | The organoarsenical biocycle and the primordial antibiotic methylarsenite. Arsenic is the most pervasive environmental toxic substance. As a consequence of its ubiquity, nearly every organism has genes for resistance to inorganic arsenic. In bacteria these genes are found largely in bacterial arsenic resistance (ars) operons. Recently a parallel pathway for synthesis and degradation of methylated arsenicals has been identified. The arsM gene product encodes the ArsM (AS3MT in animals) As(iii) S-adenosylmethionine methyltransferase that methylates inorganic trivalent arsenite in three sequential steps to methylarsenite MAs(iii), dimethylarsenite (DMAs(iii) and trimethylarsenite (TMAs(iii)). MAs(iii) is considerably more toxic than As(iii), and we have proposed that MAs(iii) was a primordial antibiotic. Under aerobic conditions these products are oxidized to nontoxic pentavalent arsenicals, so that methylation became a detoxifying pathway after the atmosphere became oxidizing. Other microbes have acquired the ability to regenerate MAs(v) by reduction, transforming it again into toxic MAs(iii). Under this environmental pressure, MAs(iii) resistances evolved, including the arsI, arsH and arsP genes. ArsI is a C-As bond lyase that demethylates MAs(iii) back to less toxic As(iii). ArsH re-oxidizes MAs(iii) to MAs(v). ArsP actively extrudes MAs(iii) from cells. These proteins confer resistance to this primitive antibiotic. This oscillation between MAs(iii) synthesis and detoxification is an essential component of the arsenic biogeocycle. | 2016 | 27730229 |
| 508 | 5 | 0.8848 | Insights into the chaotropic tolerance of the desert cyanobacterium Chroococcidiopsis sp. 029 (Chroococcidiopsales, Cyanobacteria). The mechanism of perchlorate resistance of the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated by assessing whether the pathways associated with its desiccation tolerance might play a role against the destabilizing effects of this chaotropic agent. During 3 weeks of growth in the presence of 2.4 mM perchlorate, an upregulation of trehalose and sucrose biosynthetic pathways was detected. This suggested that in response to the water stress triggered by perchlorate salts, these two compatible solutes play a role in the stabilization of macromolecules and membranes as they do in response to dehydration. During the perchlorate exposure, the production of oxidizing species was observed by using an oxidant-sensing fluorochrome and determining the expression of the antioxidant defense genes, namely superoxide dismutases and catalases, while the presence of oxidative DNA damage was highlighted by the over-expression of genes of the base excision repair. The involvement of desiccation-tolerance mechanisms in the perchlorate resistance of this desert cyanobacterium is interesting since, so far, chaotropic-tolerant bacteria have been identified among halophiles. Hence, it is anticipated that desert microorganisms might possess an unrevealed capability of adapting to perchlorate concentrations exceeding those naturally occurring in dry environments. Furthermore, in the endeavor of supporting future human outposts on Mars, the identified mechanisms might contribute to enhance the perchlorate resistance of microorganisms relevant for biologically driven utilization of the perchlorate-rich soil of the red planet. | 2024 | 38156502 |
| 505 | 6 | 0.8847 | Production of phytoalexins in peanut (Arachis hypogaea) seed elicited by selected microorganisms. Under favorable conditions, the peanut plant demonstrates appreciable resistance to fungal invasion by producing and accumulating phytoalexins, antimicrobial stilbenoids. This mechanism for resistance is little understood, yet it is crucial for breeding and genetically modifying peanut plants to develop new cultivars with fungal resistance. The dynamics of phytoalexin production in peanut seeds and embryos challenged by selected important fungi and bacteria was investigated. Different biotic agents selectively elicited production of major peanut stilbenoids, resveratrol, arachidin-1, arachidin-3, and SB-1. Aspergillis species, compared to other biotic agents, were more potent elicitors of stilbenoids. Embryos demonstrated significantly higher production of stilbenoids compared to cotyledons and may serve as a convenient source of genetic material in isolating genes for peanut plant defense enhancement. | 2013 | 23387286 |
| 583 | 7 | 0.8834 | MarR family proteins sense sulfane sulfur in bacteria. Members of the multiple antibiotic resistance regulator (MarR) protein family are ubiquitous in bacteria and play critical roles in regulating cellular metabolism and antibiotic resistance. MarR family proteins function as repressors, and their interactions with modulators induce the expression of controlled genes. The previously characterized modulators are insufficient to explain the activities of certain MarR family proteins. However, recently, several MarR family proteins have been reported to sense sulfane sulfur, including zero-valent sulfur, persulfide (R-SSH), and polysulfide (R-SnH, n ≥ 2). Sulfane sulfur is a common cellular component in bacteria whose levels vary during bacterial growth. The changing levels of sulfane sulfur affect the expression of many MarR-controlled genes. Sulfane sulfur reacts with the cysteine thiols of MarR family proteins, causing the formation of protein thiol persulfide, disulfide bonds, and other modifications. Several MarR family proteins that respond to reactive oxygen species (ROS) also sense sulfane sulfur, as both sulfane sulfur and ROS induce the formation of disulfide bonds. This review focused on MarR family proteins that sense sulfane sulfur. However, the sensing mechanisms reviewed here may also apply to other proteins that detect sulfane sulfur, which is emerging as a modulator of gene regulation. | 2024 | 38948149 |
| 585 | 8 | 0.8831 | Genetic susceptibility to intracellular infections: Nramp1, macrophage function and divalent cations transport. Nramp1 is one of the few host resistance genes that have been characterized at the molecular level. Nramp1 is an integral membrane protein expressed in the lysosomal compartment of macrophages and is recruited to the membrane of bacterial phagosomes where it affects intracellular microbial replication. Nramp1 is part of a very large gene family conserved from bacteria and man that codes for transporters of divalent cations transporters. We propose that Nramp1 affects the intraphagosomal microbial replication by modulating divalent cations content in this organelle. Both mammalian and bacterial transporters may compete for the same substrate in the phagosomal space. | 2000 | 10679418 |
| 8619 | 9 | 0.8830 | Bioavailability of pollutants and chemotaxis. The exposure of bacteria to pollutants induces frequently chemoattraction or chemorepellent reactions. Recent research suggests that the capacity to degrade a toxic compound has co-evolved in some bacteria with the capacity to chemotactically react to it. There is an increasing amount of data which show that chemoattraction to biodegradable pollutants increases their bioavailability which translates into an enhancement of the biodegradation rate. Pollutant chemoreceptors so far identified are encoded on degradation or resistance plasmids. Genetic engineering of bacteria, such as the transfer of chemoreceptor genes, offers thus the possibility to optimize biodegradation processes. | 2013 | 22981870 |
| 584 | 10 | 0.8828 | Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Metal cation homeostasis is essential for plant nutrition and resistance to toxic heavy metals. Many plant metal transporters remain to be identified at the molecular level. In the present study, we have isolated AtNramp cDNAs from Arabidopsis and show that these genes complement the phenotype of a metal uptake deficient yeast strain, smf1. AtNramps show homology to the Nramp gene family in bacteria, yeast, plants, and animals. Expression of AtNramp cDNAs increases Cd(2+) sensitivity and Cd(2+) accumulation in yeast. Furthermore, AtNramp3 and AtNramp4 complement an iron uptake mutant in yeast. This suggests possible roles in iron transport in plants and reveals heterogeneity in the functional properties of Nramp transporters. In Arabidopsis, AtNramps are expressed in both roots and aerial parts under metal replete conditions. Interestingly, AtNramp3 and AtNramp4 are induced by iron starvation. Disruption of the AtNramp3 gene leads to slightly enhanced cadmium resistance of root growth. Furthermore, overexpression of AtNramp3 results in cadmium hypersensitivity of Arabidopsis root growth and increased accumulation of Fe, on Cd(2+) treatment. Our results show that Nramp genes in plants encode metal transporters and that AtNramps transport both the metal nutrient Fe and the toxic metal cadmium. | 2000 | 10781110 |
| 8543 | 11 | 0.8828 | Soil bacteria, genes, and metabolites stimulated during sulfur cycling and cadmium mobilization under sodium sulfate stress. Sodium sulfate stress is known to improve cadmium (Cd) mobilization in soil and microbial sulfur oxidation, Cd resistance, and the accumulation of stress tolerance-associated metabolites has been correlated with increased soil Cd availability and toxicity. In this study, aerobic soil microcosms with Cd-contamination were stimulated with sodium sulfate to investigate its effects on soil microbial community structure, functional genes, and associated metabolite profiles. Metagenomic analysis revealed that sulfur oxidizing and Cd-resistant bacteria carried gene clusters encoding sox, dsr, and sqr genes, and znt, czc, and cad genes, respectively. Exposure to sodium sulfate resulted in the reprogram of soil metabolites. In particular, intensification of sulfur metabolism triggered an up-regulation in the tricarboxylic acid (TCA) cycle, which promoted the secretion of carboxylic acids and their precursors by soil bacteria. The accumulation of organic acids induced in response to high sodium sulfate dosages potentially drove an observed increase in Cd mobility. Pseudomonas and Erythrobacter spp. exhibited a high capacity for adaptation to heavy metal- or sulfur-induced stress, evident by an increased abundance of genes and metabolites for sulfur cycling and Cd resistance. These results provide valuable insights towards understanding the microbial mechanisms of sulfur transformation and Cd dissolution under saline stress. | 2021 | 34214562 |
| 328 | 12 | 0.8826 | Multiresistance genes of Rhizobium etli CFN42. Multidrug efflux pumps of bacteria are involved in the resistance to various antibiotics and toxic compounds. In Rhizobium etli, a mutualistic symbiont of Phaseolus vulgaris (bean), genes resembling multidrug efflux pump genes were identified and designated rmrA and rmrB. rmrA was obtained after the screening of transposon-generated fusions that are inducible by bean-root released flavonoids. The predicted gene products of rmrAB shared significant homology to membrane fusion and major facilitator proteins, respectively. Mutants of rmrA formed on average 40% less nodules in bean, while mutants of rmrA and rmrB had enhanced sensitivity to phytoalexins, flavonoids, and salicylic acid, compared with the wild-type strain. Multidrug resistance genes emrAB from Escherichia coli complemented an rmrA mutant from R. etli for resistance to high concentrations of naringenin. | 2000 | 10796024 |
| 579 | 13 | 0.8826 | Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations. There is accumulating evidence that transenvelope efflux pumps of the resistance, nodulation, cell division protein family (RND) are excreting toxic substances from the periplasm across the outer membrane directly to the outside. This would mean that resistance of Gram-negative bacteria to organic toxins and heavy metals is in fact a two-step process: one set of resistance factors control the concentration of a toxic substance in the periplasm, another one that in the cytoplasm. Efficient periplasmic detoxification requires periplasmic toxin sensing and transduction of this signal into the cytoplasm to control expression of the periplasmic detoxification system. Such a signal transduction system was analyzed using the Cnr nickel resistance system from Cupriavidus (Wautersia, Ralstonia, Alcaligenes) metallidurans strain CH34. Resistance is based on nickel efflux mediated by the CnrCBA efflux pump encoded by the cnrYHXCBAT metal resistance determinant. The products of the three genes cnrYXH transcriptionally regulate expression of cnr. CnrY and CnrX are membrane-bound proteins probably functioning as anti sigma factors while CnrH is a cnr-specific extracytoplasmic functions (ECF) sigma factors. Experimental data provided here indicate a signal transduction chain leading from nickel in the periplasm to transcription initiation at the cnr promoters cnrYp and cnrCp, which control synthesis of the nickel efflux pump CnrCBA. | 2005 | 16158236 |
| 8269 | 14 | 0.8824 | Molecular genetics of Rhizobium Meliloti symbiotic nitrogen fixation. The application of recombinant DNA techniques to the study of symbiotic nitrogen fixation has yielded a growing list of Rhizobium meliloti genes involved in the processes of nodulation, infection thread formation and nitrogenase activity in nodules on the roots of the host plant, Medicago sativa (alfalfa). Interaction with the plant is initiated by genes encoding sensing and motility systems by which the bacteria recognizes and approaches the root. Signal molecules, such as flavonoids, mediate a complex interplay of bacterial and plant nodulation genes leading to entry of the bacteria through a root hair. As the nodule develops, the bacteria proceed inward towards the cortex within infection threads, the formation of which depends on bacterial genes involved in polysaccharide synthesis. Within the cortex, the bacteria enter host cells and differentiate into forms known as bacteroids. Genes which encode and regulate nitrogenase enzyme are expressed in the mature nodule, together with other genes required for import and metabolism of carbon and energy sources offered by the plant. | 1989 | 14542173 |
| 512 | 15 | 0.8823 | An alternate pathway of antimonite [Sb(III)] resistance in Ensifer adhaerens mediated by ArsZ'. Trivalent arsenicals, such as arsenite [As(III)] and methylarsenite [MAs(III)], are highly toxic and commonly found in anoxic environments. Similarly, antimony (Sb), a toxic metalloid present in the environment, triggers the activation of numerous genes in microorganisms to resist, transform, and efflux it. This study focuses on the arsZ' gene from the trivalent metalloids-resistant Ensifer adhaerens strain ST2 and its role in mitigating antimonite [Sb(III)] toxicity. The introduction of arsZ' into Escherichia coli AW3110 provided resistance to Sb(III) but not MAs(III). Crucial cysteine residues, Cys95 and Cys109 in ArsZ', were found to be essential for Sb(III) resistance. The disruption of arsZ' in E. adhaerens resulted in decreased tolerance to Sb(III) but not As(III). Exposure to Sb(III) in the ΔarsZ' mutant strain ST2(Δars'Z) led to a significant rise in reactive oxygen species production and a decline in catalase activity, indicating oxidative stress. Particularly, Sb(III) induced glutathione reductase activity. These discoveries shed light on a novel detoxification pathway for Sb(III) in bacteria and underscore the potential of soil bacteria like strain ST2 in mitigating Sb(III) toxicity for future bioremediation endeavors. | 2025 | 40682878 |
| 580 | 16 | 0.8821 | Acid-tolerant bacteria and prospects in industrial and environmental applications. Acid-tolerant bacteria such as Streptococcus mutans, Acidobacterium capsulatum, Escherichia coli, and Propionibacterium acidipropionici have developed several survival mechanisms to sustain themselves in various acid stress conditions. Some bacteria survive by minor changes in the environmental pH. In contrast, few others adapt different acid tolerance mechanisms, including amino acid decarboxylase acid resistance systems, mainly glutamate-dependent acid resistance (GDAR) and arginine-dependent acid resistance (ADAR) systems. The cellular mechanisms of acid tolerance include cell membrane alteration in Acidithiobacillus thioxidans, proton elimination by F(1)-F(0)-ATPase in Streptococcus pyogenes, biofilm formation in Pseudomonas aeruginosa, cytoplasmic urease activity in Streptococcus mutans, synthesis of the protective cloud of ammonia, and protection or repair of macromolecules in Bacillus caldontenax. Apart from cellular mechanisms, there are several acid-tolerant genes such as gadA, gadB, adiA, adiC, cadA, cadB, cadC, speF, and potE that help the bacteria to tolerate the acidic environment. This acid tolerance behavior provides new and broad prospects for different industrial applications and the bioremediation of environmental pollutants. The development of engineered strains with acid-tolerant genes may improve the efficiency of the transgenic bacteria in the treatment of acidic industrial effluents. KEY POINTS: • Bacteria tolerate the acidic stress by methylating unsaturated phospholipid tail • The activity of decarboxylase systems for acid tolerance depends on pH • Genetic manipulation of acid-tolerant genes improves acid tolerance by the bacteria. | 2023 | 37093306 |
| 8632 | 17 | 0.8821 | Microbial interactions in the arsenic cycle: adoptive strategies and applications in environmental management. Arsenic (As) is a nonessential element that is often present in plants and in other organisms. However, it is one of the most hazardous of toxic elements globally. In many parts of the world, arsenic contamination in groundwater is a serious and continuing threat to human health. Microbes play an important role in regulating the environmental fate of arsenic. Different microbial processes influence the biogeochemical cycling of arsenic in ways that affect the accumulation of different arsenic species in various ecosystem compartments. For example, in soil, there are bacteria that methylate arsenite to trimethylarsine gas, thereby releasing arsenic to the atmosphere.In marine ecosystems, microbes exist that can convert inorganic arsenicals to organic arsenicals (e.g., di- and tri-methylated arsenic derivatives, arsenocholine,arsenobetaine, arsenosugars, arsenolipids). The organo arsenicals are further metabolized to complete the arsenic cycle.Microbes have developed various strategies that enable them to tolerate arsenic and to survive in arsenic-rich environments. Such strategies include As exclusion from cells by establishing permeability barrier, intra- and extracellular sequestration,active efflux pumps, enzymatic reduction, and reduction in the sensitivity of cellular targets. These strategies are used either singly or in combination. In bacteria,the genes for arsenic resistance/detoxification are encoded by the arsenic resistance operons (ars operon).In this review, we have addressed and emphasized the impact of different microbial processes (e.g., arsenite oxidation, cytoplasmic arsenate reduction, respiratory arsenate reduction, arsenite methylation) on the arsenic cycle. Microbes are the only life forms reported to exist in heavy arsenic-contaminated environments. Therefore,an understanding of the strategies adopted by microbes to cope with arsenic stress is important in managing such arsenic-contaminated sites. Further future insights into the different microbial genes/proteins that are involved in arsenic resistance may also be useful for developing arsenic resistant crop plants. | 2013 | 23232917 |
| 8810 | 18 | 0.8820 | Mechanisms involved in the sequestration and resistance of cadmium for a plant-associated Pseudomonas strain. Understanding Cd-resistant bacterial cadmium (Cd) resistance systems is crucial for improving microremediation in Cd-contaminated environments. However, these mechanisms are not fully understood in plant-associated bacteria. In the present study, we investigated the mechanisms underlying Cd sequestration and resistance in the strain AN-B15. These results showed that extracellular Cd sequestration by complexation in strain AN-B15 was primarily responsible for the removal of Cd from the solution. Transcriptome analyses have shown that the mechanisms of Cd resistance at the transcriptional level involve collaborative processes involving multiple metabolic pathways. The AN-B15 strain upregulated the expression of genes related to exopolymeric substance synthesis, metal transport, Fe-S cluster biogenesis, iron recruitment, reactive oxygen species oxidative stress defense, and DNA and protein repair to resist Cd-induced stress. Furthermore, inoculation with AN-B15 alleviated Cd-induced toxicity and reduced Cd uptake in the shoots of wheat seedlings, indicating its potential for remediation. Overall, the results improve our understanding of the mechanisms involved in Cd resistance in bacteria and thus have important implications for improving microremediation. | 2023 | 37806135 |
| 124 | 19 | 0.8819 | A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite. | 2005 | 16133099 |