PHYTOCANNABINOID - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
636500.9170The transcriptomic response to cannabidiol of Treponema denticola, a phytocannabinoid-resistant periodontal pathogen. AIM: The use of cannabis, which contains multiple antimicrobials, may be a risk factor for periodontitis. We hypothesized that multiple oral spirochetes would be phytocannabinoid-resistant and that cannabidiol (CBD) would act as an environmental stressor to which Treponema denticola would respond transcriptionally, thereby providing first insights into spirochetal survival strategies. MATERIALS AND METHODS: Oral spirochete growth was monitored spectrophotometrically in the presence and absence of physiologically relevant phytocannabinoid doses, the transcriptional response to phytocannabinoid exposure determined by RNAseq, specific gene activity fluxes verified using qRT-PCR and orthologues among fully sequenced oral spirochetes identified. RESULTS: Multiple strains of oral treponemes were resistant to CBD (0.1-10 μg/mL), while T. denticola ATCC 35405 was resistant to all phytocannabinoids tested (CBD, cannabinol [CBN], tetrahydrocannabinol [THC]). A total of 392 T. denticola ATCC 35405 genes were found to be CBD-responsive by RNAseq. A selected subset of these genes was independently verified by qRT-PCR. Genes found to be differentially activated by both methods included several involved in transcriptional regulation and toxin control. Suppressed genes included several involved in chemotaxis and proteolysis. CONCLUSIONS: Oral spirochetes, unlike some other periodontal bacteria, are resistant to physiological doses of phytocannabinoids. Investigation of CBD-induced transcriptomic changes provided insight into the resistance mechanisms of this important periodontal pathogen. These findings should be considered in the context of the reported enhanced susceptibility to periodontitis in cannabis users.202438105008
600710.9033Human tear fluid modulates the Pseudomonas aeruginosa transcriptome to alter antibiotic susceptibility. PURPOSE: Previously, we showed that tear fluid protects corneal epithelial cells against Pseudomonas aeruginosa without suppressing bacterial viability. Here, we studied how tear fluid affects bacterial gene expression. METHODS: RNA-sequencing was used to study the P. aeruginosa transcriptome after tear fluid exposure (5 h, 37 (o)C). Outcomes were further investigated by biochemical and physiological perturbations to tear fluid and tear-like fluid (TLF) and assessment of bacterial viability following tear/TLF pretreatment and antibiotic exposure. RESULTS: Tear fluid deregulated ~180 P. aeruginosa genes ≥8 fold versus PBS including downregulating lasI, rhlI, qscR (quorum sensing/virulence), oprH, phoP, phoQ (antimicrobial resistance) and arnBCADTEF (polymyxin B resistance). Upregulated genes included algF (biofilm formation) and hemO (iron acquisition). qPCR confirmed tear down-regulation of oprH, phoP and phoQ. Tear fluid pre-treatment increased P. aeruginosa resistance to meropenem ~5-fold (4 μg/ml), but enhanced polymyxin B susceptibility ~180-fold (1 μg/ml), the latter activity reduced by dilution in PBS. Media containing a subset of tear components (TLF) also sensitized bacteria to polymyxin B, but only ~22.5-fold, correlating with TLF/tear fluid Ca(2+) and Mg(2+) concentrations. Accordingly, phoQ mutants were not sensitized by TLF or tear fluid. Superior activity of tear fluid versus TLF against wild-type P. aeruginosa was heat resistant but proteinase K sensitive. CONCLUSION: P. aeruginosa responds to human tear fluid by upregulating genes associated with bacterial survival and adaptation. Meanwhile, tear fluid down-regulates multiple virulence-associated genes. Tears also utilize divalent cations and heat resistant/proteinase K sensitive component(s) to enhance P. aeruginosa sensitivity to polymyxin B.202134332149
600220.9015Comparative analysis of intestinal microbiota composition and transcriptome in diploid and triploid Carassius auratus. Polyploidy and the microbiome are crucial factors in how a host organism responds to disease. However, little is known about how triploidization and microbiome affect the immune response and disease resistance in the fish host. Therefore, this study aims to identify the relationship between intestinal microbiota composition, transcriptome changes, and disease resistance in triploid Carassius auratus (3nCC). In China's central Dongting lake water system, diploid (2nCC) and triploid Carassius auratus were collected, then 16S rRNA and mRNA sequencing were used to examine the microbes and gene expression in the intestines. 16S rRNA sequencing demonstrated that triploidization altered intestinal richness, as well as the diversity of commensal bacteria in 3nCC. In addition, the abundance of the genus Vibrio in 3nCC was increased compared to 2nCC (P < 0.05). Furthermore, differential expression analysis of 3nCC revealed profound up-regulation of 293 transcripts, while 324 were down-regulated. Several differentially expressed transcripts were related to the immune response pathway in 3nCC, including NLRP3, LY9, PNMA1, MR1, PELI1, NOTCH2, NFIL3, and NLRC4. Taken together, triploidization can alter bacteria composition and abundance, which can in turn result in changes in expression of genes. This study offers an opportunity for deciphering the molecular mechanism underlying disease resistance after triploidization.202336593453
80230.9010YqhC regulates transcription of the adjacent Escherichia coli genes yqhD and dkgA that are involved in furfural tolerance. Previous results have demonstrated that the silencing of adjacent genes encoding NADPH-dependent furfural oxidoreductases (yqhD dkgA) is responsible for increased furfural tolerance in an E. coli strain EMFR9 [Miller et al., Appl Environ Microbiol 75:4315-4323, 2009]. This gene silencing is now reported to result from the spontaneous insertion of an IS10 into the coding region of yqhC, an upstream gene. YqhC shares homology with transcriptional regulators belonging to the AraC/XylS family and was shown to act as a positive regulator of the adjacent operon encoding YqhD and DkgA. Regulation was demonstrated by constructing a chromosomal deletion of yqhC, a firefly luciferase reporter plasmid for yqhC, and by a direct comparison of furfural resistance and NADPH-dependent furfural reductase activity. Closely related bacteria contain yqhC, yqhD, and dkgA orthologs in the same arrangement as in E. coli LY180. Orthologs of yqhC are also present in more distantly related Gram-negative bacteria. Disruption of yqhC offers a useful approach to increase furfural tolerance in bacteria.201120676725
844140.9006Genomic and phenotypic attributes of novel salinivibrios from stromatolites, sediment and water from a high altitude lake. BACKGROUND: Salinivibrios are moderately halophilic bacteria found in salted meats, brines and hypersaline environments. We obtained three novel conspecific Salinivibrio strains closely related to S. costicola, from Socompa Lake, a high altitude hypersaline Andean lake (approx. 3,570 meters above the sea level). RESULTS: The three novel Salinivibrio spp. were extremely resistant to arsenic (up to 200 mM HAsO42-), NaCl (up to 15%), and UV-B radiation (19 KJ/m2, corresponding to 240 minutes of exposure) by means of phenotypic tests. Our subsequent draft genome ionsequencing and RAST-based genome annotation revealed the presence of genes related to arsenic, NaCl, and UV radiation resistance. The three novel Salinivibrio genomes also had the xanthorhodopsin gene cluster phylogenetically related to Marinobacter and Spiribacter. The genomic taxonomy analysis, including multilocus sequence analysis, average amino acid identity, and genome-to-genome distance revealed that the three novel strains belong to a new Salinivibrio species. CONCLUSIONS: Arsenic resistance genes, genes involved in DNA repair, resistance to extreme environmental conditions and the possible light-based energy production, may represent important attributes of the novel salinivibrios, allowing these microbes to thrive in the Socompa Lake.201424927949
882350.8986Complex gene response of herbicide-resistant Enterobacter strain NRS-1 under different glyphosate stresses. Knowledge of biological evolution and genetic mechanisms is gained by studying the adaptation of bacteria to survive in adverse environmental conditions. In this regard, transcriptomic profiling of a glyphosate-tolerant Enterobacter strain NRS-1 was studied under four different treatments to investigate the gene-regulatory system for glyphosate tolerance. A total of 83, 83, 60 and 74 genes were up-regulated and 108, 87, 178 and 117 genes down-regulated under 60-NPG, 110-NPG, NaCl (355 mM) and HCl (pH 4.46) stress treatments, respectively. Complex gene network was identified to be involved in regulating tolerance to glyphosate. This study revealed that NRS-1 has gained glyphosate tolerance at the cost of osmotic and acidic resistance. The 25 differentially expressed genes are reported to may have partly changed the function for providing resistance to glyphosate directly, among them genes metK, mtbK, fdnG and wzb that might detoxify/degrade the glyphosate. However, under 110-NPG condition, NRS-1 might have utilized economical and efficient ways by depressing its metabolism and activity to pass through this stress. Hence, the present study provides insights into the genes involved in glyphosate tolerance, which can be effectively utilized to engineer herbicide-resistant crop varieties after their proper validation to manage weed growth.201830305993
57860.8986Characterization of radiation-resistance mechanism in Spirosoma montaniterrae DY10(T) in terms of transcriptional regulatory system. To respond to the external environmental changes for survival, bacteria regulates expression of a number of genes including transcription factors (TFs). To characterize complex biological phenomena, a biological system-level approach is necessary. Here we utilized six computational biology methods to infer regulatory network and to characterize underlying biologically mechanisms relevant to radiation-resistance. In particular, we inferred gene regulatory network (GRN) and operons of radiation-resistance bacterium Spirosoma montaniterrae DY10[Formula: see text] and identified the major regulators for radiation-resistance. Our results showed that DNA repair and reactive oxygen species (ROS) scavenging mechanisms are key processes and Crp/Fnr family transcriptional regulator works as a master regulatory TF in early response to radiation.202336959250
506670.8983Genetic Alterations Associated with Colistin Resistance Development in Escherichia coli. Background: The increased incidence of infections due to multidrug-resistant Gram-negative bacteria has led to the renewed interest in the use of 'forgotten' antibiotics such as colistin. In this work, we studied the chromosomal colistin resistance mechanisms among laboratory-induced colistin-resistant Escherichia coli isolates. Methods: Three colistin-susceptible (ColS) clinical isolates of E. coli assigning to ST131, ST405, and ST361 were exposed to successively increasing concentrations of colistin. The nucleotide sequences of pmrA, pmrB, pmrD, phoP, phoQ, and mgrB genes were determined. The fitness burden associated with colistin resistance acquisition was determined by measuring the in vitro growth rate. Results: Colistin resistance induction resulted in 16-64 times increase in colistin MICs in mutants (n = 8) compared with parental isolates. Analysis of chromosomal genes in colistin-resistant mutants compared with those of ColS ancestors revealed genetic alterations confined to PmrAB two-component system and included PmrA G53R/R81S/L105P and PmrB E121K/E121A/A159P/A159V/G302E changes. The PmrB E121 was found as a critical position for colistin resistance development being altered in three mutants with different ancestors. The acquired colistin-resistance phenotype was stable following 10 consecutive passages in the absence of selective pressure of colistin and it did not alter the susceptibility of mutants to other antimicrobial agents. All mutants exhibited growth rates similar to their respective ColS ancestors, except for one isolate, which revealed a significant growth defect. Conclusion: Our results revealed that colistin resistance in E. coli was more related to PmrAB alterations, which did not impose a fitness cost in most cases.202438905152
636680.8983Fluorinated Beta-diketo Phosphorus Ylides Are Novel Efflux Pump Inhibitors in Bacteria. BACKGROUND: One of the most important resistance mechanisms in bacteria is the increased expression of multidrug efflux pumps. To combat efflux-related resistance, the development of new efflux pump inhibitors is essential. MATERIALS AND METHODS: Ten phosphorus ylides were compared based on their MDR-reverting activity in multidrug efflux pump system consisting of the subunits acridine-resistance proteins A and B (AcrA and AcrB) and the multidrug efflux pump outer membrane factor TolC (TolC) of Escherichia coli K-12 AG100 strain and its AcrAB-TolC-deleted strain. Efflux inhibition was assessed by real-time fluorimetry and the inhibition of quorum sensing (QS) was also investigated. The relative gene expression of efflux QS genes was determined by real-time reverse transcriptase quantitative polymerase chain reaction. RESULTS: The most potent derivative was Ph(3)P=C(COC(2)F(5))CHO and its effect was more pronounced on the AcrAB-TolC-expressing E. coli strain, furthermore the most active compounds, Ph(3)P=C(COCF(3))OMe, Ph(3)P=C(COC(2)F(5))CHO and Ph(3)P=C(COCF(3))COMe, reduced the expression of efflux pump and QS genes. CONCLUSION: Phosphorus ylides might be valuable EPI compounds to reverse efflux related MDR in bacteria.201627815466
121590.8982The role of the plasmid-mediated fluoroquinolone resistance genes as resistance mechanisms in pediatric infections due to Enterobacterales. INTRODUCTION: Fluoroquinolones (FQs) are not commonly prescribed in children, yet the increasing incidence of multidrug-resistant (MDR) Enterobacterales (Ent) infections in this population often reveals FQ resistance. We sought to define the role of FQ resistance in the epidemiology of MDR Ent in children, with an overall goal to devise treatment and prevention strategies. METHODS: A case-control study of children (0-18 years) at three Chicago hospitals was performed. Cases had infections by FQ-susceptible, β-lactamase-producing (bla) Ent harboring a non- or low-level expression of PMFQR genes (PMFQS Ent). Controls had FQR infections due to bla Ent with expressed PMFQR genes (PMFQR Ent). We sought bla genes by PCR or DNA (BD Max Check-Points assay(®)) and PMFQR genes by PCR. We performed rep-PCR, MLST, and E. coli phylogenetic grouping. Whole genome sequencing was additionally performed on PMFQS Ent positive isolates. Demographics, comorbidities, and device, antibiotic, and healthcare exposures were evaluated. Predictors of infection were assessed. RESULTS: Of 170 β-lactamase-producing Ent isolates, 85 (50%) were FQS; 23 (27%) had PMFQR genes (PMFQS cases). Eighty-five (50%) were FQR; 53 (62%) had PMFQR genes (PMFQR controls). The median age for children with PMFQS Ent and PMFQR Ent was 4.3 and 6.2 years, respectively (p = NS). Of 23 PMFQS Ent, 56% were Klebsiella spp., and of 53 PMFQR Ent, 76% were E. coli. The most common bla and PMFQR genes detected in PMFQS Ent were bla (SHV ESBL) (44%) and oqxAB (57%), and the corresponding genes detected in PMFQR Ent were bla (CTX-M-1-group ESBL) (79%) and aac(6')-Ib-cr (83%). Whole genome sequencing of PMFQS Ent revealed the additional presence of mcr-9, a transferable polymyxin resistance gene, in 47% of isolates, along with multiple plasmids and mobile genetic elements propagating drug resistance. Multivariable regression analysis showed that children with PMFQS Ent infections were more likely to have hospital onset infection (OR 5.7, 95% CI 1.6-22) and isolates containing multiple bla genes (OR 3.8, 95% CI 1.1-14.5). The presence of invasive devices mediated the effects of healthcare setting in the final model. Differences in demographics, comorbidities, or antibiotic use were not found. CONCLUSIONS: Paradoxically, PMFQS Ent infections were often hospital onset and PMFQR Ent infections were community onset. PMFQS Ent commonly co-harbored multiple bla and PMFQR genes, and additional silent, yet transferrable antibiotic resistance genes such as mcr-9, affecting therapeutic options and suggesting the need to address infection prevention strategies to control spread. Control of PMFQS Ent infections will require validating community and healthcare-based sources and risk factors associated with acquisition.202337900312
8730100.8981Genome-Wide Identification of bHLH Transcription Factor Family in Malus sieversii and Functional Exploration of MsbHLH155.1 Gene under Valsa Canker Infection. Xinjiang wild apple (Malus sieversii) is an ancient relic; a plant with abundant genetic diversity and disease resistance. Several transcription factors were studied in response to different biotic and abiotic stresses on the wild apple. Basic/helix-loop-helix (bHLH) is a large plant transcription factor family that plays important roles in plant responses to various biotic and abiotic stresses and has been extensively studied in several plants. However, no study has yet been conducted on the bHLH gene in M. sieversii. Based on the genome of M. sieversii, 184 putative MsbHLH genes were identified, and their physicochemical properties were studied. MsbHLH covered 23 subfamilies and lacked two subfamily genes of Arabidopsis thaliana based on the widely used classification method. Moreover, MsbHLH exon-intron structures matched subfamily classification, as evidenced by the analysis of their protein motifs. The analysis of cis-acting elements revealed that many MsbHLH genes share stress- and hormone-related cis-regulatory elements. These MsbHLH transcription factors were found to be involved in plant defense responses based on the protein-protein interactions among the differentially expressed MsbHLHs. Furthermore, 94 MsbHLH genes were differentially expressed in response to pathogenic bacteria. The qRT-PCR results also showed differential expression of MsbHLH genes. To further verify the gene function of bHLH, our study used the transient transformation method to obtain the overexpressed MsbHLH155.1 transgenic plants and inoculated them. Under Valsa canker infection, the lesion phenotype and physiological and biochemical indexes indicated that the antioxidant capacity of plants could increase and reduce the damage caused by membrane peroxidation. This study provides detailed insights into the classification, gene structure, motifs, chromosome distribution, and gene expression of bHLH genes in M. sieversii and lays a foundation for a better understanding disease resistance in plants, as well as providing candidate genes for the development of M. sieversii resistance breeding.202336771705
2453110.8980Prevalence and molecular determinants of colistin resistance among commensal Enterobacteriaceae isolated from poultry in northwest of Iran. BACKGROUND: The emergence of colistin-resistant Enterobacteriaceae from human and animal sources is a public health concern as this antibiotic is considered to be the last line therapeutic option for infections caused by multidrug-resistant Gram-negative bacteria. Here we aimed to determine the prevalence of colistin resistance, among enterobacteria isolated from poultry and the possible underlying colistin resistance mechanisms. METHODS: A collection of 944 cloacal samples were obtained from poultry and screened for colistin resistance. To uncover the molecular mechanism behind colistin resistance, the presence of plasmid encoded colistin resistance genes mcr-1, mcr-2, mcr-3 and mcr-4 was examined by PCR. The nucleotide sequences of the mgrB, pmrA, pmrB, phoP, phoQ, crrA and crrB genes were determined. The genetic relatedness of the colistin resistant (ColR) isolates was evaluated by Multilocus sequence typing. Three ColR mutants were generated in vitro by repetitive drug exposure. RESULTS: Overall from 931 enteric bacteria isolated from poultry samples obtained from 131 farms, nine ColR bacteria (0.96%) with high level colistin resistance (MICs ≥ 64 mg/L) were detected all being identified as K. pneumoniae. The 9 ColR bacteria originated from different farms and belonged to 7 distinct Sequence types including ST11 (22.2%) and ST726 (22.2%) being the most prevalent STs followed by ST37, ST74, ST485, ST525 and novel sequence type 3380 (11.1% each). mcr-type genes were not detected in any isolate. In 88.8% of the isolates (n = 8), MgrB was inactivated by Insertion of IS elements (IS1-like, IS3-like, IS5-like families, positions + 75, + 113, + 117, + 135) and nonsense mutations at codons 8, 16, 30. All ColR isolates harboured wild type PmrA, PhoP, PhoQ or polymorphic variants of PmrB. Sequence analysis of the CrrB revealed a familiar S195N and 4 novel I27V, T150R, F303S and K325R substitutions. PmrB T93N substitution and mgrB locus deletion were identified in two laboratory induced ColR mutants and one mutant lacked alteration in the studied loci. In one ColR isolate with wild type MgrB an A83V substitution was detected in CrrA. CONCLUSION: It is concluded from our results that colistin resistance in the studied avian K. pneumoniae isolates was mostly linked to alterations identified within the mgrB gene.201930728861
1400120.8980Comparative genomic analysis of Escherichia coli strains obtained from continuous imipenem stress evolution. The carbapenem-resistant Escherichia coli has aroused increasing attention worldwide, especially in terms of imipenem (IMP) resistance. The molecular mechanism of IMP resistance remains unclear. This study aimed to explore the resistance mechanisms of IMP in E. coli. Susceptible Sx181-0-1 strain was induced into resistance strains by adaptive laboratory evolution. The drug resistance spectrum was measured using the disk diffusion and microbroth dilution methods. Whole-genome sequencing and resequencing were used to analyze the nonsynonymous single-nucleotide polymorphisms (nsSNPs) between the primary susceptible strain and resistant strains. The expression levels of these genes with nsSNPs were identified by real-time quantitative PCR (RT-qPCR). Resistance phenotype appeared in the induced 15th generation (induction time = 183 h). Sx181-32 and Sx181-256, which had the minimum inhibitory concentrations of IMP of 8 and 64 µg ml-1, were isolated during continuous subculture exposed to increasing concentrations of IMP, respectively. A total of 19 nsSNPs were observed both in Sx181-32 and Sx181-256, distributed in rpsU, sdaC, zwf, ttuC, araJ, dacC, mrdA, secF, dacD, lpxD, mrcB, ftsI, envZ, and two unknown function genes (orf01892 and orf01933). Among these 15 genes, five genes (dacC, mrdA, lpxD, mrcB, and ftsI) were mainly involved in cell wall synthesis. The mrdA (V338A, L378P, and M574I) and mrcB (P784L, A736V, and T708A) had three amino acid substitutions, respectively. The expression levels of rpsU, ttuC, and orf01933 were elevated in both Sx181-32 and Sx181-256 compared to Sx181-0-1. The expression levels of these genes were elevated in Sx181-256, except for araJ. Bacteria developed resistance to antimicrobials by regulating various biological processes, among which the most involved is the cell wall synthesis (dacC, mrdA, lpxD, mrcB, and ftsI). The combination mutations of mrdA, envZ, and ftsI genes may increase the resistance to IMP. Our study could improve the understanding of the molecular mechanism of IMP resistance in E. coli.202235147175
45130.8979Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Studying grapevine (Vitis vinifera) innate defense mechanisms is a prerequisite to the development of new protection strategies, based on the stimulation of plant signaling pathways to trigger pathogen resistance. Two transcriptional coactivators (VvNPR1.1 and VvNPR1.2) with similarity to Arabidopsis thaliana NPR1 (Non-Expressor of PR genes 1), a well-characterized and key signaling element of the salicylic acid (SA) pathway, were recently isolated in Vitis vinifera. In this study, functional characterization of VvNPR1.1 and VvNPR1.2, including complementation of the Arabidopsis npr1 mutant, revealed that VvNPR1.1 is a functional ortholog of AtNPR1, whereas VvNPR1.2 likely has a different function. Ectopic overexpression of VvNPR1.1 in the Arabidopsis npr1-2 mutant restored plant growth at a high SA concentration, Pathogenesis Related 1 (PR1) gene expression after treatment with SA or bacterial inoculation, and resistance to virulent Pseudomonas syringae pv. maculicola bacteria. Moreover, stable overexpression of VvNPR1.1-GFP in V. vinifera resulted in constitutive nuclear localization of the fusion protein and enhanced PR gene expression in uninfected plants. Furthermore, grapevine plants overexpressing VvNPR1.1-GFP exhibited an enhanced resistance to powdery mildew infection. This work highlights the importance of the conserved SA/NPR1 signaling pathway for resistance to biotrophic pathogens in V. vinifera.201121505863
5375140.8978Mechanism of Eravacycline Resistance in Clinical Enterococcus faecalis Isolates From China. Opportunistic infections caused by multidrug-resistant Enterococcus faecalis strains are a significant clinical challenge. Eravacycline (Erava) is a synthetic fluorocycline structurally similar to tigecycline (Tige) that exhibits robust antimicrobial activity against Gram-positive bacteria. This study investigated the in vitro antimicrobial activity and heteroresistance risk of Eravacycline (Erava) in clinical E. faecalis isolates from China along with the mechanism of Erava resistance. A total of 276 non-duplicate E. faecalis isolates were retrospectively collected from a tertiary care hospital in China. Heteroresistance to Erava and the influence of tetracycline (Tet) resistance genes on Erava susceptibility were examined. To clarify the molecular basis for Erava resistance, E. faecalis variants exhibiting Erava-induced resistance were selected under Erava pressure. The relative transcript levels of six candidate genes linked to Erava susceptibility were determined by quantitative reverse-transcription PCR, and their role in Erava resistance and heteroresistance was evaluated by in vitro overexpression experiments. We found that Erava minimum inhibitory concentrations (MICs) against clinical E. faecalis isolates ranged from ≤0.015 to 0.25 mg/l even in strains harboring Tet resistance genes. The detection frequency of Erava heteroresistance in isolates with MICs ≤ 0.06, 0.125, and 0.25 mg/l were 0.43% (1/231), 7.5% (3/40), and 0 (0/5), respectively. No mutations were detected in the 30S ribosomal subunit gene in Erava heteroresistance-derived clones, although mutations in this subunit conferred cross resistance to Tige in Erava-induced resistant E. faecalis. Overexpressing RS00630 (encoding a bone morphogenetic protein family ATP-binding cassette transporter substrate-binding protein) in E. faecalis increased the frequency of Erava and Tige heteroresistance, whereas RS12140, RS06145, and RS06880 overexpression conferred heteroresistance to Tige only. These results indicate that Erava has potent in vitro antimicrobial activity against clinical E. faecalis isolates from China and that Erava heteroresistance can be induced by RS00630 overexpression.202032523563
9031150.8970EmrR-Dependent Upregulation of the Efflux Pump EmrCAB Contributes to Antibiotic Resistance in Chromobacterium violaceum. Chromobacterium violaceum is an environmental Gram-negative bacterium that causes infections in humans. Treatment of C. violaceum infections is difficult and little is known about the mechanisms of antibiotic resistance in this bacterium. In this work, we identified mutations in the MarR family transcription factor EmrR and in the protein GyrA as key determinants of quinolone resistance in C. violaceum, and we defined EmrR as a repressor of the MFS-type efflux pump EmrCAB. Null deletion of emrR caused increased resistance to nalidixic acid, but not to other quinolones or antibiotics of different classes. Moreover, the ΔemrR mutant showed decreased production of the purple pigment violacein. Importantly, we isolated C. violaceum spontaneous nalidixic acid-resistant mutants with a point mutation in the DNA-binding domain of EmrR (R92H), with antibiotic resistance profile similar to that of the ΔemrR mutant. Other spontaneous mutants with high MIC values for nalidixic acid and increased resistance to fluoroquinolones presented point mutations in the gene gyrA. Using DNA microarray, Northern blot and EMSA assays, we demonstrated that EmrR represses directly a few dozen genes, including the emrCAB operon and other genes related to transport, oxidative stress and virulence. This EmrR repression on emrCAB was relieved by salicylate. Although mutation of the C. violaceum emrCAB operon had no effect in antibiotic susceptibility or violacein production, deletion of emrCAB in an emrR mutant background restored antibiotic susceptibility and violacein production in the ΔemrR mutant. Using a biosensor reporter strain, we demonstrated that the lack of pigment production in ΔemrR correlates with the accumulation of quorum-sensing molecules in the cell supernatant of this mutant strain. Therefore, our data revealed that overexpression of the efflux pump EmrCAB via mutation and/or derepression of EmrR confers quinolone resistance and alters quorum-sensing signaling in C. violaceum, and that point mutation in emrR can contribute to emergence of antibiotic resistance in bacteria.201830498484
6364160.8969Characterization of clumpy adhesion of Escherichia coli to human cells and associated factors influencing antibiotic sensitivity. Escherichia coli intestinal infection pathotypes are characterized by distinct adhesion patterns, including the recently described clumpy adhesion phenotype. Here, we identify and characterize the genetic factors contributing to the clumpy adhesion of E. coli strain 4972. In this strain, the transcriptome and proteome of adhered bacteria were found to be distinct from planktonic bacteria in the supernatant. A total of 622 genes in the transcriptome were differentially expressed in bacteria present in clumps relative to the planktonic bacteria. Seven genes targeted for disruption had variable distribution in different pathotypes and nonpathogenic E. coli, with the pilV and spnT genes being the least frequent or absent from most groups. Deletion (Δ) of five differentially expressed genes, flgH, ffp, pilV, spnT, and yggT, affected motility, adhesion, or antibiotic stress. ΔflgH exhibited 80% decrease and ΔyggT depicted 184% increase in adhesion, and upon complementation, adhesion was significantly reduced to 13%. ΔflgH lost motility and was regenerated when complemented, whereas Δffp had significantly increased motility, and reintroduction of the same gene reduced it to the wild-type level. The clumps produced by Δffp and ΔspnT were more resistant and protected the bacteria, with ΔspnT showing the best clump formation in terms of ampicillin stress protection. ΔyggT had the lowest tolerance to gentamicin, where the antibiotic stress completely eliminated the bacteria. Overall, we were able to investigate the influence of clump formation on cell surface adhesion and antimicrobial tolerance, with the contribution of several factors crucial to clump formation on susceptibility to the selected antibiotics. IMPORTANCE: The study explores a biofilm-like clumpy adhesion phenotype in Escherichia coli, along with various factors and implications for antibiotic susceptibility. The phenotype permitted the bacteria to survive the onslaught of high antibiotic concentrations. Profiles of the transcriptome and proteome allowed the differentiation between adhered bacteria in clumps and planktonic bacteria in the supernatant. The deletion mutants of genes differentially expressed between adhered and planktonic bacteria, i.e., flgH, ffp, pilV, spnT, and yggT, and respective complementations in trans cemented their roles in multiple capacities. ffp, an uncharacterized gene, is involved in motility and resistance to ampicillin in a clumpy state. The work also affirms for the first time the role of the yggT gene in adhesion and its involvement in susceptibility against another aminoglycoside antibiotic, i.e., gentamicin. Overall, the study contributes to the mechanisms of biofilm-like adhesion phenotype and understanding of the antimicrobial therapy failures and infections of E. coli.202438530058
618170.8968A novel chemical inducer of Streptococcus quorum sensing acts by inhibiting the pheromone-degrading endopeptidase PepO. Bacteria produce chemical signals (pheromones) to coordinate behaviors across a population in a process termed quorum sensing (QS). QS systems comprising peptide pheromones and their corresponding Rgg receptors are widespread among Firmicutes and may be useful targets for manipulating microbial behaviors, like suppressing virulence. The Rgg2/3 QS circuit of the human pathogen Streptococcus pyogenes controls genes affecting resistance to host lysozyme in response to short hydrophobic pheromones (SHPs). Considering that artificial activation of a QS pathway may be as useful in the objective of manipulating bacteria as inhibiting it, we sought to identify small-molecule inducers of the Rgg2/3 QS system. We report the identification of a small molecule, P516-0475, that specifically induced expression of Rgg2/3-regulated genes in the presence of SHP pheromones at concentrations lower than typically required for QS induction. In searching for the mode of action of P516-0475, we discovered that an S. pyogenes mutant deficient in pepO, a neprilysin-like metalloendopeptidase that degrades SHP pheromones, was unresponsive to the compound. P516-0475 directly inhibited recombinant PepO in vitro as an uncompetitive inhibitor. We conclude that this compound induces QS by stabilizing SHP pheromones in culture. Our study indicates the usefulness of cell-based screens that modulate pathway activities to identify unanticipated therapeutic targets contributing to QS signaling.201829203527
6370180.8967Inhibitory effects of silybin on the efflux pump of methicillin‑resistant Staphylococcus aureus. Bacterial multidrug resistance efflux systems serve an important role in antimicrobial resistance. Thus, identifying novel and effective efflux pump inhibitors that are safe with no adverse side effects is urgently required. Silybin is a flavonolignan component of the extract from the milk thistle seed. To order to investigate the mechanism by which silybin inhibits the efflux system of methicillin‑resistant Staphylococcus aureus (MRSA), antimicrobial susceptibility testing and the double‑plate method were used to evaluate the effect of silybin on MRSA41577. The ability of silybin to inhibit the efflux of ciprofloxacin from MRSA was evaluated by performing a fluorescence assay. Reverse transcription‑quantitative polymerase chain reaction analysis revealed that silybin reduced the expression of the quinolone resistance protein NorA (norA) and quaternary ammonium resistance proteins A/B (qacA/B) efflux genes in MRSA. This suggested that silybin may effectively inhibit the efflux system of MRSA41577. Compared with the control, MRSA41577 treated with silybin for 16 h exhibited a 36 and 49% reduction in the expression of norA and qacA/B, respectively. Inhibition of the expression of these genes by silybin restored the sensitivity of MRSA41577 to antibiotics, indicating that efflux pump inhibitors, which act by inhibiting the efflux system of MRSA, may disrupt the MRSA resistance to antibiotics, rendering the bacteria sensitive to these drugs.201829845191
8822190.8966Proteomics Analysis Reveals Bacterial Antibiotics Resistance Mechanism Mediated by ahslyA Against Enoxacin in Aeromonas hydrophila. Bacterial antibiotic resistance is a serious global problem; the underlying regulatory mechanisms are largely elusive. The earlier reports states that the vital role of transcriptional regulators (TRs) in bacterial antibiotic resistance. Therefore, we have investigated the role of TRs on enoxacin (ENX) resistance in Aeromonas hydrophila in this study. A label-free quantitative proteomics method was utilized to compare the protein profiles of the ahslyA knockout and wild-type A. hydrophila strains under ENX stress. Bioinformatics analysis showed that the deletion of ahslyA triggers the up-regulated expression of some vital antibiotic resistance proteins in A. hydrophila upon ENX stress and thereby reduce the pressure by preventing the activation of SOS repair system. Moreover, ahslyA directly or indirectly induced at least 11 TRs, which indicates a complicated regulatory network under ENX stress. We also deleted six selected genes in A. hydrophila that altered in proteomics data in order to evaluate their roles in ENX stress. Our results showed that genes such as AHA_0655, narQ, AHA_3721, AHA_2114, and AHA_1239 are regulated by ahslyA and may be involved in ENX resistance. Overall, our data demonstrated the important role of ahslyA in ENX resistance and provided novel insights into the effects of transcriptional regulation on antibiotic resistance in bacteria.202134168639