PHYSICIAN - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
147300.9600Evaluation of the Unyvero i60 ITI® multiplex PCR for infected chronic leg ulcers diagnosis. OBJECTIVES: Unyvero i60 ITI multiplex PCR (mPCR) may identify a large panel of bacteria and antibiotic resistance genes. In this study, we compared results obtained by mPCR to standard bacteriology in chronic leg ulcer (CLU) infections. METHODS: A prospective study, part of the interventional-blinded randomized study "ulcerinfecte" (NCT02889926), was conducted at Saint Joseph Hospital in Paris. Fifty patients with a suspicion of infected CLU were included between February 2017 and September 2018. Conventional bacteriology and mPCR were performed simultaneously on deep skin biopsies. RESULTS: Staphylococcus aureus and Pseudomonas aeruginosa were the most detected pathogens. Regarding the global sensitivity, mPCR is not overcome to the standard culture. Anaerobes and slow growing bacteria were detected with a higher sensitivity rate by mPCR than standard culture. CONCLUSION: Unyvero i60 ITI multiplex PCR detected rapidly pathogenic bacteria in infected CLU especially anaerobes and slow growing bacteria and was particularly effective for patients previously treated with antibiotics.202031790779
253810.9589Passenger pathogens on physicians. BACKGROUND: Hospital acquired infections pose a significant risk for patients undergoing hematopoietic stem cell transplantation. Horizontal transfer of antimicrobial resistance genes contributes to prevalence of multidrug-resistant infections in this patient population. METHODS: At an academic bone marrow transplantation center, we performed whole genome DNA sequencing (WGS) on commonly used physician items, including badges, stethoscopes, soles of shoes, and smart phones from 6 physicians. Data were analyzed to determine antimicrobial resistance and virulence factor genes. RESULTS: A total of 1,126 unique bacterial species, 495 distinct bacteriophages, 91 unique DNA viruses, and 175 fungal species were observed. Every item contained bacteria with antibiotic and/or antiseptic resistance genes. Stethoscopes contained greatest frequency of antibiotic resistance and more plasmid-carriage of antibiotic resistance. DISCUSSION AND CONCLUSIONS: These data indicate that physician examination tools and personal items possess potentially pathogenic microbes. Infection prevention policies must consider availability of resources to clean physical examination tools as well as provider awareness when enacting hospital policies. Additionally, the prevalence of antimicrobial resistance genes (eg, encoding resistance to aminoglycosides, β-lactams, and quinolones) reinforces need for antimicrobial stewardship, including for immunocompromised patients. Further research is needed to assess whether minute quantities of microbes on physician objects detectable by WGS represents clinically significant inoculums for immunocompromised patients.202336306861
148520.9588Evaluation of Verigene Blood Culture Test Systems for Rapid Identification of Positive Blood Cultures. The performance of molecular tests using the Verigene Gram-Positive and Gram-Negative Blood Culture nucleic acid tests (BC-GP and BC-GN, resp.; Naosphere, Northbrook, IL, USA) was evaluated for the identification of microorganisms detected from blood cultures. Ninety-nine blood cultures containing Gram-positive bacteria and 150 containing Gram-negative bacteria were analyzed using the BC-GP and BC-GN assays, respectively. Blood cultures were performed using the Bactec blood culture system (BD Diagnostic Systems, Franklin Lakes, NJ, USA) and conventional identification and antibiotic-susceptibility tests were performed using a MicroScan system (Siemens, West Sacramento, CA, USA). When a single strain of bacteria was isolated from the blood culture, Verigene assays correctly identified 97.9% (94/96) of Gram-positive bacteria and 93.8% (137/146) of Gram-negative bacteria. Resistance genes mecA and vanA were correctly detected by the BC-GP assay, while the extended-spectrum β-lactamase CTX-M and the carbapenemase OXA resistance gene were detected from 30 cases cultures by the BC-GN assay. The BC-GP and BC-GN assays showed high agreement with conventional identification and susceptibility tests. These tests are useful for rapid identification of microorganisms and the detection of clinically important resistance genes from positive Bactec blood cultures.201626904669
523330.9584Antibiotic resistance pattern of the allochthonous bacteria isolated from commercially available spices. Spices are often used in dried form, sometimes with significant microbial contamination including pathogenic and food spoilage bacteria. The antibiotic resistance represents an additional risk for food industry, and it is worthy of special attention as spices are important food additives. During our work, we examined the microbiological quality of 50 different spices with cultivation methods on diverse selective media. The identification of the most representative bacteria was carried out using 16S rDNA gene sequence analysis. Antibiotic resistance profiling of twelve identified Bacillus species (B. subtilis subsp. stercoris BCFK, B. licheniformis BCLS, B. siamensis SZBC, B. zhangzhouensis BCTA, B. altitudinis SALKÖ, B. velezensis CVBC, B. cereus SALÖB isolate, B. tequilensis KOPS, B. filamentosus BMBC, B. subtilis subsp. subtilis PRBC2, B. safensis BMPS, and B. mojavensis BCFK2 isolate) was performed using the standard disk-diffusion method against 32 antibiotics. The study showed that the majority resistance was obtained against penicillin G (100%), oxacillin (91.67%), amoxyclav (91.67%), rifampicin (75%), and azithromycin (75%). Our findings suggest that spices harbor multidrug-resistant bacteria.202134401102
147440.9584Simple, rapid, and cost-effective modified Carba NP test for carbapenemase detection among Gram-negative bacteria. PURPOSE: Detection of carbapenemases among Gram-negative bacteria (GNB) is important for both clinicians and infection control practitioners. The Clinical and Laboratory Standards Institute recommends Carba NP (CNP) as confirmatory test for carbapenemase production. The reagents required for CNP test are costly and hence the test cannot be performed on a routine basis. The present study evaluates modifications of CNP test for rapid detection of carbapenemases among GNB. MATERIALS AND METHODS: The GNB were screened for carbapenemase production using CNP, CarbAcineto NP (CANP), and modified CNP (mCNP) test. A multiplex polymerase chain reaction (PCR) was performed on all the carbapenem-resistant bacteria for carbapenemase genes. The results of three phenotypic tests were compared with PCR. RESULTS: A total of 765 gram negative bacteria were screened for carbapenem resistance. Carbapenem resistance was found in 144 GNB. The metallo-β-lactamases were most common carbapenemases followed by OXA-48-like enzymes. The CANP test was most sensitive (80.6%) for carbapenemases detection. The mCNP test was 62.1% sensitive for detection of carbapenemases. The mCNP, CNP, and CANP tests were equally sensitive (95%) for detection of NDM enzymes among Enterobacteriaceae. The mCNP test had poor sensitivity for detection of OXA-48-like enzymes. CONCLUSION: The mCNP test was rapid, cost-effective, and easily adoptable on routine basis. The early detection of carbapenemases using mCNP test will help in preventing the spread of multidrug-resistant organisms in the hospital settings.201728966495
146350.9580Identification of colistin resistance and its bactericidal activity against uropathogenic gram negative bacteria from Hayatabad Medical Complex Peshawar. OBJECTIVES: Identification of colistin resistance and its bactericidal activity against gram-negative bacteria isolated from urinary tract infection (UTI) patients. METHODS: This 6-month cross sectional study was conducted in Hayatabad Medical Complex Peshawar from January 2019-June2019.. A total of 2000 urine samples were collected and transported to the Health Research Institute, NIH, Research Centre, Khyber Medical College Peshawar. Samples were streaked on different media and incubated at 37C° for 24hrs. Gram negative bacteria were identified through gram staining and Analytical Profile Index (API) 10s. Gram negative bacteria were subjected under antibiotic sensitivity profile through Kirby-Bauer disc diffusion method. Colistin resistance was found through broth microdilution method. Minimum bactericidal activity was performed to find out the lowest concentration of colistin required to kill gram-negative bacteria. RESULTS: A total of 241(12.05%) uropathogenic gram negative bacteria were isolated and identified from 2000 urine samples while excluding intrinsically resistant bacteria. After broth microdilution, colistin resistance was found in 48(19.9%) Escherichia coli, 4(1.6%) Klebsiella pneumoniae and 3(1.3%) Pseudomonas aeruginosa respectively. Colistin resistant Escherichia coli were resistant to 77% Cephalosporins, 81% to Fluoroquinolones and 70% to Penicillin combinations. Colistin resistant Klebsiella pneumoniae were 100% resistant to Cephalosporins, Penicillin combinations and Fluoroquinolones while 75% were resistant to Carbapenems and Monobactams. Pseudomonas aeruginosa isolates were sensitive to all used antibiotics. CONCLUSION: E.coli was the mainly responsible uropathogen causing UTIs. Colistin resistance was found in 22.8% gram negative uropathogens. Klebsiella pneumoniae isolates exhibited highest resistance to antibiotics.202235634614
248660.9577Virulence-associated genes and antimicrobial resistance patterns in bacteria isolated from pregnant and nonpregnant women with urinary tract infections: the risk of neonatal sepsis. Uropathogenic Escherichia coli (UPEC) is classified as the major causative agent of urinary tract infections (UTIs). UPEC virulence and antibiotic resistance can lead to complications in pregnant women and (or) newborns. Therefore, the aim of this study was to determine the etiological agents of UTIs, as well as to identify genes related to virulence factors in bacteria isolated from pregnant and nonpregnant women. A total of 4506 urine samples were collected from pregnant and nonpregnant women. Urine cultures were performed, and PCR was used to identify phylogroups and virulence-related genes. Antibiotic resistance profiles were determined. The incidence of UTIs was 6.9% (pregnant women, n = 206 and nonpregnant women, n = 57), and UPEC belonging to phylogroup A was the most prevalent. The presence of genes related to capsular protection, adhesins, iron acquisition, and serum protection in UPEC was associated with not being pregnant, while the presence of genes related to adhesins was associated with pregnancy. Bacteria isolated from nonpregnant women were more resistant to antibiotics; 36.5% were multidrug resistant, and 34.9% were extensively drug resistant. Finally, UTIs were associated with neonatal sepsis risk, particularly in pregnant women who underwent cesarean section while having a UTI caused by E. coli. In conclusion, UPEC isolated from nonpregnant women carried more virulence factors than those isolated from pregnant women, and maternal UTIs were associated with neonatal sepsis risk.202337815047
218970.9577High prevalence of Panton-Valentine Leucocidin (PVL) toxin carrying MRSA and multidrug resistant gram negative bacteria in late onset neonatal sepsis indicate nosocomial spread in a Pakistani tertiary care hospital. BACKGROUND: Neonatal sepsis has high incidence with significant mortality and morbidity rates in Pakistan. We investigated common etiological patterns of neonatal sepsis at a tertiary care setup. METHODS: 90 pus and blood, gram negative and gram positive bacterial isolates were analyzed for virulence and antibiotic resistance gene profiling using PCR and disc diffusion methods. RESULTS: Staphylococcus aureus showed strong association with neonatal sepsis (43 %) followed by Citrobacter freundii (21 %), Pseudomonas aeruginosa (13 %), Escherichia coli (15 %) and Salmonella enterica (8 %). Molecular typing of E. coli isolates depicted high prevalence of the virulent F and B2 phylogroups, with 4 hypervirulent phylogroup G isolates. 76.9 % S. aureus isolates showed presence of Luk-PV, encoding for Panton-valentine leucocidin (PVL) toxin with majority also carrying MecA gene and classified as methicillin resistant S. aureus (MRSA). ecpA, papC, fimH and traT virulence genes were detected in E. coli and Salmonella isolates. 47 % Citrobacter freundii isolates carried the shiga like toxin SltII B. Antimicrobial resistance profiling depicted common resistance to cephalosporins, beta lactams and fluoroquinolones. CONCLUSION: Presence of PVL carrying MRSA and multidrug resistant gram negative bacteria, all isolated from late onset sepsis neonates indicate a predominant nosocomial transmission pattern which may complicate management of the disease in NICU setups.202336621204
124480.9575Identification of antibiotic resistance genes in Escherichia coli from subclinical mastitis milk in dairy cows and goats, East Java Province. Antibiotics are still used to treat mastitis in dairy cows in Indonesia. This study aimed to analyse antibiotic resistance genes in Escherichia coli (E. coli) from subclinical mastitis milk in East Java Province, Indonesia. The samples consisted of subclinical mastitis milk from cows and goats. A total of 592-quarter cow's milk and 71 goat's milk samples from both halves of the udder were collected from 67 farms in Lumajang, Banyuwangi, Malang, Sidoarjo, Jember, Pasuruan, Probolinggo, and Mojokerto. Subclinical mastitis samples were screened using the California mastitis test (CMT). E. coli was identified by phenotypic and genotypic methods. E. coli was confirmed with a primer specific to the polymerase chain reaction (PCR) technique. Gene resistance of E. coli was tested using the multiplex-PCR (mPCR) technique with primers encoding the genes temoneira enzyme (TEM), oxacillinase (OXA), sulfhydryl variable (SHV), and cefotaximase-munich IV (CTX-M IV). These genes were chosen because mastitis treatment generally uses oxacilline and β-lactam antibiotics. All data obtained were analysed descriptively. The results show that six isolates of E. coli (46.15%) carried a single resistance gene (TEM or SHV) and two isolates (33.33%) were confirmed as multiple drug-resistant organisms (MDROs) (TEM and SHV). The resistance genes were found in samples originating from Blitar, Banyuwangi, Lumajang, and Pasuruan Regencies. This research implies that antibiotic-resistance genes found in E. coli on certain farms are dangerous and may allow gene transmission to other bacteria that make treatment for mastitis or other bacterial infections ineffective.202438550619
211490.9575Clinical, phenotypic, and genotypic characteristics of ESBL-producing Salmonella enterica bloodstream infections from Qatar. BACKGROUND: Resistant Salmonella infections are a major global public health challenge particularly for multidrug-resistant (MDR) isolates manifesting as bloodstream infections (BSIs). OBJECTIVES: To evaluate clinical, phenotypic, and genotypic characteristics of extended-spectrum beta-lactamase (ESBL) producing Salmonella enterica BSIs from Qatar. METHODS: Phenotypic ESBL Salmonella enterica from adult patients presenting with positive BSIs were collected between January 2019 to May 2020. Microbiological identification and characterization were performed using standard methods while genetic characteristics were examined through whole genome sequencing studies. RESULTS: Of 151 episodes of Salmonella enterica BSI, 15 (10%) phenotypic ESBL isolates were collected. Recent travel was recorded in most cases (80%) with recent exposure to antimicrobials (27%). High-level resistance to quinolines, aminoglycosides, and cephalosporins was recorded (80-100%) while meropenem, tigecycline and colistin demonstrated universal susceptibility. Genomic evaluation demonstrated dominance of serotype Salmonella Typhi sequence type 1 (93%) while antimicrobial resistance genes revealed dominance of aminoglycoside resistance (100%), qnrS1 quinolones resistance (80%), bla(CTX-M-15) ESBLs (86.7%), and paucity of AmpC resistance genes (6.7%). CONCLUSIONS: Invasive MDR Salmonella enterica is mainly imported, connected to patients from high prevalent regions with recent travel and antimicrobial use caused by specific resistant clones. In suspected cases of multidrug resistance, carbapenem therapy is recommended.202438742235
1486100.9574Multicenter evaluation of the Verigene Gram-negative blood culture nucleic acid test for rapid detection of bacteria and resistance determinants in positive blood cultures. The Verigene Gram-Negative Blood Culture Nucleic Acid Test (BC-GN) is a microarray-based assay that enables rapid detection of 9 common Gram-negative bacteria and 6 resistance determinants directly from positive blood cultures. We compared the performance of BC-GN with currently used automated systems, testing 141 clinical blood cultures and 205 spiked blood cultures. For identification of BC-GN target organisms in clinical and spiked blood cultures, the BC-GN assay showed 98.5% (130/132) and 98.9% (182/184) concordance, respectively. Of 140 resistance genes positively detected in clinical and spiked blood cultures with the BC-GN test, 139 (99.3%) were confirmed by PCR, and the detection results were consistent with the resistance phenotypes observed. The BC-GN assay, thus, can potentially improve care for sepsis patients by enabling timely detection and targeted antimicrobial therapy.201526361710
1403110.9573Evaluation of the AusDiagnostics MT CRE EU assay for the detection of carbapenemase genes and transferable colistin resistance determinants mcr-1/-2 in MDR Gram-negative bacteria. OBJECTIVES: To evaluate the AusDiagnostics MT CRE EU assay for the detection of carbapenemase and acquired colistin resistance genes in Gram-negative bacteria. METHODS: The assay allows the detection of blaKPC, blaOXA-48-like, blaNDM, blaVIM, blaIMP, blaSIM, blaGIM, blaSPM, blaFRI, blaIMI, blaGES (differentiating ESBL and carbapenemase variants), blaSME and mcr-1/-2. It was evaluated against a panel of isolates including Enterobacteriaceae, Pseudomonas spp. and Acinetobacter spp. retrospectively (n = 210) and prospectively (n = 182). RESULTS: The CRE EU assay was able to detect 268/268 carbapenemase genes, with 239 belonging to the 'big five' families (KPC, OXA-48-like, NDM, VIM and IMP) and 29 carbapenemase genes of the SIM, GIM, SPM, FRI, IMI, SME and GES families. It could distinguish between ESBL and carbapenemase variants of GES. It also allowed detection of mcr-1/-2 colistin resistance genes on their own or in isolates co-producing a carbapenemase. CONCLUSIONS: The AusDiagnostics MT CRE EU assay offered wide coverage for detection of acquired carbapenemase genes. It required minimal hands-on time and delivered results in less than 4 h from bacterial culture.201830189011
1458120.9572Molecular characterization of extended spectrum β -lactamases enterobacteriaceae causing lower urinary tract infection among pediatric population. BACKGROUND: The β-lactam antibiotics have traditionally been the main treatment of Enterobacteriaceae infections, nonetheless, the emergence of species producing β- Lactamases has rendered this class of antibiotics largely ineffective. There are no published data on etiology of urinary tract infections (UTI) and antimicrobial resistance profile of uropathogens among children in Qatar. The aim of this study is to determine the phenotypic and genotypic profiles of antimicrobial resistant Enterobacteriaceae among children with UTI in Qatar. METHODS: Bacteria were isolated from 727 urine positive cultures, collected from children with UTI between February and June 2017 at the Pediatric Emergency Center, Doha, Qatar. Isolated bacteria were tested for antibiotic susceptibility against sixteen clinically relevant antibiotics using phoenix and Double Disc Synergy Test (DDST) for confirmation of extended-spectrum beta-lactamase (ESBL) production. Existence of genes encoding ESBL production were identified using polymerase chain reaction (PCR). Statistical analysis was done using non-parametric Kappa statistics, Pearson chi-square test and Jacquard's coefficient. RESULTS: 201 (31.7%) of samples were confirmed as Extended Spectrum β -Lactamases (ESBL) Producing Enterobacteriaceae. The most dominant pathogen was E. coli 166 (83%) followed by K. pneumoniae 22 (11%). Resistance was mostly encoded by (bla) CTX-M (59%) genes, primarily (bla) CTX-MG1 (89.2%) followed by (bla) CTX-MG9 (7.7%). 37% of isolated bacteria were harboring multiple (bla) genes (2 genes or more). E. coli isolates were categorized into 11 clusters, while K. pneoumoniae were grouped into five clonal clusters according to the presence and absence of seven genes namely (bla) TEM, (bla) SHV, (bla) CTX-MG1, (bla) CTX-MG2, (bla) CTX-MG8 (bla) CTX-MG9,(bla) CTX-MG25. CONCLUSIONS: Our data indicates an escalated problem of ESBL in pediatrics with UTI, which mandates implementation of regulatory programs to reduce the spread of ESBL producing Enterobacteriaceae in the community. The use of cephalosporins, aminoglycosides (gentamicin) and trimethoprim/sulfamethoxazole is compromised in Qatar among pediatric population with UTI, leaving carbapenems and amikacin as the therapeutic option for severe infections caused by ESBL producers.201830069306
1477130.9572Multicenter Evaluation of the BIOFIRE Blood Culture Identification 2 Panel for Detection of Bacteria, Yeasts, and Antimicrobial Resistance Genes in Positive Blood Culture Samples. Diagnostic tools that can rapidly identify and characterize microbes growing in blood cultures are important components of clinical microbiology practice because they help to provide timely information that can be used to optimize patient management. This publication describes the bioMérieux BIOFIRE Blood Culture Identification 2 (BCID2) Panel clinical study that was submitted to the U.S. Food & Drug Administration. Results obtained with the BIOFIRE BCID2 Panel were compared to standard-of-care (SoC) results, sequencing results, PCR results, and reference laboratory antimicrobial susceptibility testing results to evaluate the accuracy of its performance. Results for 1,093 retrospectively and prospectively collected positive blood culture samples were initially enrolled, and 1,074 samples met the study criteria and were included in the final analyses. The BIOFIRE BCID2 Panel demonstrated an overall sensitivity of 98.9% (1,712/1,731) and an overall specificity of 99.6% (33,592/33,711) for Gram-positive bacteria, Gram-negative bacteria and yeast targets which the panel is designed to detect. One hundred eighteen off-panel organisms, which the BIOFIRE BCID2 Panel is not designed to detect, were identified by SoC in 10.6% (114/1,074) of samples. The BIOFIRE BCID2 Panel also demonstrated an overall positive percent agreement (PPA) of 97.9% (325/332) and an overall negative percent agreement (NPA) of 99.9% (2,465/2,767) for antimicrobial resistance determinants which the panel is designed to detect. The presence or absence of resistance markers in Enterobacterales correlated closely with phenotypic susceptibility and resistance. We conclude that the BIOFIRE BCID2 Panel produced accurate results in this clinical trial.202337227281
1484140.9572Use of a commercial PCR-based line blot method for identification of bacterial pathogens and the mecA and van genes from BacTAlert blood culture bottles. In this study, the PCR-based DNA strip assay GenoType BC for the identification of bacteria and the resistance genes mecA, vanA, vanB, vanC1, and vanC2/3 directly from positive BacTAlert blood culture bottles was evaluated in a multicenter study. Of a total of 511 positive blood cultures, correct identification percentages for Gram-negative bacteria, Gram-positive bacteria, and the mecA gene were 96.1%, 89.9%, and 92.9%, respectively. Results were available 4 h after growth detection.201222075585
1466150.9572Antibiotic resistance and genotype of beta-lactamase producing Escherichia coli in nosocomial infections in Cotonou, Benin. BACKGROUND: Beta lactams are the most commonly used group of antimicrobials worldwide. The presence of extended-spectrum lactamases (ESBL) affects significantly the treatment of infections due to multidrug resistant strains of gram-negative bacilli. The aim of this study was to characterize the beta-lactamase resistance genes in Escherichia coli isolated from nosocomial infections in Cotonou, Benin. METHODS: Escherichia coli strains were isolated from various biological samples such as urine, pus, vaginal swab, sperm, blood, spinal fluid and catheter. Isolated bacteria were submitted to eleven usual antibiotics, using disc diffusion method according to NCCLS criteria, for resistance analysis. Beta-lactamase production was determined by an acidimetric method with benzylpenicillin. Microbiological characterization of ESBL enzymes was done by double disc synergy test and the resistance genes TEM and SHV were screened by specific PCR. RESULTS: ESBL phenotype was detected in 29 isolates (35.5%). The most active antibiotic was imipenem (96.4% as susceptibility rate) followed by ceftriaxone (58.3%) and gentamicin (54.8%). High resistance rates were observed with amoxicillin (92.8%), ampicillin (94%) and trimethoprim/sulfamethoxazole (85.7%). The genotype TEM was predominant in ESBL and non ESBL isolates with respectively 72.4% and 80%. SHV-type beta-lactamase genes occurred in 24.1% ESBL strains and in 18.1% of non ESBL isolates. CONCLUSION: This study revealed the presence of ESBL producing Eschericiha coli in Cotonou. It demonstrated also high resistance rate to antibiotics commonly used for infections treatment. Continuous monitoring and judicious antibiotic usage are required.201525595314
2170160.9572Drug resistance in bacteria isolated from patients presenting with wounds at a non-profit Surgical Center in Phnom Penh, Cambodia from 2011-2013. BACKGROUND: Emerging antibiotic resistance amongst clinically significant bacteria is a public health issue of increasing significance worldwide, but it is relatively uncharacterized in Cambodia. In this study we performed standard bacterial cultures on samples from wounds at a Non-Governmental-Organization (NGO) Hospital in Phnom Penh, Cambodia. Testing was performed to elucidate pathogenic bacteria causing wound infections and the antibiotic resistance profiles of bacterial isolates. All testing was performed at the Naval Medical Research Unit, No.2 (NAMRU-2) main laboratory in Phnom Penh, Cambodia. METHODS: Between 2011-2013, a total of 251 specimens were collected from patients at the NGO hospital and analyzed for bacterial infection by standard bacterial cultures techniques. Specimens were all from wounds and anonymous. No specific clinical information accompanied the submitted specimens. Antibiotic susceptibility testing, and phenotypic testing for extended-spectrum beta-lactamase (ESBL) were performed and reported based on CLSI guidelines. Further genetic testing for CTX-M, TEM and SHV ESBLs was accomplished using PCR. RESULTS: One-hundred and seventy-six specimens were positive following bacterial culture (70 %). Staphlycoccus aureus was the most frequently isolated bacteria. Antibiotic drug resistance testing revealed that 52.5 % of Staphlycoccus aureus isolates were oxacillin resistant. For Escherichia coli isolates, 63.9 % were ciprofloxacin and levofloxacin resistant and 96 % were ESBL producers. Resistance to meropenem and imipenem was observed in one of three Acinetobacter spp isolates. CONCLUSIONS: This study is the first of its kind detailing the antibiotic resistance profiles of pathogenic bacteria causing wound infections at a single surgical hospital in Cambodia. The reported findings of this study demonstrate significant antibiotic resistance in bacteria from injured patients and should serve to guide treatment modalities in Cambodia.201528883936
2347170.9572Multiple drug resistance of Listeria monocytogenes isolated from aborted women by using serological and molecular techniques in Diwaniyah city/Iraq. BACKGROUND AND OBJECTIVES: The study was sought to detect the effect of Listeria monocytogenes on pregnant Iraqi women at Al-Diwaniya hospitals and determination of virulence genes and antimicrobial susceptibility of isolates. MATERIALS AND METHODS: 360 specimens including blood, urine, vaginal and endocervical were collected from 90 patients with spontaneous abortions. Blood samples were displayed to immunological study and remaining specimens were subjected to bacteriological diagnosis. PCR was used to determine the virulence factors and antimicrobial resistance genes. RESULTS: Fifteen positive samples (16.6%) of patients and thirteen isolates (14.5%) from patients were recognized based on ELISA and PCR assay respectively. The general isolation of L. monocytogenes strains in cases of abortive women was 13/270 (4.8%). L. monocytogenes strains were highly virulent because of presence of virulence factors associated genes, namely actA, hlyA, plcA and prfA in all strains. Multiple drug resistance (MAR) index values of 15.4% of isolates were >0.2. CONCLUSION: It is necessary for conducting susceptibility testing and to select the suitable antibiotics and avoid the effects of these bacteria in pregnant women.202032994901
1478180.9571Multicenter Evaluation of the FilmArray Blood Culture Identification 2 Panel for Pathogen Detection in Bloodstream Infections. The FilmArray Blood Culture Identification 2 panel (BCID2; bioMérieux) is a fully automated PCR-based assay for identifying bacteria, fungi, and bacterial resistance markers in positive blood cultures (BC) in about 1 h. In this multicenter study, we evaluated the performance of the BCID2 panel for pathogen detection in positive BC. Conventional culture and BCID2 were performed in parallel at four tertiary-care hospitals. We included 152 positive BC-130 monomicrobial and 22 polymicrobial cultures-in this analysis. The BCID2 assay correctly identified 90% (88/98) of Gram-negative and 89% (70/79) of Gram-positive bacteria. Five bacterial isolates targeted by the BCID2 panel and recovered from five positive BC, including three polymicrobial cultures, were missed by the BCID2 assay. Fifteen isolates were off-panel organisms, accounting for 8% (15/182) of the isolates obtained from BC. The mean positive percent agreement between the BCID2 assay and standard culture was 97% (95% confidence interval, 95 to 99%), with agreement ranging from 67% for Candida albicans to 100% for 17 targets included in the BCID2 panel. BCID2 also identified the bla(CTX-M) gene in seven BC, including one for which no extended-spectrum β-lactamase (ESBL)-producing isolate was obtained in culture. However, it failed to detect ESBL-encoding genes in three BC. Two of the 18 mecA/C genes detected by the BCID2 were not confirmed. No carbapenemase, mecA/C, or MREJ targets were detected. The median turnaround time was significantly shorter for BCID2 than for culture. The BCID2 panel may facilitate faster pathogen identification in bloodstream infections. IMPORTANCE Rapid molecular diagnosis combining the identification of pathogens and the detection of antibiotic resistance genes from positive blood cultures (BC) can improve the outcome for patients with bloodstream infections. The FilmArray BCID2 panel, an updated version of the original BCID, can detect 11 Gram-positive bacteria, 15 Gram-negative bacteria, 7 fungal pathogens, and 10 antimicrobial resistance genes directly from a positive BC. Here, we evaluated the real-life microbiological performance of the BCID2 assay in comparison to the results of standard methods used in routine practice at four tertiary care hospitals.202336519852
1488190.9571Evaluation of an automated rapid diagnostic assay for detection of Gram-negative bacteria and their drug-resistance genes in positive blood cultures. We evaluated the performance of the Verigene Gram-Negative Blood Culture Nucleic Acid Test (BC-GN; Nanosphere, Northbrook, IL, USA), an automated multiplex assay for rapid identification of positive blood cultures caused by 9 Gram-negative bacteria (GNB) and for detection of 9 genes associated with β-lactam resistance. The BC-GN assay can be performed directly from positive blood cultures with 5 minutes of hands-on and 2 hours of run time per sample. A total of 397 GNB positive blood cultures were analyzed using the BC-GN assay. Of the 397 samples, 295 were simulated samples prepared by inoculating GNB into blood culture bottles, and the remaining were clinical samples from 102 patients with positive blood cultures. Aliquots of the positive blood cultures were tested by the BC-GN assay. The results of bacterial identification between the BC-GN assay and standard laboratory methods were as follows: Acinetobacter spp. (39 isolates for the BC-GN assay/39 for the standard methods), Citrobacter spp. (7/7), Escherichia coli (87/87), Klebsiella oxytoca (13/13), and Proteus spp. (11/11); Enterobacter spp. (29/30); Klebsiella pneumoniae (62/72); Pseudomonas aeruginosa (124/125); and Serratia marcescens (18/21); respectively. From the 102 clinical samples, 104 bacterial species were identified with the BC-GN assay, whereas 110 were identified with the standard methods. The BC-GN assay also detected all β-lactam resistance genes tested (233 genes), including 54 bla(CTX-M), 119 bla(IMP), 8 bla(KPC), 16 bla(NDM), 24 bla(OXA-23), 1 bla(OXA-24/40), 1 bla(OXA-48), 4 bla(OXA-58), and 6 blaVIM. The data shows that the BC-GN assay provides rapid detection of GNB and β-lactam resistance genes in positive blood cultures and has the potential to contributing to optimal patient management by earlier detection of major antimicrobial resistance genes.201424705449