# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6380 | 0 | 0.9924 | Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. The community and population dynamics of anammox bacteria in summer (wet) and winter (dry) seasons in estuarial mudflat sediment of the Mai Po Nature Reserve were investigated by 16S rRNA and hydrazine oxidoreductase (hzo) genes. 16S rRNA phylogenetic diversity showed that sequences related to 'Kuenenia' anammox bacteria were presented in summer but not winter while 'Scalindua' anammox bacteria occurred in both seasons and could be divided into six different clusters. Compared to the 16S rRNA genes, the hzo genes revealed a relatively uniform seasonal diversity, with sequences relating to 'Scalindua', 'Anammoxoglobus', and planctomycete KSU-1 found in both seasons. The seasonal specific bacterial groups and diversity based on the 16S rRNA and hzo genes indicated strong seasonal community structures in estuary sediment of this site. Furthermore, the higher abundance of hzo genes in summer than winter indicates clear seasonal population dynamics. Combining the physicochemical characteristics of estuary sediment in the two seasons and their correlations with anammox bacteria community structure, we proposed the strong seasonal dynamics in estuary sediment of Mai Po to be due to the anthropogenic and terrestrial inputs, especially in summer, which brings in freshwater anammox bacteria, such as 'Kuenenia', interacting with the coastal marine anammox bacteria 'Scalindua'. | 2011 | 21487198 |
| 6937 | 1 | 0.9924 | Differential responses of bacterial and archaeal communities to biodegradable and non-biodegradable microplastics in river. Microplastics are widespread environmental pollutants that pose risks to ecosystems, yet their effects on bacterial and archaeal communities in aquatic ecosystems remain understudied. In this study, we performed a 14-day microcosm experiment combined with metagenomic sequencing to compare bacterial and archaeal responses to a biodegradable microplastic (polylactic acid, PLA) and a non-biodegradable microplastic (polyvinyl chloride, PVC). Microplastics selectively enriched distinct microbial assemblages, with Pseudomonadota and Euryarchaeota identified as the dominant bacterial and archaeal phyla, accounting for 67.83 % and 15.95 %, respectively. Archaeal community in surrounding water were more sensitive to colonization time than bacterial community. Compared to the surrounding water, the plastisphere displayed simpler and more loosely connected microbial networks. Notably, co-occurrence networks of both bacteria and archaea in the PVC plastisphere were predominantly shaped by symbiotic interactions. Both bacteria and archaea carried diverse antibiotic resistance genes (ARGs), but PLS-PM indicated that bacteria were the primary drivers of ARG dissemination (path coefficient = 0.952). While the PVC plastisphere showed higher ARG abundance than the PLA plastisphere, elevated intI1 expression in the PLA plastisphere suggests a potentially greater risk of ARG dissemination associated with PLA microplastics. These findings reveal the distinct effects of PLA and PVC microplastics on microbial communities and highlight the role of microplastics in ARG dissemination, emphasizing their ecological risks in aquatic ecosystems. | 2025 | 40712359 |
| 6921 | 2 | 0.9921 | Impacts of Chemical and Organic Fertilizers on the Bacterial Communities, Sulfonamides and Sulfonamide Resistance Genes in Paddy Soil Under Rice-Wheat Rotation. The responses of sulfonamides, sulfonamide-resistance genes (sul) and soil bacterial communities to different fertilization regimes were investigated by performing a field experiment using paddy soil with no fertilizer applied, chemical fertilizer applied, organic fertilizer applied, and combination of chemical and organic fertilizer applied. Applying organic fertilizer increased the bacterial community diversity and affected the bacterial community composition. Eutrophic bacteria (Bacteroidetes, Gemmatimonadetes, and Proteobacteria) were significantly enriched by applying organic fertilizer. It was also found organic fertilizer application increased sulfamethazine content and the relative abundances of sul1 and sul2 in the soil. In contrast, applying chemical fertilizer significantly increased the abundance of Nitrospirae, Parcubacteria, and Verrucomicrobia and caused no obvious changes on sul. Correlation analysis indicated that sul enrichment was associated with the increases in sulfamethazine content and potential hosts (e.g., Novosphingobium and Rhodoplanes) population. The potential ecological risks of antibiotics in paddy soil with organic fertilizer applied cannot be ignored. | 2022 | 36547725 |
| 6991 | 3 | 0.9920 | Distribution and drivers of antibiotic resistance genes in brackish water aquaculture sediment. Brackish water aquaculture has brought numerous economic benefits, whereas anthropogenic activities in aquaculture may cause the dissemination of antibiotic resistance genes (ARGs) in brackish water sediments. The intricate relationships between environmental factors and microbial communities as well as their role in ARGs dissemination in brackish water aquaculture remain unclear. This study applied PCR and 16S sequencing to identify the variations in ARGs, class 1 integron gene (intI1) and microbial communities in brackish water aquaculture sediment. The distribution of ARGs in brackish water aquaculture sediment was similar to that in freshwater aquaculture, and the sulfonamide resistance gene sul1 was the indicator of ARGs. Proteobacteria and Firmicutes were the dominant phyla, and Paenisporosarcina (p_ Firmicutes) was the dominant genus. The results of correlation, network and redundancy analysis indicated that the microbial community in the brackish water aquaculture sediment was function-driven. The neutral model and variation partitioning analysis were used to verify the ecological processes of the bacterial community. The normalized stochasticity ratio showed that pond bacteria community was dominated by determinacy, which was affected by aquaculture activities. The total nitrogen and organic matter influenced the abundance of ARGs, while Proteobacteria and Thiobacillus (p_Proteobacteria) were the key antibiotic-resistant hosts. Our study provides insight into the prevalence of ARGs in brackish water aquaculture sediments, and indicates that brackish water aquaculture is a reservoir of ARGs. | 2023 | 36436623 |
| 7972 | 4 | 0.9919 | Sulfadiazine proliferated antibiotic resistance genes in the phycosphere of Chlorella pyrenoidosa: Insights from bacterial communities and microalgal metabolites. The phycosphere is an essential ecological niche for the proliferation of antibiotic resistance genes (ARGs). However, how ARGs' potential hosts change and the driving mechanism of metabolites under antibiotic stress in the phycosphere have seldom been researched. We investigated the response of Chlorella pyrenoidosa and the structure and abundance of free-living (FL) and particle-attached (PA) bacteria, ARGs, and metabolites under sulfadiazine by using real-time quantitative PCR, 16 S rRNA high-throughput. The linkage of key bacterial communities, ARGs, and metabolites through correlations was established. Through analysis of physiological indicators, Chlorella pyrenoidosa displayed a pattern of "low-dose promotion and high-dose inhibition" under antibiotic stress. ARGs were enriched in the PA treatment groups by 117 %. At the phylum level, Proteobacteria, Bacteroidetes, and Actinobacteria as potential hosts for ARGs. At the genus level, potential hosts included Sphingopyxis, SM1A02, Aquimonas, Vitellibacter, and Proteiniphilum. Middle and high antibiotic concentrations induced the secretion of metabolites closely related to potential hosts by algae, such as phytosphingosine, Lysophosphatidylcholine, and α-Linolenic acid. Therefore, changes in bacterial communities indirectly influenced the distribution of ARGs through alterations in metabolic products. These findings offer essential details about the mechanisms behind the spread and proliferation of ARGs in the phycosphere. | 2024 | 38795485 |
| 8070 | 5 | 0.9917 | Impacts of combined pollution under gradient increasing and gradient decreasing exposure modes on activated sludge: Microbial communities and antibiotic resistance genes. The responses of microbial communities and antibiotic resistance genes (ARGs) to azithromycin and copper combined pollution under gradient increasing (from 0.5 to 10 mg/L) and decreasing exposure (from 10 to 0.5 mg/L) modes were investigated. Nitrification was inhibited more obviously under gradient increasing exposure mode. Responses of archaeal community and function structure were more obvious than bacteria under both exposure modes. The dominant bacterial and archaeal compositions (Hyphomicrobium, Euryarchaeota, etc.) were affected by two exposure modes, except some rare archaea (Methanoregula and Methanosarcina). There were more positive correlations between bacteria and archaea, and Nitrospira was keystone genus. Ammonia-oxidizing archaea (0.37-3.06%) and complete ammonia oxidizers (Nitrospira_ENR4) were enriched, and Nitrososphaera_viennensis was closely related to denitrifying genes (napA/B, nosZ, etc.). 50 ARG subtypes were detected and specific ARG subtypes (aac, ImrA, etc.) proliferated in two exposure modes. Bacteria and archaea were common hosts for 24 ARGs and contributed to their shifts. | 2022 | 34921920 |
| 7950 | 6 | 0.9917 | Fate and removal of fluoroquinolone antibiotics in mesocosmic wetlands: Impact on wetland performance, resistance genes and microbial communities. The fate of fluoroquinolone antibiotics norfloxacin and ofloxacin were investigated in mesocosmic wetlands, along with their effects on nutrients removal, antibiotic resistance genes (ARGs) and epiphytic microbial communities on Hydrilla verticillate using bionic plants as control groups. Approximately 99% of norfloxacin and ofloxacin were removed from overlaying water, and H. verticillate inhibited fluoroquinolones accumulation in surface sediments compared to bionic plants. Partial least squares path modeling showed that antibiotics significantly inhibited the nutrient removal capacity (0.55) but had no direct effect on plant physiology. Ofloxacin impaired wetland performance more strongly than norfloxacin and more impacted the primary microbial phyla, whereas substrates played the most decisive role on microbial diversities. High antibiotics concentration shifted the most dominant phyla from Proteobacteria to Bacteroidetes and inhibited the Xenobiotics biodegradation function, contributing to the aggravation in wetland performance. Dechloromonas and Pseudomonas were regarded as the key microorganisms for antibiotics degradation. Co-occurrence network analysis excavated that microorganisms degrade antibiotics mainly through co-metabolism, and more complexity and facilitation/reciprocity between microbes attached to submerged plants compared to bionic plants. Furthermore, environmental factors influenced ARGs mainly by altering the community dynamics of differential bacteria. This study offers new insights into antibiotic removal and regulation of ARGs accumulation in wetlands with submerged macrophyte. | 2024 | 38569335 |
| 7947 | 7 | 0.9916 | Molecular insights into linkages among free-floating macrophyte-derived organic matter, the fate of antibiotic residues, and antibiotic resistance genes. Macrophyte rhizospheric dissolved organic matter (ROM) served as widespread abiotic components in aquatic ecosystems, and its effects on antibiotic residues and antibiotic resistance genes (ARGs) could not be ignored. However, specific influencing mechanisms for ROM on the fate of antibiotic residues and expression of ARGs still remained unclear. Herein, laboratory hydroponic experiments for water lettuce (Pistia stratiotes) were carried out to explore mutual interactions among ROM, sulfamethoxazole (SMX), bacterial community, and ARGs expression. Results showed ROM directly affect SMX concentrations through the binding process, while CO and N-H groups were main binding sites for ROM. Dynamic changes of ROM molecular composition diversified the DOM pool due to microbe-mediated oxidoreduction, with enrichment of heteroatoms (N, S, P) and decreased aromaticity. Microbial community analysis showed SMX pressure significantly stimulated the succession of bacterial structure in both bulk water and rhizospheric biofilms. Furthermore, network analysis further confirmed ROM bio-labile compositions as energy sources and electron shuttles directly influenced microbial structure, thereby facilitating proliferation of antibiotic resistant bacteria (Methylotenera, Sphingobium, Az spirillum) and ARGs (sul1, sul2, intl1). This investigation will provide scientific supports for the control of antibiotic residues and corresponding ARGs in aquatic ecosystems. | 2024 | 38653136 |
| 6913 | 8 | 0.9916 | Antibiotic resistance genes link to nitrogen removal potential via co-hosting preference for denitrification genes in a subtropical estuary. Estuaries are important sinks for antibiotic resistance genes (ARGs) and hotspots of nitrogen cycling. However, the interactions between nitrogen cycling functional genes (NCGs) and ARGs in estuaries remain poorly understood. This study employed metagenomic sequencing to explore potential interactions between nitrogen, ARGs, and microbial-mediated nitrogen cycling processes in estuarine waters. Results showed beta-lactam was the predominant subtype of ARGs (407 species), and sul1 exhibited the highest relative abundance (4.11 %). Nitrogen was the important factor driving spatiotemporal variation of ARGs, promoting their proliferation and dispersal by enhancing microbial growth and reproduction. Network analysis revealed wide and complex correlations between ARGs and NCGs. Nitrate-reducing bacteria were the main hosts of ARGs, and the greatest number of potential hosts were those involved in assimilatory nitrate reduction to ammonium (17.44 %), dissimilatory nitrate reduction to nitrite (16.59 %), and denitrification (15.71 %). Compared with dissimilatory nitrite reduction to ammonium genes, ARGs prefer to form co-hosting relationships with denitrification genes, indicating that ARGs had a stronger effect on the nitrogen removal potential than on the nitrogen retention potential. This study highlights the complex interactions between ARGs and nitrogen cycling processes in subtropical estuaries, and will provide a scientific base for couple management strategies of nitrogen and antibiotic pollution. | 2025 | 40934587 |
| 6934 | 9 | 0.9915 | Impact of protist predation on bacterial community traits in river sediments. Sediment-associated microbial communities are pivotal in driving biogeochemical processes and serve as key indicators of ecosystem health and function. However, the ecological impact of protist predation on these microbial communities remains poorly understood. Here, sediment microcosms were established with varying concentrations of indigenous protists. Results revealed that protist predation exerted strong and differential effects on the bacterial community composition, functional capabilities, and antibiotic resistance profiles. Higher levels of protist predation pressure increased bacterial alpha diversity and relative abundance of genera associated with carbon and nitrogen cycling, such as Fusibacter, Methyloversatilis, Azospirillum, and Holophaga. KEGG analysis indicated that protist predation stimulated microbial processes related to the carbon, nitrogen, and sulfur cycles. Notably, the relative abundance and associated health risks of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and mobile genetic elements (MGEs) were affected by predation pressure. Medium protist predation pressure increased the relative abundance and potential risks associated with ARGs, whereas high protist concentrations led to a reduction in both, likely due to a decrease in the relative abundance of ARG-hosting pathogenic bacteria such as Pseudomonas, Acinetobacter, and Aeromonas. These findings provide comprehensive insights into the dynamics of bacterial communities under protist predation in river sediment ecosystems. | 2025 | 40885182 |
| 8644 | 10 | 0.9915 | Biotic and abiotic drivers of soil carbon, nitrogen and phosphorus and metal dynamic changes during spontaneous restoration of Pb-Zn mining wastelands. The biotic and abiotic mechanisms that drive important biogeochemical processes (carbon, nitrogen, phosphorus and metals dynamics) in metal mine revegetation remains elusive. Metagenomic sequencing was used to explored vegetation, soil properties, microbial communities, functional genes and their impacts on soil processes during vegetation restoration in a typical Pb-Zn mine. The results showed a clear niche differentiation between bacteria, fungi and archaea. Compared to bacteria and fungi, the archaea richness were more tightly coupled with natural restoration changes. The relative abundances of CAZyme-related, denitrification-related and metal resistance genes reduced, while nitrification, urease, inorganic phosphorus solubilisation, phosphorus transport, and phosphorus regulation -related genes increased. Redundancy analysis, hierarchical partitioning analysis, relative-importance analysis and partial least squares path modelling, indicated that archaea diversity, primarily influenced by available lead, directly impacts carbon dynamics. Functional genes, significantly affected by available cadmium, directly alter nitrogen dynamics. Additionally, pH affects phosphorus dynamics through changes in bacterial diversity, while metal dynamics are directly influenced by vegetation. These insights elucidate natural restoration mechanisms in mine and highlight the importance of archaea in soil processes. | 2025 | 40054196 |
| 7945 | 11 | 0.9915 | Effects of eutrophication on the horizontal transfer of antibiotic resistance genes in microalgal-bacterial symbiotic systems. Overloading of nutrients such as nitrogen causes eutrophication of freshwater bodies. The spread of antibiotic resistance genes (ARGs) poses a threat to ecosystems. However, studies on the enrichment and spread of ARGs from increased nitrogen loading in algal-bacterial symbiotic systems are limited. In this study, the transfer of extracellular kanamycin resistance (KR) genes from large (RP4) small (pEASY-T1) plasmids into the intracellular and extracellular DNA (iDNA, eDNA) of the inter-algal environment of Chlorella pyrenoidosa was investigated, along with the community structure of free-living (FL) and particle-attached (PA) bacteria under different nitrogen source concentrations (0-2.5 g/L KNO(3)). The results showed that KR gene abundance in the eDNA adsorbed on solid particles (D-eDNA) increased initially and then decreased with increasing nitrogen concentration, while the opposite was true for the rest of the free eDNA (E-eDNA). Medium nitrogen concentrations promoted the transfer of extracellular KR genes into the iDNA attached to algal microorganisms (A-iDNA), eDNA attached to algae (B-eDNA), and the iDNA of free microorganisms (C-iDNA); high nitrogen contributed to the transfer of KR genes into C-iDNA. The highest percentage of KR genes was found in B-eDNA with RP4 plasmid treatment (66.2%) and in C-iDNA with pEASY-T1 plasmid treatment (86.88%). In addition, dissolved oxygen (DO) significantly affected the bacterial PA and FL community compositions. Nephelometric turbidity units (NTU) reflected the abundance of ARGs in algae. Proteobacteria, Cyanobacteria, Bacteroidota, and Actinobacteriota were the main potential hosts of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in the phytoplankton inter-algal environment. | 2024 | 38493856 |
| 6918 | 12 | 0.9914 | Variations in antibiotic resistance genes and removal mechanisms induced by C/N ratio of substrate during composting. For a comprehensive insight into the potential mechanism of the removal of antibiotic resistance genes (ARGs) removal induced by initial substrates during composting, we tracked the dynamics of physicochemical properties, bacterial community composition, fungal community composition, the relative abundance of ARGs and mobile genetic genes (MGEs) during reed straw and cow manure composting with different carbon to nitrogen ratio. The results showed that the successive bacterial communities were mainly characterized by the dynamic balance between Firmicutes and Actinobacteria, while the fungal communities were composed of Ascomycota. During composting, the interactions between bacteria and fungi were mainly negative. After composting, the removal efficiency of ARGs in compost treatment with C/N ≈ 26 (LL) was higher than that in compost treatment with C/N ≈ 35 (HL), while MGEs were completely degraded in HL and enriched by 2.3% in LL. The large reduction in the relative abundance of ARGs was possibly due to a decrease in the potential host bacterial genera, such as Advenella, Tepidimicrobium, Proteiniphilum, Acinetobacter, Pseudomonas, Flavobacteria and Arcbacter. Partial least-squares path modeling (PLS-PM) revealed that the succession of bacterial communities played a more important role than MGEs in ARGs removal, while indirect factors of the fungal communities altered the profile of ARGs by affecting the bacterial communities. Both direct and indirect factors were affected by composting treatments. This study provides insights into the role of fungal communities in affecting ARGs and highlights the role of different composting treatments with different carbon to nitrogen ration on the underlying mechanism of ARGs removal. | 2021 | 34375241 |
| 6917 | 13 | 0.9914 | Response characteristics of antibiotic resistance genes and bacterial communities during agricultural waste composting: Focusing on biogas residue combined with biochar amendments. This research investigated biogas residue and biochar addition on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and changes in bacterial community during agricultural waste composting. Sequencing technique investigated bacterial community structure and ARGs, MGEs changes. Correlations among physicochemical factors, ARGs, MGEs, and bacterial community structure were determined using redundancy analysis. Results confirmed that biochar and biogas residue amendments effectively lowered the contents of ARGs and MGEs. The main ARGs detected was sul1. Proteobacteria and Firmicutes were the main host bacteria strongly associated with the dissemination of ARGs. The dynamic characteristics of the bacterial community were strongly correlated with pile temperature and pH (P < 0.05). Redundancy and network analysis revealed that nitrate, intI1, and Firmicutes mainly affected the in ARGs changes. Therefore, regulating these key variables would effectively suppress the ARGs spread and risk of compost use. | 2023 | 36657587 |
| 6926 | 14 | 0.9914 | Insights into the driving factors of vertical distribution of antibiotic resistance genes in long-term fertilized soils. The prevalence of antibiotic resistance genes (ARGs) in soils has aroused wide attention. However, the influence of long-term fertilization on the distribution of ARGs in different soil layers and its dominant drivers remain largely unknown. In this study, a total of 203 ARGs were analyzed in greenhouse vegetable soils (0-100 cm from a 13-year field experiment applied with different fertilizers (control, chemical fertilizer, organic manure, and mixed fertilizer). Compared with unfertilized and chemically fertilized soils, manure application significantly increased the abundance and alpha diversity of soil ARGs, where the assembly of ARG communities was strongly driven by stochastic processes. The distribution of ARGs was significantly driven by manure application within 60 cm, while it was insignificantly changed in soil below 60 cm under different fertilization regimes. The inter-correlations of ARGs with mobile genetic elements (MGEs) and microbiota were strengthened in manured soil, indicating manure application posed a higher risk for ARGs diffusion in subsurface soil. Bacteria abundance and MGEs directly influenced ARG abundance and composition, whereas soil depth and manure application indirectly influenced ARG abundance and composition by affecting antibiotics. These results strengthen our understanding of the long-term anthropogenic influence on the vertical distribution of soil ARGs and highlight the ecological risk of ARGs in subsurface soil induced by long-term manure application. | 2023 | 37247491 |
| 8095 | 15 | 0.9913 | Heavy metals, antibiotics and nutrients affect the bacterial community and resistance genes in chicken manure composting and fertilized soil. Succession of bacterial communities involved in the composting process of chicken manure, including first composting (FC), second composting (SC) and fertilizer product (Pd) and fertilized soil (FS), and their associations with nutrients, heavy metals, antibiotics and antibiotic resistance genes (ARGs) were investigated. Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria were the dominant phyla observed during composting. Overall, potential pathogenic bacteria decreased from 37.18% (FC) to 3.43% (Pd) and potential probiotic taxa increased from 5.77% (FC) to 7.12% (Pd). Concentrations of heavy metals increased after second composting (SC), however, no significant differences were observed between FS and CS groups. Alpha diversities of bacterial communities showed significant correlation with heavy metals and nutrients. All investigated antibiotics decreased significantly after the composting process. The certain antibiotics, heavy metals, or nutrients was significantly positive correlated with the abundance of ARGs, highlighting that they can directly or indirectly influence persistence of ARGs. Overall, results indicated that the composting process is effective for reducing potential pathogenic bacteria, antibiotics and ARGs. The application of compost lead to a decrease in pathogens and ARGs, as well as an increase in potentially beneficial taxa and nutrients in soil. | 2020 | 31868641 |
| 6915 | 16 | 0.9913 | Industrial-scale aerobic composting of livestock manures with the addition of biochar: Variation of bacterial community and antibiotic resistance genes caused by various composting stages. The presence of large amounts of antibiotic resistance genes (ARGs) in livestock manures poses an impending, tough safety risk to ecosystems. To investigate more comprehensively the mechanisms of ARGs removal from industrial-scale composting of livestock manure based on biochar addition, we tracked the dynamics of bacterial community and ARGs at various stages of aerobic composting of livestock manures with 10% biochar. There were no significant effects of biochar on the bacterial community and the profiles of ARGs. During aerobic composting, the relative abundance of ARGs and mobile genetic elements (MGEs) showed overall trends of decreasing and then increasing. The key factor driving the dynamics of ARGs was bacterial community composition, and the potential hosts of ARGs were Caldicoprobacter, Tepidimicrobium, Ignatzschineria, Pseudogracilibacillus, Actinomadura, Flavobacterium and Planifilum. The retention of the thermophilic bacteria and the repopulation of the initial bacteria were the dominant reasons for the increase in ARGs at maturation stage. Additionally, among the MGEs, the relative abundance of transposon gene was substantially removed, while the integron genes remained at high relative abundance. Our results highlighted that the suitability of biochar addition to industrial-scale aerobic composting needs to be further explored and that effective measures are needed to prevent the increase of ARGs content on maturation stage. | 2022 | 36162559 |
| 6929 | 17 | 0.9913 | Root exudates regulate soil antibiotic resistance genes via rhizosphere microbes under long-term fertilization. Organic fertilizer application promotes the prevalence of antibiotic resistance genes (ARGs), yet the factors driving temporal differences in ARG abundance under long-term organic fertilizer application remain unclear. This study investigated the temporal dynamics of ARG diversity and abundance in both bulk and rhizosphere soils over 17 years (2003-2019), and explored microbial evolution strategies, ARG hosts succession and the influence of root exudates on ARGs regulation. The results showed that the ARGs abundance in rhizosphere soil was lower than that in bulk soil under long-term fertilization, and ARGs abundance exhibited a decrease and then remained stable in rhizosphere soil over time. There was a strong association between host bacteria and dominant ARGs (p < 0.05). Structural equations demonstrated that bacterial community had a most pronounced influence on ARGs (p < 0.05), and metabolites exhibited an important mediation effect on bacterial community (p < 0.05), thereby impacting ARGs. The metabolome analysis evidenced that significant correlations were found between defensive root exudates and most ARGs abundance (p < 0.05), like, luteolin-7-glucoside was negatively correlated with tetA(58). These findings provide deeper insights into the dynamics of soil ARGs under long-term fertilization, and identify critical factors that influence ARGs colonization in soils, providing support for controlling the spread of ARGs in agriculture soils. | 2025 | 39700687 |
| 6795 | 18 | 0.9912 | Interplay of xenobiotic-degrading and antibiotic-resistant microorganisms among the microbiome found in the air, handrail, and floor of the subway station. Investigating the quality of the subway environment, especially regarding antibiotic resistance genes (ARGs) and xenobiotics, conveys ecological and health impacts. In this study, compositions and relations of microorganisms harboring ARGs and xenobiotic degradation and metabolism genes (XDGs) in the Sukhumvit subway station (MRT-SKV) in Bangkok was assessed by analyzing the taxonomic and genetic diversity of the microbiome in the air and on the surfaces of floor and handrail. The major bacteria in the MRT-SKV (including Moraxella, which was abundant in the bioaerosol and handrail samples, and Staphylococcus, which was abundant in the bioaerosol samples) were found to contain both ARGs and XDGs. The co-abundance correlation network revealed notable relationships among bacteria harboring antibiotic resistance genes (ARGs) and xenobiotic degradation genes (XDGs). Significant associations were observed between ARGs linked to glycopeptide and fluoroquinolone resistance and genes associated with benzoate, styrene, and atrazine degradation pathways, as well as between ARGs related to cephamycin, cephalosporin, and MLS resistance and XDGs associated with the cytochrome P450-dependent drug metabolism pathway. These correlations suggested that selective pressure exerted by certain xenobiotics and antibiotics can simultaneously affect both ARGs and XDGs in the environment and should favor correlations and co-survival among ARG- and XDG-containing bacteria in the environments. The correlations may occur via shared mechanisms of resistance to both xenobiotics and antibiotics. Finally, different correlation pairs were seen in different niches (air, handrail, floor) of the subway environment or different geolocations. Thus, the relationship between ARG and XDG pairs most likely depends on the unique characteristics of the niches and on the prominent types of xenobiotics and antibiotics in the subway environment. The results indicated that interactions and connections between microbial communities can impact how they function. These microorganisms can have profound effects on accumulation of xenobiotics and ARGs in the MRT-SKV. | 2024 | 38246293 |
| 7941 | 19 | 0.9912 | Microplastics accelerate nitrification, shape the microbial community, and alter antibiotic resistance during the nitrifying process. Microplastics (MPs) and antibiotic resistance genes (ARGs) are both emerging pollutants that are frequently detected in wastewater treatment plants. In this study, the effects of various MPs, including polyethylene (PE), polyvinyl chloride (PVC), and biodegradable polylactic acid (PLA), on nitrification performance, dominant microbial communities, and antibiotic resistance during nitrification were investigated. The results revealed that the addition of MPs increased the specific ammonia oxidation rate and specific nitrate production rate by 15.2 % - 15.5 % and 8.0 % - 11.6 %, respectively, via enrichment of nitrifying microorganisms, Nitrospira and Nitrosomonas. Moreover, ARGs were selectively enriched in nitrifying sludge and microplastic biofilms under stress from different MPs. Compared with PE-MPs (23.9 %) and PVC-MPs (21.4 %), exposure to PLA-MPs significantly increased intI1 abundance by 51.6 %. The results of the variance decomposition analysis implied that MPs and the microbial community play important roles in the behavior of ARGs. Network analysis indicated that Nitrosomonas and potentially pathogenic bacteria emerged as possible hosts, harboring ARGs and intI1 genes in the nitrifying sludge and microplastic biofilms. Critically, PLA-MPs were found to enrich both ARGs and potential pathogenic bacteria during nitrification, which should be considered in their promotion of application processes due to their biodegradability. | 2025 | 39740624 |