# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5214 | 0 | 0.9727 | Comparative genomic analysis of a new tellurite-resistant Psychrobacter strain isolated from the Antarctic Peninsula. The Psychrobacter genus is a cosmopolitan and diverse group of aerobic, cold-adapted, Gram-negative bacteria exhibiting biotechnological potential for low-temperature applications including bioremediation. Here, we present the draft genome sequence of a bacterium from the Psychrobacter genus isolated from a sediment sample from King George Island, Antarctica (3,490,622 bp; 18 scaffolds; G + C = 42.76%). Using phylogenetic analysis, biochemical properties and scanning electron microscopy the bacterium was identified as Psychrobacter glacincola BNF20, making it the first genome sequence reported for this species. P. glacincola BNF20 showed high tellurite (MIC 2.3 mM) and chromate (MIC 6.0 mM) resistance, respectively. Genome-wide nucleotide identity comparisons revealed that P. glacincola BNF20 is highly similar (>90%) to other uncharacterized Psychrobacter spp. such as JCM18903, JCM18902, and P11F6. Bayesian multi-locus phylogenetic analysis showed that P. glacincola BNF20 belongs to a polyphyletic clade with other bacteria isolated from polar regions. A high number of genes related to metal(loid) resistance were found, including tellurite resistance genetic determinants located in two contigs: Contig LIQB01000002.1 exhibited five ter genes, each showing putative promoter sequences (terACDEZ), whereas contig LIQB1000003.2 showed a variant of the terZ gene. Finally, investigating the presence and taxonomic distribution of ter genes in the NCBI's RefSeq bacterial database (5,398 genomes, as January 2017), revealed that 2,623 (48.59%) genomes showed at least one ter gene. At the family level, most (68.7%) genomes harbored one ter gene and 15.6% exhibited five (including P. glacincola BNF20). Overall, our results highlight the diverse nature (genetic and geographic diversity) of the Psychrobacter genus, provide insights into potential mechanisms of metal resistance, and exemplify the benefits of sampling remote locations for prospecting new molecular determinants. | 2018 | 29479501 |
| 1793 | 1 | 0.9723 | Comparative Genome Analysis of an Extensively Drug-Resistant Isolate of Avian Sequence Type 167 Escherichia coli Strain Sanji with Novel In Silico Serotype O89b:H9. Extensive drug resistance (XDR) is an escalating global problem. Escherichia coli strain Sanji was isolated from an outbreak of pheasant colibacillosis in Fujian province, China, in 2011. This strain has XDR properties, exhibiting sensitivity to carbapenems but no other classes of known antibiotics. Whole-genome sequencing revealed a total of 32 known antibiotic resistance genes, many associated with insertion sequence 26 (IS26) elements. These were found on the Sanji chromosome and 2 of its 6 plasmids, pSJ_255 and pSJ_82. The Sanji chromosome also harbors a type 2 secretion system (T2SS), a type 3 secretion system (T3SS), a type 6 secretion system (T6SS), and several putative prophages. Sanji and other ST167 strains have a previously uncharacterized O-antigen (O89b) that is most closely related to serotype O89 as determined on the basis of analysis of the wzm-wzt genes and in silico serotyping. This O89b-antigen gene cluster was also found in the genomes of a few other pathogenic sequence type 617 (ST617) and ST10 complex strains. A time-scaled phylogeny inferred from comparative single nucleotide variant analysis indicated that development of these O89b-containing lineages emerged about 30 years ago. Comparative sequence analysis revealed that the core genome of Sanji is nearly identical to that of several recently sequenced strains of pathogenic XDR E. coli belonging to the ST167 group. Comparison of the mobile elements among the different ST167 genomes revealed that each genome carries a distinct set of multidrug resistance genes on different types of plasmids, indicating that there are multiple paths toward the emergence of XDR in E. coli. IMPORTANCE E. coli strain Sanji is the first sequenced and analyzed genome of the recently emerged pathogenic XDR strains with sequence type ST167 and novel in silico serotype O89b:H9. Comparison of the genomes of Sanji with other ST167 strains revealed distinct sets of different plasmids, mobile IS elements, and antibiotic resistance genes in each genome, indicating that there exist multiple paths toward achieving XDR. The emergence of these pathogenic ST167 E. coli strains with diverse XDR capabilities highlights the difficulty of preventing or mitigating the development of XDR properties in bacteria and points to the importance of better understanding of the shared underlying virulence mechanisms and physiology of pathogenic bacteria. | 2019 | 30834329 |
| 5203 | 2 | 0.9721 | Draft genome sequence analysis of a novel MLST (ST5028) and multidrug-resistant Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) strain 456S1 isolated from a pig farm in China. OBJECTIVES: The avian breeding industry is an important element in exposing bacteria to antibiotics. As one of the major animal welfare and economic problems for the poultry industry, multidrug-resistant Klebsiella spp. have become a substantial source of antibiotic resistance genes. In the present work, we reported the draft genome sequence of a novel multilocus sequence type (MLST) (ST5028) Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) strain 456S1, which was isolated from a pig farm in China with broad-spectrum antimicrobial activities. METHODS: Classical microbiological methods were applied to isolate and identify the strain, genomic DNA was sequenced using an Illumina HiSeq platform, and the reads were de novo assembled into contigs using CLC Genomics Workbench. The assembled contigs were annotated, and whole-genome sequencing (WGS) analysis was performed. RESULTS: WGS analysis revealed that the genome of strain 456S1 comprised a circular chromosome of 5,419,059 bp (GC content, 57.8%), harbouring 12 important antibiotic resistance genes: aac(6')-ib-cr, aadA16, floR, dfrA27, fosA, tet(D), blaOKP-B-3, oqxA, oqxB, qnrB6, sul1 and arr-3. The Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) 456S1 was also found to belong to a novel sequence type (ST5028) determined by MLST. CONCLUSION: The genome sequence reported herein will provide useful information for antibiotic resistance and pathogenic mechanisms in Klebsiella quasipneumoniae and will be a reference for comparative analysis with genomic features among different sources of clinically important multidrug-resistant strains, especially among bacteria of animal and human origin. | 2021 | 33516893 |
| 1851 | 3 | 0.9718 | Phylogenomics, epigenomics, virulome and mobilome of Gram-negative bacteria co-resistant to carbapenems and polymyxins: a One Health systematic review and meta-analyses. Gram-negative bacteria (GNB) continue to develop resistance against important antibiotics including last-resort ones such as carbapenems and polymyxins. An analysis of GNB with co-resistance to carbapenems and polymyxins from a One Health perspective is presented. Data of species name, country, source of isolation, resistance genes (ARGs), plasmid type, clones and mobile genetic elements (MGEs) were deduced from 129 articles from January 2016 to March 2021. Available genomes and plasmids were obtained from PATRIC and NCBI. Resistomes and methylomes were analysed using BAcWGSTdb and REBASE whilst Kaptive was used to predict capsule typing. Plasmids and other MEGs were identified using MGE Finder and ResFinder. Phylogenetic analyses were done using RAxML and annotated with MEGA 7. A total of 877 isolates, 32 genomes and 44 plasmid sequences were analysed. Most of these isolates were reported in Asian countries and were isolated from clinical, animal and environmental sources. Colistin resistance was mostly mediated by mgrB inactivation (37%; n = 322) and mcr-1 (36%; n = 312), while OXA-48/181 was the most reported carbapenemase. IncX and IncI were the most common plasmids hosting carbapenemases and mcr genes. The isolates were co-resistant to other antibiotics, with floR (chloramphenicol) and fosA3 (fosfomycin) being common; E. coli ST156 and K. pneumoniae ST258 strains were common globally. Virulence genes and capsular KL-types were also detected. Type I, II, III and IV restriction modification systems were detected, comprising various MTases and restriction enzymes. The escalation of highly resistant isolates drains the economy due to untreatable bacterial infections, which leads to increasing global mortality rates and healthcare costs. | 2022 | 35129271 |
| 1635 | 4 | 0.9717 | Genomic analysis revealing the resistance mechanisms of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolated from pig and humans in Malaysia. Extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae has been associated with a wide range of infections in humans and animals. The objective of this study was to determine the genomic characteristics of two multiple drug resistant, ESBLs-producing K. pneumoniae strains isolated from a swine in 2013 (KP2013Z28) and a hospitalized patient in 2014 (KP2014C46) in Malaysia. Genomic analyses of the two K. pneumoniae strains indicated the presence of various antimicrobial resistance genes associated with resistance to β-lactams, aminoglycosides, colistin, fluoroquinolones, phenicols, tetracycline, sulfonamides, and trimethoprim, corresponding to the antimicrobial susceptibility profiles of the strains. KP2013Z28 (ST25) and KP2014C46 (ST929) harbored 5 and 2 genomic plasmids, respectively. The phylogenomics of these two Malaysian K. pneumoniae, with other 19 strains around the world was determined based on SNPs analysis. Overall, the strains were resolved into five clusters that comprised of strains with different resistance determinants. This study provided a better understanding of the resistance mechanisms and phylogenetic relatedness of the Malaysian strains with 19 strains isolated worldwide. This study also highlighted the needs to monitor the usage of antibiotics in hospital settings, animal husbandry, and agricultural practices due to the increase of β-lactam, aminoglycosides, tetracycline, and colistin resistance among pathogenic bacteria for better infection control. | 2021 | 33469786 |
| 1385 | 5 | 0.9714 | GENOMIC CHARACTERIZATION OF MULTIDRUG-RESISTANT EXTENDED-SPECTRUM β-LACTAMASE-PRODUCING ESCHERICHIA COLI AND KLEBSIELLA PNEUMONIAE FROM CHIMPANZEES (PAN TROGLODYTES) FROM WILD AND SANCTUARY LOCATIONS IN UGANDA. Farm and wild animals may serve as reservoirs of antimicrobial-resistant bacteria of human health relevance. We investigated the occurrence and genomic characteristics of extended spectrum β-lactamase (ESBL)-producing bacteria in Ugandan chimpanzees (Pan troglodytes) residing in two environments with or without close contact to humans. The ESBL-producing Escherichia coli and Klebsiella pneumoniae were isolated from fecal material of chimpanzees from Budongo Forest and Ngamba Island Chimpanzee Sanctuary in Uganda and were more commonly isolated from chimpanzees in Ngamba Island Chimpanzee Sanctuary, where animals have close contact with humans. Selected ESBL isolates (E. coli n=9, K. pneumoniae n=7) were analyzed by whole-genome sequencing to determine the presence of resistance genes, as well as sequence type and virulence potential; the blaCTX-M-15 gene was present in all strains. Additionally, the ESBL genes blaSHV-11 and blaSHV-12 were found in strains in the study. All strains were found to be multidrug resistant. The E. coli strains belonged to four sequence types (ST2852, ST215, ST405, and ST315) and the K. pneumoniae strains to two sequence types (ST1540 and ST597). Virulence genes did not indicate that strains were of common E. coli pathotype, but strains with the same sequence types as isolated in the current study have previously been reported from clinical cases in Africa. The findings indicate that chimpanzees in close contact with humans may carry ESBL bacteria at higher frequency than those in the wild, indicating a potential anthropogenic transmission. | 2022 | 35255126 |
| 1395 | 6 | 0.9714 | Emerging Multidrug-Resistant Hybrid Pathotype Shiga Toxin-Producing Escherichia coli O80 and Related Strains of Clonal Complex 165, Europe. Enterohemorrhagic Escherichia coli serogroup O80, involved in hemolytic uremic syndrome associated with extraintestinal infections, has emerged in France. We obtained circularized sequences of the O80 strain RDEx444, responsible for hemolytic uremic syndrome with bacteremia, and noncircularized sequences of 35 O80 E. coli isolated from humans and animals in Europe with or without Shiga toxin genes. RDEx444 harbored a mosaic plasmid, pR444_A, combining extraintestinal virulence determinants and a multidrug resistance-encoding island. All strains belonged to clonal complex 165, which is distantly related to other major enterohemorrhagic E. coli lineages. All stx-positive strains contained eae-ξ, ehxA, and genes characteristic of pR444_A. Among stx-negative strains, 1 produced extended-spectrum β-lactamase, 1 harbored the colistin-resistance gene mcr1, and 2 possessed genes characteristic of enteropathogenic and pyelonephritis E. coli. Because O80-clonal complex 165 strains can integrate intestinal and extraintestinal virulence factors in combination with diverse drug-resistance genes, they constitute dangerous and versatile multidrug-resistant pathogens. | 2018 | 30457551 |
| 1387 | 7 | 0.9713 | Whole-Genome Characterisation of ESBL-Producing E. coli Isolated from Drinking Water and Dog Faeces from Rural Andean Households in Peru. E. coli that produce extended-spectrum β-lactamases (ESBLs) are major multidrug-resistant bacteria. In Peru, only a few reports have characterised the whole genome of ESBL enterobacteria. We aimed to confirm the identity and antimicrobial resistance (AMR) profile of two ESBL isolates from dog faeces and drinking water of rural Andean households and determine serotype, phylogroup, sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their plasmids. To confirm the identity and AMR profiles, we used the VITEK(®)2 system. Whole-genome sequencing (WGS) and bioinformatics analysis were performed subsequently. Both isolates were identified as E. coli, with serotypes -:H46 and O9:H10, phylogroups E and A, and ST/CC 5259/- and 227/10, respectively. The isolates were ESBL-producing, carbapenem-resistant, and not harbouring carbapenemase-encoding genes. Isolate 1143 ST5259 harboured the astA gene, encoding the EAST(1) heat-stable toxin. Both genomes carried ESBL genes (bla(EC-15), bla(CTX-M-8), and bla(CTX-M-55)). Nine plasmids were detected, namely IncR, IncFIC(FII), IncI, IncFIB(AP001918), Col(pHAD28), IncFII, IncFII(pHN7A8), IncI1, and IncFIB(AP001918). Finding these potentially pathogenic bacteria is worrisome given their sources and highlights the importance of One-Health research efforts in remote Andean communities. | 2022 | 35625336 |
| 1755 | 8 | 0.9713 | Pathogenicity Genomic Island-Associated CrpP-Like Fluoroquinolone-Modifying Enzymes among Pseudomonas aeruginosa Clinical Isolates in Europe. Many transferable quinolone resistance mechanisms have been identified in Gram-negative bacteria. The plasmid-encoded 65-amino-acid-long ciprofloxacin-modifying enzyme CrpP was recently identified in Pseudomonas aeruginosa isolates. We analyzed a collection of 100 clonally unrelated and multidrug-resistant P. aeruginosa clinical isolates, among which 46 were positive for crpP-like genes, encoding five CrpP variants conferring variable levels of reduced susceptibility to fluoroquinolones. These crpP-like genes were chromosomally located as part of pathogenicity genomic islands. | 2020 | 32340994 |
| 6139 | 9 | 0.9711 | Complete genome and two plasmids sequences of Lactiplantibacillus plantarum L55 for probiotic potentials. In this study, we report the complete genome sequence of Lactiplantibacillus plantarum L55, a probiotic strain of lactic acid bacteria isolated from kimchi. The genome consists of one circular chromosome (2,077,416 base pair [bp]) with a guanine cytosine (GC) content of 44.5%, and two circular plasmid sequences (54,267 and 19,592 bp, respectively). We also conducted a comprehensive analysis of the genome, which identified the presence of functional genes, genomic islands, and antibiotic-resistance genes. The genome sequence data presented in this study provide insights into the genetic basis of L. plantarum L55, which could be beneficial for the future development of probiotic applications. | 2023 | 38616876 |
| 5129 | 10 | 0.9711 | Complete genome sequences of Vibrio parahaemolyticus strains L2171 and L2181 associated with AHPND in Penaeus vannamei postlarvae by hybrid sequencing. Vibrio parahaemolyticus strains L2171 and L2181 were isolated from a Penaeus vannamei shrimp hatchery. Both strains carry the pVA plasmid harboring the PirAB genes encoding the binary PirAB toxins that cause the acute hepatopancreatic necrosis disease (AHPND) in cultured shrimp. The strains also harbor multidrug resistance (MDR) and a repertoire of virulence factor genes. Our goal was to determine their complete genome sequences and perform a comprehensive analysis of their genetic characteristics. Therefore, the genomes of two strains, which are highly virulent to shrimp were sequenced by Illumina and the PacBio platforms. These data contribute to a better understanding of V. parahaemolyticus and its role as a pathogen in commercially important species such as farmed shrimp, providing valuable insights for disease management in aquaculture. | 2025 | 40677256 |
| 1721 | 11 | 0.9711 | Convergence of MCR-8.2 and Chromosome-Mediated Resistance to Colistin and Tigecycline in an NDM-5-Producing ST656 Klebsiella pneumoniae Isolate From a Lung Transplant Patient in China. We characterized the first NDM-5 and MCR-8.2 co-harboring ST656 Klebsiella pneumoniae clinical isolate, combining with chromosomal gene-mediated resistance to colistin and tigecycline. The K. pneumoniae KP32558 was isolated from the bronchoalveolar lavage fluid from a lung transplant patient. Complete genome sequences were obtained through Illumina HiSeq sequencing and nanopore sequencing. The acquired resistance genes and mutations in chromosome-encoded genes associated with colistin and tigecycline resistance were analyzed. Comparative genomic analysis was conducted between mcr-8.2-carrying plasmids. The K. pneumoniae KP32558 was identified as a pan-drug resistant bacteria, belonging to ST656, and harbored plasmid-encoded bla(NDM-5) and mcr-8.2 genes. The bla(NDM-5) gene was located on an IncX3 type plasmid. The mcr-8.2 gene was located on a conjugative plasmid pKP32558-2-mcr8, which had a common ancestor with another two mcr-8.2-carrying plasmids pMCR8_020135 and pMCR8_095845. The MIC of KP32558 for colistin was 256 mg/L. The mcr-8.2 gene and mutations in the two-component system, pmrA and crrB, and the regulator mgrB, had a synergistic effect on the high-level colistin resistance. The truncation in the acrR gene, related to tigecycline resistance, was also identified. K. pneumoniae has evolved a variety of complex resistance mechanisms to the last-resort antimicrobials, close surveillance is urgently needed to monitor the prevalence of this clone. | 2022 | 35899054 |
| 821 | 12 | 0.9711 | DNA probes for studying streptothricin resistance evolution in enteric bacteria. Probes for the detection of streptothricin resistance genes have been derived from recombinant plasmids. These include the streptothricin resistance gene probe sat 1/2 derived from Tn 1826 and specific for both the sat-1 determinant of Tn 1825 and the sat-2 determinant of Tn 1826, and the probe sat D derived from and specific for the sat-1 determinant of transposon Tn 1825. A third streptothricin resistance gene probe, sat 3, represents the streptothricin resistance determinant sat-3 of the IncQ R plasmid pIE639. Hybridization studies did not reveal any sequence homology between sat-3 and the transposon-localized sat-1 and sat-2 determinants. Moreover, non of the different sat-determinants isolated from plasmids of gram negative bacteria hybridized with the analogous resistance determinant of Streptomyces noursei, which had been cloned and named nat by Krügel et al. (Gene, 1988, 62, 209-214). The sat 1/2 probe in combination with the sat D probe proved to be suitable for the identification and the differentiation of sat-1 and sat-2 determinants in different genetic environments. Streptothricin resistance genes related to those present on transposons Tn 1825 and Tn 1826 have been detected by hybridization with the probe sat 1/2 on plasmids isolated a long time ago before the application of streptothricins. The sat-3 determinant appears to be exclusively associated with the IncQ plasmid pIE639. | 1990 | 2166786 |
| 1754 | 13 | 0.9710 | Transposons Carrying the aacC2e Aminoglycoside and bla(TEM) Beta-Lactam Resistance Genes in Acinetobacter. This study examines the genetic contexts and evolutionary steps responsible for the formation of the widely spread transposon Tn6925 carrying bla(TEM) and aacC2e, which confers resistance to beta-lactam and aminoglycoside antibiotics in Gram-negative bacteria. The bla(TEM-1) and aacC2e genes were found in several transposons. They were first observed within an IS26 bounded 3.7 kb transposon (Tn6925) on several Acinetobacter baumannii plasmids located within a 4.7 kb dif module. Truncated and expanded variations of Tn6925 were found across other A. baumannii plasmids, as well as in other Gram-negative bacteria (including Vibrio cholerae). Moreover, bla(TEM-1) and aacC2e were in much larger resistance-heavy transposons including the ISAba1-bounded 24.6 kb (here called Tn6927), found in an A. baumannii chromosome. A novel ISKpn12-bounded transposon was also observed to contain bla(TEM) and aacC2e which was found interrupting Tn5393 along with an IS26 pseudo-compound transposon to form a 24.9 kb resistance island in an Acinetobacter pittii plasmid. Multiple mobile genetic elements are involved in the formation of transposon structures that circulate bla(TEM) and aacC2e. Among these, IS26 and ISAba1 appear to have played a major role in the formation and spread of these elements in the Acinetobacter species. | 2024 | 38593463 |
| 1990 | 14 | 0.9710 | Genomic Analysis of Aeromonas veronii C198, a Novel Mcr-3.41-Harboring Isolate from a Patient with Septicemia in Thailand. The resistance of Gram-negative bacteria to colistin, mediated by plasmid-borne mcr genes, is an emerging public health concern. The complete genome sequence (4.55 Mb) of a clinical isolate of Aeromonas veronii biovar veronii obtained from a patient with septicemia was determined using short-read and long-read platforms. This isolate (C198) was found to harbor a novel mcr-3 gene, designated mcr-3.41. Isolate C198 revealed adjacent mcr-3.41 and mcr-3-like genes. It contained one chromosome and two plasmids, both of which encoded a RepB replication protein. Other antimicrobial resistance genes, including bla(cphA3), bla(OXA-12), tetA, rsmA, and adeF, were also present. Isolate C198 was resistant to amoxicillin-clavulanate, ampicillin-sulbactam and tetracycline, and showed intermediate resistance to trimethoprim-sulfamethoxazole. The isolate was susceptible to piperacillin-tazobactam, carbapenem, third-generation cephalosporins, fluoroquinolones, chloramphenicol, and aminoglycosides. Putative virulence genes in the C198 genome encoded type II, III, and VI secretion systems; type IV Aeromonas pili; and type I fimbria, flagella, hemagglutinin, aerolysin, and hemolysins. Multilocus sequence typing revealed a novel sequence type (ST), ST720 for C198. Phylogenetic analysis of the single nucleotide polymorphisms in C198 demonstrated that the strain was closely related to A. veronii 17ISAe. The present study provides insights into the genomic characteristics of human A. veronii isolates. | 2020 | 33317051 |
| 367 | 15 | 0.9710 | Translocatable resistance to mercuric and phenylmercuric ions in soil bacteria. Of a sample of 42 gram-negative Hg-resistant bacteria, three (a Pseudomonas fluorescens, a Klebsiella sp. and a Citrobacter sp.) contained translocatable elements conferring resistance to Hg2+ (all three) and to Hg2+ and phenylmercuric acetate (P. fluorescens). The discovery of transposable phenylmercuric acetate resistance extends the range of known resistance "transposons" from heavy metals and antibiotics to organometallic compounds. | 1981 | 6268601 |
| 1768 | 16 | 0.9709 | Complete nucleotide sequence of the pCTX-M3 plasmid and its involvement in spread of the extended-spectrum beta-lactamase gene blaCTX-M-3. Here we report the nucleotide sequence of pCTX-M3, a highly conjugative plasmid that is responsible for the extensive spread of the gene coding for the CTX-M-3 extended-spectrum beta-lactamase in clinical populations of the family Enterobacteriaceae in Poland. The plasmid belongs to the IncL/M incompatibility group, is 89,468 bp in size, and carries 103 putative genes. Besides bla(CTX-M-3), it also bears the bla(TEM-1), aacC2, and armA genes, as well as integronic aadA2, dfrA12, and sul1, which altogether confer resistance to the majority of beta-lactams and aminoglycosides and to trimethoprim-sulfamethoxazole. The conjugal transfer genes are organized in two blocks, tra and trb, separated by a spacer sequence where almost all antibiotic resistance genes and multiple mobile genetic elements are located. Only bla(CTX-M-3), accompanied by an ISEcp1 element, is placed separately, in a DNA fragment previously identified as a fragment of the Kluyvera ascorbata chromosome. On the basis of sequence analysis, we speculate that pCTX-M3 might have arisen from plasmid pEL60 from plant pathogen Erwinia amylovora by acquiring mobile elements with resistance genes. This suggests that plasmids of environmental bacterial strains could be the source of those plasmids now observed in bacteria pathogenic for humans. | 2007 | 17698626 |
| 5151 | 17 | 0.9709 | Comparative Genome Analysis of Bacillus amyloliquefaciens Focusing on Phylogenomics, Functional Traits, and Prevalence of Antimicrobial and Virulence Genes. Bacillus amyloliquefaciens is a gram-positive, nonpathogenic, endospore-forming, member of a group of free-living soil bacteria with a variety of traits including plant growth promotion, production of antifungal and antibacterial metabolites, and production of industrially important enzymes. We have attempted to reconstruct the biogeographical structure according to functional traits and the evolutionary lineage of B. amyloliquefaciens using comparative genomics analysis. All the available 96 genomes of B. amyloliquefaciens strains were curated from the NCBI genome database, having a variety of important functionalities in all sectors keeping a high focus on agricultural aspects. In-depth analysis was carried out to deduce the orthologous gene groups and whole-genome similarity. Pan genome analysis revealed that shell genes, soft core genes, core genes, and cloud genes comprise 17.09, 5.48, 8.96, and 68.47%, respectively, which demonstrates that genomes are very different in the gene content. It also indicates that the strains may have flexible environmental adaptability or versatile functions. Phylogenetic analysis showed that B. amyloliquefaciens is divided into two clades, and clade 2 is further dived into two different clusters. This reflects the difference in the sequence similarity and diversification that happened in the B. amyloliquefaciens genome. The majority of plant-associated strains of B. amyloliquefaciens were grouped in clade 2 (73 strains), while food-associated strains were in clade 1 (23 strains). Genome mining has been adopted to deduce antimicrobial resistance and virulence genes and their prevalence among all strains. The genes tmrB and yuaB codes for tunicamycin resistance protein and hydrophobic coat forming protein only exist in clade 2, while clpP, which codes for serine proteases, is only in clade 1. Genome plasticity of all strains of B. amyloliquefaciens reflects their adaption to different niches. | 2021 | 34659348 |
| 1396 | 18 | 0.9708 | Genomic Characterization of hlyF-positive Shiga Toxin-Producing Escherichia coli, Italy and the Netherlands, 2000-2019. Shiga toxin-producing Escherichia coli (STEC) O80:H2 has emerged in Europe as a cause of hemolytic uremic syndrome associated with bacteremia. STEC O80:H2 harbors the mosaic plasmid pR444_A, which combines several virulence genes, including hlyF and antimicrobial resistance genes. pR444_A is found in some extraintestinal pathogenic E. coli (ExPEC) strains. We identified and characterized 53 STEC strains with ExPEC-associated virulence genes isolated in Italy and the Netherlands during 2000-2019. The isolates belong to 2 major populations: 1 belongs to sequence type 301 and harbors diverse stx(2) subtypes, the intimin variant eae-ξ, and pO157-like and pR444_A plasmids; 1 consists of strains belonging to various sequence types, some of which lack the pO157 plasmid, the locus of enterocyte effacement, and the antimicrobial resistance-encoding region. Our results showed that STEC strains harboring ExPEC-associated virulence genes can include multiple serotypes and that the pR444_A plasmid can be acquired and mobilized by STEC strains. | 2021 | 33622476 |
| 5490 | 19 | 0.9708 | Molecular and genome characterization of colistin-resistant Escherichia coli isolates from wild sea lions (Zalophus californianus). Using molecular and whole-genome sequencing tools, we investigated colistin-resistant Escherichia coli isolates from wild sea lions. Two unrelated E. coli colistin-resistant isolates, ST8259 and ST4218, were identified, both belonging to the B2 phylogroup and different serotypes. Polymorphisms in PmrA, PmrB, and PhoQ proteins were identified, and the role of PmrB and PhoQ in contributing to colistin resistance was determined by complementation assays. However, the mutations characterized in the present study are not involved in colistin resistance, which have been described in E. coli isolates from clinical settings. Therefore, the acquired mutations in pmrB and phoQ genes in resistance to colistin in bacteria related to marine environment animals are different. This work contributes to the surveillance and characterization of colistin resistance in Escherichia coli obtained from animals from aquatic environments. | 2020 | 32897511 |