# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1992 | 0 | 0.9900 | Antimicrobial Resistance Genes, Cassettes, and Plasmids Present in Salmonella enterica Associated With United States Food Animals. The ability of antimicrobial resistance (AR) to transfer, on mobile genetic elements (MGEs) between bacteria, can cause the rapid establishment of multidrug resistance (MDR) in bacteria from animals, thus creating a foodborne risk to human health. To investigate MDR and its association with plasmids in Salmonella enterica, whole genome sequence (WGS) analysis was performed on 193 S. enterica isolated from sources associated with United States food animals between 1998 and 2011; 119 were resistant to at least one antibiotic tested. Isolates represented 86 serotypes and variants, as well as diverse phenotypic resistance profiles. A total of 923 AR genes and 212 plasmids were identified among the 193 strains. Every isolate contained at least one AR gene. At least one plasmid was detected in 157 isolates. Genes were identified for resistance to aminoglycosides (n = 472), β-lactams (n = 84), tetracyclines (n = 171), sulfonamides (n = 91), phenicols (n = 42), trimethoprim (n = 8), macrolides (n = 5), fosfomycin (n = 48), and rifampicin (n = 2). Plasmid replicon types detected in the isolates were A/C (n = 32), ColE (n = 76), F (n = 43), HI1 (n = 4), HI2 (n = 20), I1 (n = 62), N (n = 4), Q (n = 7), and X (n = 35). Phenotypic resistance correlated with the AR genes identified in 95.4% of cases. Most AR genes were located on plasmids, with many plasmids harboring multiple AR genes. Six antibiotic resistance cassette structures (ARCs) and one pseudo-cassette were identified. ARCs contained between one and five resistance genes (ARC1: sul2, strAB, tetAR; ARC2: aac3-iid; ARC3: aph, sph; ARC4: cmy-2; ARC5: floR; ARC6: tetB; pseudo-ARC: aadA, aac3-VIa, sul1). These ARCs were present in multiple isolates and on plasmids of multiple replicon types. To determine the current distribution and frequency of these ARCs, the public NCBI database was analyzed, including WGS data on isolates collected by the USDA Food Safety and Inspection Service (FSIS) from 2014 to 2018. ARC1, ARC4, and ARC5 were significantly associated with cattle isolates, while ARC6 was significantly associated with chicken isolates. This study revealed that a diverse group of plasmids, carrying AR genes, are responsible for the phenotypic resistance seen in Salmonella isolated from United States food animals. It was also determined that many plasmids carry similar ARCs. | 2019 | 31057528 |
| 1388 | 1 | 0.9891 | Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, bla(CTX-M1,15,55), bla(CMY-2), gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified. | 2020 | 33172096 |
| 1989 | 2 | 0.9891 | Prevalence and characterization of IncQ1α-mediated multi-drug resistance in Proteus mirabilis Isolated from pigs in Kunming, Yunnan, China. BACKGROUND: Proteus mirabilis is a conditionally pathogenic bacterium that is inherently resistant to polymyxin and tigecycline, largely due to antibiotic resistance genes (ARGs). These ARGs can be horizontally transferred to other bacteria, raising concerns about the Inc plasmid-mediated ARG transmission from Proteus mirabilis, which poses a serious public health threat. This study aims to investigate the presence of Inc plasmid types in pig-derived Proteus mirabilis in Kunming, Yunnan, China. METHODS: Fecal samples were collected from pig farms across six districts of Kunming (Luquan, Jinning, Yiliang, Anning, Songming, and Xundian) from 2022 to 2023. Proteus mirabilis isolates were identified using IDS and 16S rRNA gene sequencing. Then, positive strains underwent antimicrobial susceptibility testing and incompatibility plasmid typing. Multi-drug-resistant isolates with positive incompatibility plasmid genes were selected for whole-genome sequencing. Resistance and Inc group data were then isolated and compared with 126 complete genome sequences from public databases. Whole-genome multi-locus sequence typing, resistance group analysis, genomic island prediction, and plasmid structural gene analysis were performed. RESULTS: A total of 30 isolates were obtained from 230 samples, yielding a prevalence of 13.04%. All isolates exhibited multi-drug resistance, with 100% resistance to cotrimoxazole, erythromycin, penicillin G, chloramphenicol, ampicillin, and streptomycin. Among these, 15 isolates tested positive for the IncQ1α plasmid repC gene. The two most multi-drug-resistant and repC-positive strains, NO. 15 and 21, were sequenced to compare genomic features on Inc groups and ARGs with public data. Genome analysis revealed that the repC gene was primarily associated with IncQ1α, with structural genes from other F-type plasmids (TraV, TraU, TraN, TraL, TraK, TraI, TraH, TraG, TraF, TraE/GumN, and TraA) also present. Strain NO. 15 carried 33 ARGs, and strain NO. 21 carried 38 ARGs, conferring resistance to tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, peptides, chloramphenicol, cephalosporins, lincomycins, macrolides, and 2-aminopyrimidines. CONCLUSION: The repC gene is primarily associated with IncQ1α, with structural genes from other F-type plasmids. A comparison with 126 public genome datasets confirmed this association. | 2024 | 39850143 |
| 1990 | 3 | 0.9888 | Genomic Analysis of Aeromonas veronii C198, a Novel Mcr-3.41-Harboring Isolate from a Patient with Septicemia in Thailand. The resistance of Gram-negative bacteria to colistin, mediated by plasmid-borne mcr genes, is an emerging public health concern. The complete genome sequence (4.55 Mb) of a clinical isolate of Aeromonas veronii biovar veronii obtained from a patient with septicemia was determined using short-read and long-read platforms. This isolate (C198) was found to harbor a novel mcr-3 gene, designated mcr-3.41. Isolate C198 revealed adjacent mcr-3.41 and mcr-3-like genes. It contained one chromosome and two plasmids, both of which encoded a RepB replication protein. Other antimicrobial resistance genes, including bla(cphA3), bla(OXA-12), tetA, rsmA, and adeF, were also present. Isolate C198 was resistant to amoxicillin-clavulanate, ampicillin-sulbactam and tetracycline, and showed intermediate resistance to trimethoprim-sulfamethoxazole. The isolate was susceptible to piperacillin-tazobactam, carbapenem, third-generation cephalosporins, fluoroquinolones, chloramphenicol, and aminoglycosides. Putative virulence genes in the C198 genome encoded type II, III, and VI secretion systems; type IV Aeromonas pili; and type I fimbria, flagella, hemagglutinin, aerolysin, and hemolysins. Multilocus sequence typing revealed a novel sequence type (ST), ST720 for C198. Phylogenetic analysis of the single nucleotide polymorphisms in C198 demonstrated that the strain was closely related to A. veronii 17ISAe. The present study provides insights into the genomic characteristics of human A. veronii isolates. | 2020 | 33317051 |
| 1993 | 4 | 0.9886 | Co-occurrence of antibiotic and disinfectant resistance genes in extensively drug-resistant Escherichia coli isolated from broilers in Ilorin, North Central Nigeria. OBJECTIVES: The occurrence of multidrug-resistant (MDR) bacteria in poultry poses the public health threat of zoonotic transmission to humans. Hence, this study assessed the occurrence of drug-resistant Escherichia coli in broilers in the largest live bird market in Kwara State, Nigeria in December 2020. METHODS: Presumptive E. coli isolates were isolated using the European Union Reference Laboratory guideline of 2017 and confirmed via matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Broth microdilution was performed on confirmed E. coli isolates to determine the minimum inhibitory concentration. Five extensively drug-resistant (XDR) isolates were selected for Illumina whole genome sequencing to predict the resistome, phylotype, sequence type, serotype, and diversity of mobile genetic elements in these isolates. RESULTS: Of the 181 broiler caecal samples, 73 E. coli isolates were obtained, of which 67 (82.0%) and 37 (50.6%) were determined as MDR (resistant to at least three classes of antibiotics) and XDR (resistant to at least five classes of antibiotics), respectively. Whole genome sequencing revealed diverse sequence types, phylogroups, and serotypes (ST165/B1 - O80:H19, ST115/A - Unknown: H7, ST901/B1 - O109:H4, ST4087/F - O117:H42, and ST8324/A - O127:H42). The XDR E. coli isolates encoded resistance to fluoroquinolones, fosfomycin, sulfamethoxazole, ampicillin and cephalosporins, trimethoprim, aminoglycosides, chloramphenicol, tetracycline, and macrolides. Mutations in the gyrA gene conferring resistance to fluoroquinolones were also detected. There was a positive correlation between phenotypic resistance patterns and the antibiotic resistance genes that were detected in the sequenced isolates. The XDR isolates also harbored two disinfectant resistance genes (qacE and sitABCD) that conferred resistance to hydrogen peroxide and quaternary ammonium compounds, respectively. The genome of the XDR isolates harbored several mobile genetic elements and virulence-associated genes, which were conserved in all sequenced XDR isolates. CONCLUSIONS: This is the first report of co-carriage of antibiotic resistance genes and disinfectant resistance genes in E. coli isolated from broilers in Ilorin, Nigeria. Our findings suggest that poultry are potential carriers of clonally diverse, pathogenic, MDR/XDR E. coli, which may have detrimental zoonotic potentials on human health. | 2022 | 36375754 |
| 1535 | 5 | 0.9886 | Complete Genome Sequencing of Acinetobacter baumannii AC1633 and Acinetobacter nosocomialis AC1530 Unveils a Large Multidrug-Resistant Plasmid Encoding the NDM-1 and OXA-58 Carbapenemases. Carbapenem-resistant Acinetobacter spp. are considered priority drug-resistant human-pathogenic bacteria. The genomes of two carbapenem-resistant Acinetobacter spp. clinical isolates obtained from the same tertiary hospital in Terengganu, Malaysia, namely, A. baumannii AC1633 and A. nosocomialis AC1530, were sequenced. Both isolates were found to harbor the carbapenemase genes bla(NDM-1) and bla(OXA-58) in a large (ca. 170 kb) plasmid designated pAC1633-1 and pAC1530, respectively, that also encodes genes that confer resistance to aminoglycosides, sulfonamides, and macrolides. The two plasmids were almost identical except for the insertion of ISAba11 and an IS4 family element in pAC1633-1, and ISAba11 along with relBE toxin-antitoxin genes flanked by inversely orientated pdif (XerC/XerD) recombination sites in pAC1530. The bla(NDM-1) gene was encoded in a Tn125 composite transposon structure flanked by ISAba125, whereas bla(OXA-58) was flanked by ISAba11 and ISAba3 downstream and a partial ISAba3 element upstream within a pdif module. The presence of conjugative genes in plasmids pAC1633-1/pAC1530 and their discovery in two distinct species of Acinetobacter from the same hospital are suggestive of conjugative transfer, but mating experiments failed to demonstrate transmissibility under standard laboratory conditions. Comparative sequence analysis strongly inferred that pAC1633-1/pAC1530 was derived from two separate plasmids in an IS1006-mediated recombination or transposition event. A. baumannii AC1633 also harbored three other plasmids designated pAC1633-2, pAC1633-3, and pAC1633-4. Both pAC1633-3 and pAC1633-4 are cryptic plasmids, whereas pAC1633-2 is a 12,651-bp plasmid of the GR8/GR23 Rep3-superfamily group that encodes the tetA(39) tetracycline resistance determinant in a pdif module.IMPORTANCE Bacteria of the genus Acinetobacter are important hospital-acquired pathogens, with carbapenem-resistant A. baumannii listed by the World Health Organization as the one of the top priority pathogens. Whole-genome sequencing of carbapenem-resistant A. baumannii AC1633 and A. nosocomialis AC1530, which were isolated from the main tertiary hospital in Terengganu, Malaysia, led to the discovery of a large, ca. 170-kb plasmid that harbored genes encoding the New Delhi metallo-β-lactamase-1 (NDM-1) and OXA-58 carbapenemases alongside genes that conferred resistance to aminoglycosides, macrolides, and sulfonamides. The plasmid was a patchwork of multiple mobile genetic elements and comparative sequence analysis indicated that it may have been derived from two separate plasmids through an IS1006-mediated recombination or transposition event. The presence of such a potentially transmissible plasmid encoding resistance to multiple antimicrobials warrants vigilance, as its spread to susceptible strains would lead to increasing incidences of antimicrobial resistance. | 2021 | 33504662 |
| 1511 | 6 | 0.9886 | Characterization of an Extensively Drug-Resistant Salmonella Kentucky ST198 Co-Harboring cfr, mcr-1 and tet(A) Variant from Retail Chicken Meat in Shanghai, China. The emergence of extensively drug-resistant (XDR) foodborne pathogens poses grave threats to food safety. This study characterizes the genome of an XDR Salmonella Kentucky isolate (Sal23C1) co-harboring cfr, mcr-1 and tet(A) from Shanghai chicken meat in 2022, which was the only isolate co-harboring these three key resistance genes among 502 screened Salmonella isolates. Genomic analysis revealed that the multidrug resistance gene cfr, which confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins and streptogramin A, was identified within a Tn3-IS6-cfr-IS6 structure on the transferable plasmid p3Sal23C1 (32,387 bp), showing high similarity to the Citrobacter braakii plasmid pCE32-2 (99% coverage, 99.98% identity). Concurrently, the mcr-1 gene resided in a pap2-mcr-1 structure on the transferable IncI2 plasmid p2Sal23C1 (63,103 bp). Notably, both genes could be co-transferred to recipient bacteria via conjugative plasmids at frequencies of (1.15 ± 0.98) × 10(-6). Furthermore, a novel ~79 kb multidrug resistance region (MRR) chromosomally inserted at the bcfH locus was identified, carrying fosA3, mph(A), rmtB, qnrS1 and bla(CTX-M-55). Additionally, a novel Salmonella Genomic Island 1 variant (SGI1-KI) harbored aadA7, qacEΔ1, sul1 and the tet(A) variant. The acquisition of these antibiotic resistance genes in this isolate enhanced bacterial resistance to 21 antimicrobials, including resistance to the critical last-resort antibiotics tigecycline and colistin, which left virtually no treatment options for potential infections. Taken together, this is the first comprehensive genomic report of an XDR poultry-derived Salmonella Kentucky isolate co-harboring cfr, mcr-1 and the tet(A) variant. The mobility of these resistance genes, facilitated by IS6 elements and conjugative plasmids, underscores significant public health risks associated with such isolates in the food chain. | 2025 | 40941142 |
| 1995 | 7 | 0.9885 | Genomic insights into Shigella species isolated from small ruminants and manure in the North West Province, South Africa. This study investigated Shigella species' antibiotic resistance patterns and genomic characteristics from small ruminants and manure collected in Potchefstroom, North West, South Africa. Whole genome sequencing was used to determine resistome profiles of Shigella flexneri isolates from small ruminants' manure and Shigella boydii from sheep faeces. Comparative genomics was employed on the South African 261 S. flexneri strains available from GenBank, including the sequenced strains in this study, by investigating the serovars, antibiotic resistance genes (ARGs), and plasmid replicon types. The S. flexneri strains could not be assigned to known sequence types, suggesting novel or uncharacterized lineages. S. boydii R7-1A was assigned to sequence type 202 (ST202). Serovar 2A was the most common among South African S. flexneri strains, found in 96% of the 250 compared human-derived isolates. The shared mdf(A) was the most prevalent gene, identified in 99% of 261 S. flexneri genomes, including plasmid replicon types ColRNAI_1 (99%) and IncFII_1 (98%). Both species share a core set of resistance determinants mainly involving β-lactams (ampC1, ampC, ampH), macrolides (mphB), polymyxins (eptA, pmrF), multidrug efflux pumps (AcrAB-TolC, Mdt, Emr, Kpn families), and regulatory systems (marA, hns, crp, baeRS, evgAS, cpxA, gadX). However, S. boydii possesses additional resistance genes conferring resistance to tetracyclines (tet(A)), phenicols (floR), sulphonamides (sul2), and aminoglycosides (APH(3'')-Ib, APH(6)-Id), along with the acrEF efflux pump components (acrE, acrF). In contrast, S. flexneri harboured unique genes linked to polymyxin resistance (ugd) and regulatory functions (sdiA, gadW) that were absent in S. boydii. These findings highlight Shigella strains' genomic diversity and antimicrobial resistance potential in livestock-associated environments. Moreover, S. boydii highlights the potential risk of multidrug-resistant bacteria in farming and environmental routes. KEY POINTS: • First whole genome study of Shigella from manure and small ruminants in South Africa. • Shigella boydii strain carried multiple resistance genes to β-lactams and tetracycline. • Multidrug efflux pump gene mdf(A) was detected in 99% of South African Shigella flexneri strains. | 2025 | 41148367 |
| 1389 | 8 | 0.9884 | Whole-Genome Sequencing of Gram-Negative Bacteria Isolated From Bovine Mastitis and Raw Milk: The First Emergence of Colistin mcr-10 and Fosfomycin fosA5 Resistance Genes in Klebsiella pneumoniae in Middle East. Antimicrobial resistance is a major concern in the dairy industry. This study investigated the prevalence, antimicrobial resistance phenotypes, and genome sequencing of Gram-negative bacteria isolated from clinical (n = 350) and subclinical (n = 95) bovine mastitis, and raw unpasteurized milk (n = 125). Klebsiella pneumoniae, Aeromonas hydrophila, Enterobacter cloacae (100% each), Escherichia coli (87.78%), and Proteus mirabilis (69.7%) were the most prevalent multidrug-resistant (MDR) species. Extensive drug-resistance (XDR) phenotype was found in P. mirabilis (30.30%) and E. coli (3.33%) isolates. Ten isolates (four E. coli, three Klebsiella species and three P. mirabilis) that displayed the highest multiple antibiotic resistance (MAR) indices (0.54-0.83), were exposed to whole-genome sequencing (WGS). Two multilocus sequence types (MLST): ST2165 and ST7624 were identified among the sequenced E. coli isolates. Three E. coli isolates (two from clinical mastitis and one from raw milk) belonging to ST2165 showed similar profile of plasmid replicon types: IncFIA, IncFIB, IncFII, and IncQ1 with an exception to an isolate that contained IncR, whereas E. coli ST7624 showed a different plasmid profile including IncHI2, IncHI2A, IncI1α, and IncFII replicon types. ResFinder findings revealed the presence of plasmid-mediated colistin mcr-10 and fosfomycin fosA5 resistance genes in a K. pneumoniae (K1) isolate from bovine milk. Sequence analysis of the reconstructed mcr-10 plasmid from WGS of K1 isolate, showed that mcr-10 gene was bracketed by xerC and insertion sequence IS26 on an IncFIB plasmid. Phylogenetic analysis revealed that K1 isolate existed in a clade including mcr-10-harboring isolates from human and environment with different STs and countries [United Kingdom (ST788), Australia (ST323), Malawi (ST2144), Myanmar (ST705), and Laos (ST2355)]. This study reports the first emergence of K. pneumoniae co-harboring mcr-10 and fosA5 genes from bovine milk in the Middle East, which constitutes a public health threat and heralds the penetration of the last-resort antibiotics. Hence, prudent use of antibiotics in both humans and animals and antimicrobial surveillance plans are urgently required. | 2021 | 34956131 |
| 2021 | 9 | 0.9884 | Diversity of Plasmids and Antimicrobial Resistance Genes in Multidrug-Resistant Escherichia coli Isolated from Healthy Companion Animals. The presence and transfer of antimicrobial resistance genes from commensal bacteria in companion animals to more pathogenic bacteria may contribute to dissemination of antimicrobial resistance. The purpose of this study was to determine antimicrobial resistance gene content and the presence of genetic elements in antimicrobial resistant Escherichia coli from healthy companion animals. In our previous study, from May to August, 2007, healthy companion animals (155 dogs and 121 cats) from three veterinary clinics in the Athens, GA, USA area were sampled and multidrug-resistant E. coli (n = 36; MDR, resistance to ≥ 2 antimicrobial classes) were obtained. Of the 25 different plasmid replicon types tested by PCR, at least one plasmid replicon type was detected in 94% (34/36) of the MDR E. coli; four isolates contained as many as five different plasmid replicons. Nine replicon types (FIA, FIB, FII, I2, A/C, U, P, I1 and HI2) were identified with FIB, FII, I2 as the most common pattern. The presence of class I integrons (intI) was detected in 61% (22/36) of the isolates with eight isolates containing aminoglycoside- and/or trimethoprim-resistance genes in the variable cassette region of intI. Microarray analysis of a subset of the MDR E. coli (n = 9) identified the presence of genes conferring resistance to aminoglycosides (aac, aad, aph and strA/B), β-lactams (ampC, cmy, tem and vim), chloramphenicol (cat), sulfonamides (sulI and sulII), tetracycline [tet(A), tet(B), tet(C), tet(D) and regulator, tetR] and trimethoprim (dfrA). Antimicrobial resistance to eight antimicrobials (ampicillin, cefoxitin, ceftiofur, amoxicillin/clavulanic acid, streptomycin, gentamicin, sulfisoxazole and trimethoprim-sulfamethoxazole) and five plasmid replicons (FIA, FIB, FII, I1 and I2) were transferred via conjugation. The presence of antimicrobial resistance genes, intI and transferable plasmid replicons indicate that E. coli from companion animals may play an important role in the dissemination of antimicrobial resistance, particularly to human hosts during contact. | 2015 | 25653018 |
| 1991 | 10 | 0.9882 | A strain defined as a novel species in the Acinetobacter genus co-harboring chromosomal associated tet(X3) and plasmid associated bla (NDM-1) from a beef cattle farm in Hebei, China. INTRODUCTION: The co-existence phenomenon of antibiotic resistance genes (ARGs), particularly of last-resort antibiotics in multi-drug resistant (MDR) bacteria, is of particular concern in the least studied bacterial species. METHODS: In 2023, strain M2 was isolated from the sludge sample at a commercial bovine farm in Hebei province, China, using a MacConkey plate containing meropenem. PCR amplification and Sanger sequencing verified it co-carrying bla (NDM) and tet(X) genes. It was classified within the Acinetobacter genus by MALDI-TOF-MS and 16S rDNA analyses. Whole-genome sequencing (WGS) was performed on the Oxford Nanopore platform, with species-level identification via ANI and dDDH. Antimicrobial susceptibility testing was performed against 20 antibiotics. Conjugation assays employed the filter-mating method using E. coli J53 and Salmonella LGJ2 as recipients. RESULTS: This strain was confirmed as a novel species of Acinetobacter genus, showing resistance to meropenem, ampicillin, ceftazidime, cefepime, gentamicin, kanamycin, fosfomycin, imipenem, ertapenem, and tetracycline. Despite carrying tet(X3), it remained susceptible to tigecycline, omadacycline, and doxycycline. The genome carried 11 ARG types, multiple metal resistance genes (MRGs), and virulence factor (VF) genes. The bla (NDM-1) was located in a skeleton, ISAba125-bla (NDM-1)-ble (MBL)-trpF, which was carried by an ISAba14-mediated rolling-circle-like structure in pM2-2-NDM-1 (rep_cluster_481). Integrative and conjugative element (ICE) and multiple pdif modules (driven by the XerCD site-specific recombination (XerCD SSR) system), which were associated with the mobilization of resistance determinants, were identified in this plasmid. Chromosomal tet(X3) was mediated by ISVsa3, forming a skeleton, ISVsa3-XerD-tet (X3)-res-ISVsa3. DISCUSSION: The co-occurrence of bla (NDM) and tet(X) in a novel species of the Acinetobacter genus hints that substantial undiscovered bacteria co-carrying high-risk ARGs are concealing in the agroecological system, which should cause particular concern. | 2025 | 40673007 |
| 832 | 11 | 0.9881 | Development of antibiotic resistance in the ocular Pseudomonas aeruginosa clone ST308 over twenty years. Corneal infection caused by a bacteria Pseudomonas aeruginosa is common cause of ocular morbidity. Increasing antibiotic resistance by ocular P. aeruginosa is an emerging concern. In this study the resistome of ocular isolates of Pseudomonas aeruginosa clone ST308 isolated in India in 1997 (PA31, PA32, PA33, PA35 and PA37) and 2018 (PA198 and PA219) were investigated. All the isolates of ST308 had >95% nucleotide similarity. The isolates from 2018 had larger genomes, coding sequences, accessory and pan genes compared to the older isolates from 1997. The 2018 isolate PA219 was resistant to all antibiotics except polymyxin B, while the 2018 isolate PA198 was resistant to ciprofloxacin, levofloxacin, gentamicin and tobramycin. Among the isolates from 1997, five were resistant to gentamicin, tobramycin and ciprofloxacin, four were resistant to levofloxacin while two were resistant to polymyxin B. Twenty-four acquired resistance genes were present in the 2018 isolates compared to 11 in the historical isolates. All isolates contained genes encoding for aminoglycoside (aph(6)-Id, aph(3')-lIb, aph(3″)-Ib), beta-lactam (blaPAO), tetracycline (tet(G)), fosfomycin (fosA), chloramphenicol (catB7), sulphonamide (sul1), quaternary ammonium (qacEdelta1) and fluoroquinolone (crpP) resistance. Isolate PA198 possessed aph(3')-VI, rmtD2, qnrVC1, blaOXA-488, blaPME-1, while PA219 possessed aadA1, rmtB, qnrVC1, aac(6')-Ib-cr, blaTEM-1B, blaVIM-2, blaPAO-1, mph(E), mph(A), msr(E). In both recent isolates qnrVC1 was present in Tn3 transposon. In 219 blaTEM-1 was carried on a transposon and blaOXA-10 on a class 1 integron. There were no notable differences in the number of single nucleotide polymorphisms, but recent isolates carried more insertions and deletions in their genes. These findings suggest that genomes of P. aeruginosa ocular clonal strains with >95% nucleotide identity isolated twenty years apart had changed over time with the acquisition of resistance genes. The pattern of gene mutations also varied with more insertions and deletions in their chromosomal genes which confer resistance to antibiotics. | 2021 | 33610601 |
| 1236 | 12 | 0.9881 | Molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Egypt. The aim of this study was to characterize the genetic basis of multidrug resistance in Gram-negative bacteria isolated from bovine mastitis cases in Egypt. Multidrug resistance phenotypes were found in 34 of 112 (30.4%) Gram-negative bacterial isolates, which harbored at least one antimicrobial resistance gene. The most prevalent multidrug-resistant (MDR) species were Enterobacter cloacae (8 isolates, 7.1%), Klebsiella pneumoniae (7 isolates, 6.3%), Klebsiella oxytoca (7 isolates, 6.3%), Escherichia coli (5 isolates, 4.5%), and Citrobacter freundii (3 isolates, 2.7%). The most commonly observed resistance phenotypes were against ampicillin (97.0%), streptomycin (94.1%), tetracycline (91.2%), trimethoprim-sulfamethoxazole (88.2%), nalidixic acid (85.3%), and chloramphenicol (76.5%). Class 1 integrons were detected in 28 (25.0%) isolates. The gene cassettes within class 1 integrons included those encoding resistance to trimethoprim (dfrA1, dfrA5, dfrA7, dfrA12, dfrA15, dfrA17, and dfrA25), aminoglycosides (aadA1, aadA2, aadA5, aadA7, aadA12, aadA22, and aac(3)-Id), chloramphenicol (cmlA), erythromycin (ereA2), and rifampicin (arr-3). Class 2 integrons were identified in 6 isolates (5.4%) with three different profiles. Furthermore, the β-lactamase encoding genes, bla(TEM), bla(SHV), bla(CTX-M), and bla(OXA), the plasmid-mediated quinolone resistance genes, qnr and aac(6)-Ib-cr, and the florfenicol resistance gene, floR, were also identified. To the best of our knowledge, the results identified class 2 integrons, qnr and aac(6)-Ib-cr from cases of mastitis for the first time. This is the first report of molecular characterization for antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Africa. | 2011 | 21338385 |
| 2028 | 13 | 0.9881 | Short communication: Whole-genome sequence analysis of 4 fecal bla(CMY-2)-producing Escherichia coli isolates from Holstein dairy calves. This study was carried out to determine the antimicrobial resistance (AMR) genes and mobile genetic elements of 4 fecal bla(CMY-2)-producing Escherichia coli isolated from Holstein dairy calves on the same farm using whole-genome sequencing. Genomic analysis revealed that 3 of the 4 isolates shared similar genetic features, including sequence type (ST), serotype, plasmid characteristics, insertion ST, and virulence genes. In addition to genes encoding for complex multidrug resistance efflux systems, all 4 isolates were carriers of genes conferring resistance to β-lactams (bla(CMY-2), bla(TEM-1B)), tetracyclines (tetA, tetB, tetD), aminoglycosides [aadA1, aph(3")-lb, aph(6)-ld], sulfonamides (sul2), and trimethoprim (dfrA1). We also detected 4 incompatibility plasmid groups: Inc.F, Inc.N, Inc.I, and Inc.Q. A novel ST showing a new purA and mdh allelic combination was found. The 4 isolates were likely enterotoxigenic pathotypes of E. coli, based on serotype and presence of the plasmid Inc.FII(pCoo). This study provides information for comparative genomic analysis of AMR genes and mobile genetic elements. This analysis could give some explanation to the multidrug resistance characteristics of bacteria colonizing the intestinal tract of dairy calves in the first few weeks of life. | 2020 | 31733866 |
| 1387 | 14 | 0.9880 | Whole-Genome Characterisation of ESBL-Producing E. coli Isolated from Drinking Water and Dog Faeces from Rural Andean Households in Peru. E. coli that produce extended-spectrum β-lactamases (ESBLs) are major multidrug-resistant bacteria. In Peru, only a few reports have characterised the whole genome of ESBL enterobacteria. We aimed to confirm the identity and antimicrobial resistance (AMR) profile of two ESBL isolates from dog faeces and drinking water of rural Andean households and determine serotype, phylogroup, sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their plasmids. To confirm the identity and AMR profiles, we used the VITEK(®)2 system. Whole-genome sequencing (WGS) and bioinformatics analysis were performed subsequently. Both isolates were identified as E. coli, with serotypes -:H46 and O9:H10, phylogroups E and A, and ST/CC 5259/- and 227/10, respectively. The isolates were ESBL-producing, carbapenem-resistant, and not harbouring carbapenemase-encoding genes. Isolate 1143 ST5259 harboured the astA gene, encoding the EAST(1) heat-stable toxin. Both genomes carried ESBL genes (bla(EC-15), bla(CTX-M-8), and bla(CTX-M-55)). Nine plasmids were detected, namely IncR, IncFIC(FII), IncI, IncFIB(AP001918), Col(pHAD28), IncFII, IncFII(pHN7A8), IncI1, and IncFIB(AP001918). Finding these potentially pathogenic bacteria is worrisome given their sources and highlights the importance of One-Health research efforts in remote Andean communities. | 2022 | 35625336 |
| 2991 | 15 | 0.9880 | Occurrence and antimicrobial resistance of Salmonella species and potentially pathogenic Escherichia coli in free-living seals of Canadian Atlantic and eastern Arctic waters. Seal populations in Canadian waters provide sustenance to coastal communities. There is potential for pathogenic and/or antimicrobial-resistant bacteria to transfer to humans through inadvertent faecal contamination of seal products. The objective of this study was to investigate the occurrence and potential antimicrobial resistance of Salmonella spp., Escherichia coli and Listeria monocytogenes in faecal samples collected from grey seals (Halichoerus grypus) in the Gulf of St. Lawrence and from ringed seals (Pusa hispida) in Frobisher Bay and Eclipse Sound, Nunavut, Canada. Grey seals were harvested during commercial hunts or during scientific sampling; ringed seals were collected by Inuit hunters during subsistence harvests. Virulence genes defining pathogenic E. coli were identified by PCR, and antimicrobial susceptibility testing was performed on recovered isolates. In grey seals, E. coli was detected in 34/44 (77%) samples, and pathogenic E. coli (extraintestinal E. coli [ExPEC], enteropathogenic E. coli [EPEC] or ExPEC/EPEC) was detected in 13/44 (29%) samples. Non-susceptibility to beta-lactams and quinolones was observed in isolates from 18 grey seals. In ringed seals from Frobisher Bay, E. coli was detected in 4/45 (9%) samples; neither virulence genes nor antimicrobial resistance was detected in these isolates. In ringed seals from Eclipse Sound, E. coli was detected in 8/50 (16%) samples and pathogenic E. coli (ExPEC and ExPEC/EPEC) in 5/50 (10%) samples. One seal from Eclipse Sound had an E. coli isolate resistant to beta-lactams. A monophasic Salmonella Typhimurium was recovered from 8/50 (16%) seals from Eclipse Sound. All Salmonella isolates were resistant to ampicillin, streptomycin, sulfisoxazole and tetracycline. L. monocytogenes was not detected in any sample. These findings suggest that seals may act as important sentinel species and as reservoirs or vectors for antimicrobial-resistant and virulent E. coli and Salmonella species. Further characterization of these isolates would provide additional insights into the source and spread of antimicrobial resistance and virulence genes in these populations of free-living seals. | 2023 | 37317052 |
| 5418 | 16 | 0.9879 | Detection of optrA in the African continent (Tunisia) within a mosaic Enterococcus faecalis plasmid from urban wastewaters. OBJECTIVES: Oxazolidinone resistance is a serious limitation in the treatment of MDR Enterococcus infections. Plasmid-mediated oxazolidinone resistance has been strongly linked to animals where the use of phenicols might co-select resistance to both antibiotic families. Our goal was to assess the diversity of genes conferring phenicol/oxazolidinone resistance among diverse enterococci and to characterize the optrA genetic environment. METHODS: Chloramphenicol-resistant isolates (>16 mg/L, n = 245) from different sources (hospitals/healthy humans/wastewaters/animals) in Portugal, Angola and Tunisia (1996-2016) were selected. Phenicol (eight cat variants, fexA, fexB) or phenicol + oxazolidinone [cfr, cfr(B), optrA] resistance genes were searched for by PCR. Susceptibility (disc diffusion/microdilution), filter mating, stability of antibiotic resistance (500 bacterial generations), plasmid typing (S1-PFGE/hybridization), MLST and WGS (Illumina-HiSeq) were performed for optrA-positive isolates. RESULTS: Resistance to phenicols (n = 181, 74%) and phenicols + oxazolidinones (n = 2, 1%) was associated with the presence of cat(A-8) (40%, predominant in hospitals and swine), cat(A-7) (29%, predominant in poultry and healthy humans), cat(A-9) (2%), fexB (2%) and fexA + optrA (1%). fexA and optrA genes were co-located in a transferable plasmid (pAF379, 72 918 bp) of two ST86 MDR Tunisian Enterococcus faecalis (wastewaters) carrying several putative virulence genes. MICs of chloramphenicol, linezolid and tedizolid were stably maintained at 64, 4 and 1 mg/L, respectively. The chimeric pAF379 comprised relics of genetic elements from different Gram-positive bacteria and origins (human/porcine). CONCLUSIONS: To the best of our knowledge, we report the first detection of optrA in an African country (Tunisia) within a transferable mosaic plasmid of different origins. Its identification in isolates from environmental sources is worrisome and alerts for the need of a concerted global surveillance on the occurrence and spread of optrA. | 2017 | 29029072 |
| 1104 | 17 | 0.9879 | Predominance of Multidrug-Resistant Gram-Negative Bacteria Isolated from Supermarket Retail Seafood in Japan. Reports have documented antimicrobial usage in aquaculture, and the aquatic ecosystem can be considered a genetic storage site for antibiotic-resistant bacteria. This study assessed the prevalence of antimicrobial resistance (AMR) among Gram-negative bacteria recovered from retail seafood in Hiroshima, Japan. A total of 412 bacteria were isolated and screened for the presence of β-lactamases, acquired carbapenemases, and mobile colistin-resistance (mcr) genes. Forty-five (10.9%) isolates were dominated by Morganella (28%), Proteus (22%), Aeromonas (14%), Citrobacter (8%), and Escherichia (8%) and carried AMR genes. The identified AMR genes included those encoded in integrons (19), aac(6՛)-Ib (11), bla(TEM-1) (7), bla(CTX-M-like) (12), bla(CTX-M-65) (2), bla(SHV-12) (1), bla(SHV-27) (1), bla(OXA-10) (1), bla(OXA-2) (1), and mcr (2). The most common clinical resistances were against ampicillin, colistin, sulfamethoxazole/trimethoprim, tetracycline, and ciprofloxacin. Multidrug resistance (MDR) occurred in 27 (60%) AMR isolates, and multiple antibiotic resistance indices ranged from 0.2 to 0.8. A conjugation experiment showed that 10 of the 11 selected MDR strains harbored conjugable plasmids, although PCR-based replicon typing described seven strains as untypable. IncF replicon was identified in MDR extended-spectrum β-lactamase-producing Escherichia coli of the pathogenic B2 phylogroup. Our findings suggest that retail seafood harbors MDR bacteria of human interest that require strict resistance surveillance in the seafood production continuum. | 2023 | 38138079 |
| 1752 | 18 | 0.9878 | Genetic Characterization of a Linezolid- and Penicillin-Resistant Enterococcus hirae Isolate Co-Harboring poxtA and pbp5fm. Linezolid and penicillin are critical for treating multidrug resistant (MDR) Gram-positive infections, but the emergence of resistance to both seriously threatens public health. Here, we first report the cocarrying poxtA (oxazolidinone resistance) and pbp5fm (β-lactam resistance) genes by the plasmid in a strain of Enterococcus hirae HDC14-2 derived from porcine. The isolate also exhibits MDR phenotypes to phenicols, oxazolidinones, tetracyclines, β-lactams, aminoglycosides, macrolides, and lincosamides. Whole-genome sequencing (WGS) revealed these resistance genes, along with tet(L), tet(M), catA, erm(B), aac(6)-aph(2"), aadE, spw, lsa(E), lnu(B), sat4, and aphA3, were clustered in a novel MDR region flanked by IS1216 elements on plasmid pHDC14-2.133K. This IS1216-bounded MDR region formed translocatable units (TUs), including an IS1216-poxtA TU that was also identified on a secondary plasmid, pHDC14-2.27K. Functional assays demonstrated the excisability and mobility of these TUs, indicating its potential ability integration into other plasmids or chromosomes. Critically, electrotransformation confirmed the transfer of pHDC14-2.27K (poxtA-carrying) to Enterococcus faecalis JH2-2, with retained TU activity and minimal fitness cost. This study provides the evidence of colocalized poxtA and pbp5fm on plasmids in enterococci, highlighting their role in disseminating pan-resistance among bacteria. Although E. hirae is not an important pathogenic bacterium to humans and animals, but its potential risk to horizontally spread of these resistance genes important in medicine still cannot be ignored. | 2025 | 40692874 |
| 1375 | 19 | 0.9878 | Characterization of integrons and their cassettes in Escherichia coli and Salmonella isolates from poultry in Korea. Ninety-nine Escherichia coli and 33 Salmonella isolates were assessed for antimicrobial susceptibility (disc diffusion test). Sulfonamide and tetracycline resistance genes were identified through PCR, and class 1 and class 2 integrons with resistance gene cassettes were identified with PCR followed by sequencing. Salmonella (63.6%) and E. coli (85.8%) isolates were multidrug resistant (resistance to 3 or more antimicrobials), and the highest incidences of resistance were observed for tetracycline, nalidixic acid, and sulfamethoxazole. The sul1, sul2, tetA, and tetB resistance determinant genes were predominant in E. coli, whereas only sul2 and tetA were identified in Salmonella isolates. In the E. coli isolates, 54 (54.5%) class 1 integrons, 6 (6.1%) class 2 integrons, and 5 (5.1%) class 1 and class 2 integrons together were detected, whereas only 3 (9.1%) integrons were found in the Salmonella serovars. Around 87% of the integrons in E. coli harbored resistance gene cassettes conferring resistance to streptomycin/spectinomycin (aadA, aminoglycoside resistance gene), trimethoprim (dfrA, dihydrofolate reductase gene), streptothricin [sat1 and sat2 (streptothricin acetyltransferase), and estX (putative esterases)]. The most common gene cassettes were aadA1+dfrA1 and dfrA1+sat2+aadA1 in class 1 and class 2 integrons, respectively. Other cassettes including aadA5+dfrA7, dfrA12+aadA2, aadA2+aadA1+dfrA12, and aadA5+aadA2/dfrA7 were also identified. Among the Salmonella serovars, Salmonella Malmoe harbored aadA1+dfrA1 and dfrA12+sat2+aadA1 genes. The aadA1, aadA2, sat2, and dfrA1 had wide variation in similarity among themselves and from previously reported genes worldwide. The diverse gene cassettes could be responsible for the prominent resistance profiles observed and a potential source for dissemination of antimicrobial resistance determinants to other bacteria. | 2013 | 24135609 |