# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8493 | 0 | 0.8803 | Effects and mechanisms of plant growth regulators on horizontal transfer of antibiotic resistance genes through plasmid-mediated conjugation. A vast number of bacteria occur in both soil and plants, with some of them harboring antibiotic resistance genes (ARGs). When bacteria congregate on the interface of soil particles or on plant root surfaces, these ARGs can be transferred between bacteria via conjugation, leading to the formation of antibiotic-resistant pathogens that threaten human health. Plant growth regulators (PGRs) are widely used in agricultural production, promoting plant growth and increasing crop yields. However, until now, little information has been known about the effects of PGRs on the horizontal gene transfer (HGT) of ARGs. In this study, with Escherichia coli DH5α (carrying RP4 plasmid with Tet(R), Amp(R), Kan(R)) as the donor and E. coli HB101 as the recipient, a series of diparental conjugation experiments were conducted to investigate the effects of indoleacetic acid (IAA), ethel (ETH) and gibberellin (GA(3)) on HGT of ARGs via plasmid-mediated conjugation. Furthermore, the mechanisms involved were also clarified. The results showed that all three PGRs affected the ARG transfer frequency by inducing the intracellular reactive oxygen species (ROS) formation, changing the cell membrane permeability, and regulating the gene transcription of traA, traL, trfAp, trbBp, kilA, and korA in plasmid RP4. In detail, 50-100 mg⋅L(-1) IAA, 20-50 mg⋅L(-1) ETH and 1500-2500 mg⋅L(-1) GA(3) all significantly promoted the ARG conjugation. This study indicated that widespread use of PGRs in agricultural production could affect the HGT of ARGs via plasmid-mediated conjugation, and the application of reasonable concentrations of PGRs could reduce the ARG transmission in both soil environments and plants. | 2023 | 36720410 |
| 8431 | 1 | 0.8766 | A quaternary ammonium salt grafted tannin-based flocculant boosts the conjugative transfer of plasmid-born antibiotic resistance genes: The nonnegligible side of their flocculation-sterilization properties. This study developed dual-function tannin-based flocculants, namely tannin-graft-acrylamide-diallyl dimethyl ammonium chloride (TGCC-A/TGCC-C), endowed with enhanced flocculation-sterilization properties. The impacts of these flocculants on proliferation and transformation of antibiotic resistance genes (ARGs) among bacteria during the flocculation-deposition process were examined. TGCC-A/TGCC-C exhibited remarkable flocculation capacities towards both Escherichia coli and Staphylococcus aureus, encompassing a logarithmic range of initial cell density (10(8)-10(9) CFU/mL) and a broad pH spectrum (pH 2-11). The grafted quaternary ammonium salt groups played pivotal parts in flocculation through charge neutralization and bridging mechanisms, concurrently contributing to sterilization by disrupting cellular membranes. The correlation between flocculation and sterilization entails a sequential progression, where an excess of TGCC, initially employed for flocculation, is subsequently consumed for sterilization purposes. The frequencies of ARGs conjugative transfer were enhanced in bacterial flocs across all TGCC treatments, stemming from augmented bacterial aggregation and cell membrane permeability, elicited stress response, and up-regulated genes encoding plasmid transfer. These findings underscore the indispensable role of flocculation-sterilization effects in mediating the propagation of ARGs, consequently providing substantial support for the scientific evaluation of the environmental risks associated with flocculants in the context of ARGs dissemination during the treatment of raw water featuring high bacterial density. | 2023 | 37619725 |
| 7829 | 2 | 0.8757 | Insights into capture-inactivation/oxidation of antibiotic resistance bacteria and cell-free antibiotic resistance genes from waters using flexibly-functionalized microbubbles. The spread of antibiotic resistance in the aquatic environment severely threatens the public health and ecological security. This study investigated simultaneously capturing and inactivating/oxidizing the antibiotic resistant bacteria (ARB) and cell-free antibiotic resistance genes (ARGs) in waters by flexibly-functionalized microbubbles. The microbubbles were obtained by surface-modifying the bubbles with coagulant (named as coagulative colloidal gas aphrons, CCGAs) and further encapsulating ozone in the gas core (named as coagulative colloidal ozone aphrons, CCOAs). CCGAs removed 92.4-97.5% of the sulfamethoxazole-resistant bacteria in the presence of dissolved organic matter (DOM), and the log reduction of cell-free ARGs (particularly, those encoded in plasmid) reached 1.86-3.30. The ozone release from CCOAs led to efficient in-situ oxidation: 91.2% of ARB were membrane-damaged and inactivated. In the municipal wastewater matrix, the removal of ARB increased whilst that of cell-free ARGs decreased by CCGAs with the DOM content increasing. The ozone encapsulation into CCGAs reinforced the bubble performance. The predominant capture mechanism should be electrostatic attraction between bubbles and ARB (or cell-free ARGs), and DOM enhanced the sweeping and bridging effect. The functionalized microbubble technology can be a promising and effective barrier for ARB and cell-free ARGs with shortened retention time, lessened chemical doses and simplified treatment unit. | 2022 | 35063836 |
| 7870 | 3 | 0.8748 | Hierarchical Bi(2)O(2)CO(3) wrapped with modified graphene oxide for adsorption-enhanced photocatalytic inactivation of antibiotic resistant bacteria and resistance genes. There is growing pressure for wastewater treatment plants to mitigate the discharge of antibiotic resistant bacteria (ARB) and extracellular resistance genes (eARGs), which requires technological innovation. Here, hierarchical Bi(2)O(2)CO(3) microspheres were wrapped with nitrogen-doped, reduced graphene oxide (NRGO) for enhanced inactivation of multidrug-resistant E. coli NDM-1 and degradation of the plasmid-encoded ARG (bla(NDM-1)) in secondary effluent. The NRGO shell enhanced reactive oxygen species (ROS) generation (•OH and H(2)O(2)) by about three-fold, which was ascribed to broadened light absorption region (red-shifted up to 459 nm) and decreased electron-transfer time (from 55.3 to 19.8 ns). Wrapping enhanced E. coli adsorption near photocatalytic sites to minimize ROS scavenging by background constituents, which contributed to the NRGO-wrapped microspheres significantly outperforming commercial TiO(2) photocatalyst. ROS scavenger tests indicated that wrapping also changed the primary inactivation pathway, with photogenerated electron holes and surface-attached hydroxyl radicals becoming the predominant oxidizing species with wrapped microspheres, versus free ROS (e.g., •OH, H(2)O(2) and •O(2)(-)) for bare microspheres. Formation of resistance plasmid-composited microsphere complexes, primary due to the π-π stacking and hydrogen bonding between the shell and nucleotides, also minimized ROS scavenging and kept free plasmid concentrations below 10(2) copies/mL. As proof-of-concept, this work offers promising insight into the utilization of NRGO-wrapped microspheres for mitigating antibiotic resistance propagation in the environment. | 2020 | 32679343 |
| 7861 | 4 | 0.8739 | The removal of antibiotic resistant bacteria and genes and inhibition of the horizontal gene transfer by contrastive research on sulfidated nanoscale zerovalent iron activating peroxymonosulfate or peroxydisulfate. Antibiotic resistant bacteria (ARB) and the antibiotic resistance genes (ARGs) dissemination via plasmid-mediated conjugation have attracted considerable attentions. In this research, sulfidated nanoscale zerovalent iron (S-nZVI)/peroxymonosulfate (PMS) and S-nZVI/peroxydisulfate (PDS) process were investigated to inactivate ARB (Escherichia coli DH5α with RP4 plasmid, Pseudomonas. HLS-6 contains sul1 and intI1 on genome DNA sequence). S-nZVI/PMS system showed higher efficiency than S-nZVI/PDS on ARB inactivation. Thus, the optimal condition 28 mg/L S-nZVI coupled with 153.7 mg/L (0.5 mM) PMS was applied to remove both intracellular ARGs (iARGs) and ARB. The oxidative damage of ARB cell was systemically studied by cell viability, intracellular Mg(2+) levels, the changes of extracellular and internal structure, integrity of cell walls and membranes and enzymatic activities. S-nZVI/PMS effectively inactivated ARB (~7.32 log) within 15 min. These effects were greatly higher than those achieved individually. Moreover, removal efficiencies of iARGs sul1, intI1 and tetA were 1.52, 1.79 and 1.56 log, respectively. These results revealed that S-nZVI and PMS have a synergistic effect against ARB and iARGs. The regrowth assays illustrated that the ARB were effectively inactivated. By verifying the inhibitory impacts of S-nZVI/PMS treatment on conjugation transfer, this work highlights a promising alternative technique for inhibiting the horizontal gene transfer. | 2022 | 34482079 |
| 7804 | 5 | 0.8731 | Electrochemical flow-through disinfection reduces antibiotic resistance genes and horizontal transfer risk across bacterial species. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), as emerging pollutants, are released into environment, increasing the risk of horizontal gene transfer (HGT). However, a limited number of studies quantified the effects of ARB disinfection on the HGT risk. This study investigated the inactivation of E. coli 10667 (sul) and the release and removal of ARGs using an electrochemical flow-through reactor (EFTR). Furthermore, the transfer frequencies and potential mechanisms of HGT after disinfection were explored using non-resistant E. coli GMCC 13373 as the recipient and E. coli DH5α carrying plasmid RP4 as the donor. A threshold of current density (0.25 mA/cm(2)) was observed to destroy cells and release intracellular ARGs (iARGs) to increase extracellular ARGs (eARGs) concentration. The further increase in the current density to 1 mA/cm(2) resulted in the decline of eARGs concentration due to the higher degradation rate of eARGs than the release rate of iARGs. The performance of ARGs degradation and HGT frequency by EFTR were compared with those of conventional disinfection processes, including chlorination and ultraviolet radiation (UV). A higher ARGs degradation (83.46%) was observed by EFTR compared with that under chlorination (10.23%) and UV (27.07%). Accordingly, EFTR reduced the HGT frequency (0.69) of released ARGs into the recipient (Forward transfer), and the value was lower than that by chlorination (2.69) and UV (1.73). Meanwhile, the surviving injured E. coli 10667 (sul) with increased cell permeability was transferred by plasmid RP4 from the donor (Reverse transfer) with a higher frequency of 0.33 by EFTR compared with that under chlorination (0.26) and UV (0.16). In addition, the sul3 gene was the least resistant to EFTR than sul1 and sul2 gene. These findings provide important insights into the mechanism of HGT between the injured E. coli 10667 (sul) and environmental bacteria. EFTR is a promising disinfection technology for preventing the spread of antibiotic resistance. | 2022 | 35085844 |
| 7878 | 6 | 0.8727 | Horizontal transfer of the multidrug resistance plasmid RP4 inhibits ammonia nitrogen removal dominated by ammonia-oxidizing bacteria. Antibiotic resistance genes (ARGs) have become an important public health concern. Particularly, although several ARGs have been identified in wastewater treatment plants (WWTPs), very few studies have characterized their impacts on reactor performance. Therefore, our study sought to investigate the effect of a representative conjugative transfer plasmid (RP4) encoding multidrug resistance genes on ammonia oxidation. To achieve this, we established sequencing batch reactors (SBRs) and a conjugation model with E. coli donor strains carrying the RP4 plasmid and a typical ammonia-oxidating (AOB) bacterial strain (Nitrosomonas europaea ATCC 25978) as a recipient to investigate the effect of conjugative transfer of plasmid RP4 on AOB. Our findings demonstrated that the RP4 plasmid carried by the donor strains could be transferred to AOB in the SBR and to Nitrosomonas europaea ATCC 25978. In SBR treated with donor strains carrying the RP4 plasmid, ammonia removal efficiency continuously decreased to 71%. Once the RP4 plasmid entered N. europaea ATCC 25978 in the conjugation model, ammonia removal was significantly inhibited and nitrite generation was decreased. Furthermore, the expression of several functional genes related to ammonia oxidation in AOB was suppressed following the transfer of the RP4 plasmid, including amoA, amoC, hao, nirK, and norB. In contrast, the cytL gene encoding cytochrome P460 was upregulated. These results demonstrated the ecological risk of ARGs in WWTPs, and therefore measures must be taken to avoid their transfer. | 2022 | 35427829 |
| 7935 | 7 | 0.8727 | Removal of antibiotic resistance genes by Cl(2)-UV process: Direct UV damage outweighs free radicals in effectiveness. Antibiotic resistance genes (ARGs) pose significant environmental health problems and have become a major global concern. This study investigated the efficacy and mechanism of the Cl(2)-UV process (chlorine followed by UV irradiation) for removing ARGs in various forms. The Cl(2)-UV process caused irreversible damage to nearly all ARB at typical disinfectant dosages. In solutions containing only extracellular ARGs (eARGs), the Cl₂-UV process achieved over 99.0 % degradation of eARGs. When both eARGs and intracellular ARGs (iARGs) were present, the process reached a 97.2 % removal rate for iARGs. While the abundance of eARGs initially increased due to the release of iARGs from lysed cells during pre-chlorination, subsequent UV irradiation rapidly degraded the released eARGs, restoring their abundance to near-initial levels by the end of the Cl₂-UV process. Analysis of the roles in degrading eARGs and iARGs during the Cl(2)-UV process revealed that UV, rather than free radicals, was the dominant factor causing ARG damage. Pre-chlorination enhanced direct UV damage to eARGs and iARGs by altering plasmid conformation and promoting efficient damage to high UV-absorbing cellular components. Furthermore, no further natural transformation of residual ARGs occurred following the Cl(2)-UV treatment. This study demonstrated strong evidence for the effectiveness of the Cl(2)-UV process in controlling antibiotic resistance. | 2025 | 40048777 |
| 7828 | 8 | 0.8724 | Simultaneous elimination of antibiotic-resistant bacteria and antibiotic resistance genes by different Fe-N co-doped biochars activating peroxymonosulfate: The key role of pyridine-N and Fe-N sites. The coexistence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment poses a potential threat to public health. In our study, we have developed a novel advanced oxidation process for simultaneously removing ARGs and ARB by two types of iron and nitrogen-doped biochar derived from rice straw (FeN-RBC) and sludge (FeN-SBC). All viable ARB (approximately 10(8) CFU mL(-1)) was inactivated in the FeN-RBC/ peroxymonosulfate (PMS) system within 40 min and did not regrow after 48 h even in real water samples. Flow cytometry identified 96.7 % of dead cells in the FeN-RBC/PMS system, which verified the complete inactivation of ARB. Thorough disinfection of ARB was associated with the disruption of cell membranes and intracellular enzymes related to the antioxidant system. Whereas live bacteria (approximately 200 CFU mL(-1)) remained after FeN-SBC/PMS treatment. Intracellular and extracellular ARGs (tetA and tetB) were efficiently degraded in the FeN-RBC/PMS system. The production of active species, primarily •OH, SO(4)(•-) and Fe (IV), as well as electron transfer, were essential to the effective disinfection of FeN-RBC/PMS. In comparison with FeN-SBC, the better catalytic performance of FeN-RBC was mainly ascribed to its higher amount of pyridine-N and Fe(0), and more reactive active sites (such as CO group and Fe-N sites). Density functional theory calculations indicated the greater adsorption energy and Bader charge, more stable Fe-O bond, more easily broken OO bond in FeN-RBC/PMS, which demonstrated the stronger electron transfer capacity between FeN-RBC and PMS. To encapsulate, our study provided an efficient and dependable method for the simultaneous elimination of ARGs and ARB in water. | 2024 | 38669989 |
| 7860 | 9 | 0.8723 | Enhanced removal of antibiotic-resistant bacteria and resistance genes by three-dimensional electrochemical process using MgFe(2)O(4)-loaded biochar as both particle electrode and catalyst for peroxymonosulfate activation. In this study, MgFe(2)O(4)-loaded biochar (MFBC) was used as a three-dimensional particle electrode to active peroxymonosulfate (EC/MFBC/PMS) for the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The results demonstrated that, under the conditions of 1.0 mM PMS concentration, 0.4 g/L material dosage, 5 V voltage intensity, and MFBC preparation temperature of 600 °C, the EC/MFBC600/PMS system achieved complete inactivation of E. coli DH5α within 5 min and the intracellular sul1 was reduced by 81.5 % after 30 min of the treatment. Compared to EC and PMS alone treatments, the conjugation transfer frequency of sul1 rapidly declined by 92.9 % within 2 min. The cell membrane, proteins, lipids, as well as intracellular and extracellular ARGs in E. coli DH5α were severely damaged by free radicals in solution and intracellular reactive oxygen species (ROS). Furthermore, up-regulation was observed in genes associated with oxidative stress, SOS response and cell membrane permeability in E. coli DH5α, however, no significant changes were observed in functional genes related to gene conjugation and transfer mechanisms. This study would contribute to the underlying of PMS activation by three-dimensional particle electrode, and provide novel insights into the mechanism of ARB inactivation and ARGs degradation under PMS advanced oxidation treatment. | 2024 | 39197284 |
| 7893 | 10 | 0.8723 | Removal of ofloxacin and inhibition of antibiotic resistance gene spread during the aerobic biofilm treatment of rural domestic sewage through the micro-nano aeration technology. Micro-nano aeration (MNA) has great potential for emerging contaminant removal. However, the mechanism of antibiotic removal and antibiotic resistance gene (ARG) spread, and the impact of the different aeration conditions remain unclear. This study investigated the adsorption and biodegradation of ofloxacin (OFL) and the spread of ARGs in aerobic biofilm systems under MNA and conventional aeration (CVA) conditions. Results showed that the MNA increased OFL removal by 17.27 %-40.54 % and decreased total ARG abundance by 36.37 %-54.98 %, compared with CVA. MNA-induced biofilm rough morphology, high zeta potential, and reduced extracellular polymeric substance (EPS) secretion enhanced OFL adsorption. High dissolved oxygen and temperature, induced by MNA-enriched aerobic bacteria and their carrying OFL-degrading genes, enhanced OFL biodegradation. MNA inhibited the enrichment of ARG host bacteria, which acquired ARGs possibly via horizontal gene transfer (HGT). Functional profiles involved in the HGT process, including reactive oxygen species production, membrane permeability, mobile genetic elements (MGEs), adenosine triphosphate synthesis, and EPS secretion, were down-regulated by MNA, inhibiting ARG spread. Partial least-squares path modeling revealed that MGEs might be the main factor inhibiting ARG spread. This study provides insights into the mechanisms by which MNA enhances antibiotic removal and inhibits ARG spread in aerobic biofilm systems. | 2025 | 39733752 |
| 8111 | 11 | 0.8717 | Effect of alkaline-thermal pretreatment on biodegradable plastics degradation and dissemination of antibiotic resistance genes in co-compost system. Biodegradable plastics (BDPs) are an eco-friendly alternative to traditional plastics in organic waste, but their microbial degradation and impact on antibiotic resistance genes (ARGs) transmission during co-composting remain poorly understood. This study examines how alkaline-thermal pretreatment enhances BDPs degradation and influences the fate of ARGs and mobile genetic elements (MGEs) in co-composting. Pretreatment with 0.1 mol/L NaOH at 100℃ for 40 minutes increased the surface roughness and hydrophilicity of BDPs while reducing their molecular weight and thermal stability. Incorporating pretreated BDPs film (8 g/kg-TS) into the compost reduced the molecular weight of the BDPs by 59.70 % during the maturation stage, facilitating compost heating and prolonging the thermophilic stage. However, incomplete degradation of BDPs releases numerous smaller-sized microplastics, which can act as carriers for microorganisms, facilitating the dissemination of ARGs across environments and posing significant ecological and public health risks. Metagenomic analysis revealed that pretreatment enriched plastic-degrading bacteria, such as Thermobifida fusca, on BDPs surfaces and accelerated microbial plastic degradation during the thermophilic stage, but also increased ARGs abundance. Although pretreatment significantly reduced MGEs abundance (tnpA, IS19), the risk of ARGs dissemination remained. Three plastic-degrading bacteria (Pigmentiphaga sp002188465, Bacillus clausii, and Bacillus altitudinis) were identified as ARGs hosts, underscoring the need to address the risk of horizontal gene transfer of ARGs associated with pretreatment in organic waste management. | 2025 | 39970645 |
| 7872 | 12 | 0.8716 | Quaternary ammonium compounds promoted anoxic sludge granulation and altered propagation risk of intracellular and extracellular antibiotic resistance genes. Surfactants could influence sludge morphology and disinfectants were linked to antibiotic resistance genes (ARGs). Thus, the response of activated sludge and ARGs to long-term quaternary ammonium compounds (QACs) exposure required further investigation, which is a popular surfactant and disinfectant. Here, three sequencing batch reactors were fed with 5 mg/L most frequently detected QACs (dodecyl trimethyl ammonium chloride (ATMAC C12), dodecyl benzyl dimethyl ammonium chloride (BAC C12) and didodecyl dimethyl ammonium chloride (DADMAC C12)) for 180 d. The long-term inhibitory effect on denitrification ranked: DADMAC C12 > BAC C12 > ATMAC C12. Besides, obvious granular sludge promoted by the increase of α-Helix/(β-Sheet + Random coil) appeared in DADMAC C12 system. Moreover, intracellular ARGs increased when denitrification systems encountered QACs acutely but decreased in systems chronically exposed to QACs. Although replication and repair metabolism in ATMAC C12 system was higher, ATMAC C12 significantly promoted proliferation of extracellular ARGs. It was noteworthy that the propagation risk of extracellular ARGs in sludge increased significantly during sludge granulation process, and intracellular sul2 genes in sludge and water both increased with the granular diameter in DADMAC C12 system. The universal utilization of QACs may enhance antibiotic resistance of bacteria in wastewater treatment plants, deserving more attention. | 2023 | 36444811 |
| 7862 | 13 | 0.8716 | Synergistic effect of sulfidated nanoscale zerovalent iron in donor and recipient bacterial inactivation and gene conjugative transfer inhibition. Antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) are widespread in urban wastewater treatment plants (UWTPs). In this research, a horizontal transfer model of recipient (Pseudomonas. HLS-6) and donor (Escherichia coli DH5α carries RP4 plasmid) was constructed to explore the effect of sulfidated nanoscale zerovalent iron (S-nZVI) on the efficiency of plasmid-mediated horizontal transfer. When the S/Fe was 0.1, the inactivation efficiency of 1120 mg/L S-nZVI on the donor and recipient bacteria were 2.36 ± 0.03 log and 3.50 ± 0.17 log after 30 min, respectively (initial ARB concentration ≈ 5 ×10(7) CFU/mL). Effects of treatment time, S/Fe molar ratio, S-nZVI dosage and initial bacterial concentration were systemically studied. S-nZVI treatment could increase the extracellular alkaline phosphatase and malondialdehyde content of the ARB, cause oxidative stress in the bacteria, destroy the cell structure and damage the intracellular DNA. This study provided evidence and insights into possible underlying mechanisms for reducing conjugative transfer, such as hindering cell membrane repair, inducing the overproduction of reactive oxygen species, inhibiting the SOS response, reducing the expression of ARGs and related transfer genes. S-nZVI could inhibit the gene conjugative transfer while inactivating the ARB. The findings provided an alternative method for controlling antibiotic resistance. | 2022 | 35334272 |
| 8492 | 14 | 0.8715 | Promotion effects and mechanisms of molybdenum disulfide on the propagation of antibiotic resistance genes in soil. The rapid development of nanotechnology has aroused considerable attentions toward understanding the effects of engineered nanomaterials (ENMs) on the propagation of antibiotic resistance. Molybdenum disulfide (MoS(2)) is an extensively used ENM and poses potential risks associated with environmental exposure; nevertheless, the role of MoS(2) toward antibiotic resistance genes (ARGs) transfer remains largely unknown. Herein, it was discovered that MoS(2) nanosheets accelerated the horizontal transfer of RP4 plasmid across Escherichia coli in a dose-dependent manner (0.5-10 mg/L), with the maximum transfer frequency 2.07-fold higher than that of the control. Integration of physiological, transcriptomics, and metabolomics analyses demonstrated that SOS response in bacteria was activated by MoS(2) due to the elevation of oxidative damage, accompanied by cell membrane permeabilization. MoS(2) promoted bacterial adhesion and intercellular contact via stimulating the secretion of extracellular polysaccharides. The ATP levels were maximally increased by 305.7 % upon exposure to MoS(2), and the expression of plasmid transfer genes was up-regulated, contributing to the accelerated plasmid conjugation and increased ARG abundance in soil. Our findings highlight the roles of emerging ENMs (e.g., MoS(2)) in ARGs dissemination, which is significant for the safe applications and risk management of ENMs under the development scenarios of nanotechnology. | 2023 | 37062264 |
| 8491 | 15 | 0.8715 | Hormesis-like effects of black phosphorus nanosheets on the spread of multiple antibiotic resistance genes. The production scalability and increasing demand for black phosphorus nanosheets (BPNSs) inevitably lead to environmental leakage. Although BPNSs' ecotoxicological effects have been demonstrated, their indirect health risks, such as inducing increased resistance in pathogenic bacteria, are often overlooked. This study explores the influence of BPNSs on the horizontal gene transfer of antibiotic resistance genes (ARGs) facilitated by the RP4 plasmid, which carries multiple resistance genes. The results indicated that BPNSs exhibited concentration-dependent hormesis-like effects on bacterial conjugation gene transfer. Specifically, at sub-inhibitory concentrations (0.0001-1 mg/L), BPNSs promoted both intra- and intergeneric conjugative transfer, demonstrating an initial increase followed by a decline, with transfer rates rising by 1.5-3.1-fold and 1.5-3.3-fold, respectively. BPNSs were found to induce reactive oxygen species (ROS) production, increase malondialdehyde levels, and trigger the SOS response, enhancing plasmid uptake. Additionally, BPNSs increased membrane permeability by forming pores and upregulating outer membrane porins (OMPs) genes. At higher BPNSs concentrations (0.1-1 mg/L), conjugative frequency was inhibited due to the disruption of the cellular antioxidant system and changes in the adsorption process. These findings underscore the influence of BPNSs on the conjugative transfer of ARGs, complementing current knowledge of the biotoxicity and potential ecological risks associated with BPNSs. | 2025 | 39827804 |
| 7988 | 16 | 0.8713 | Electrokinetic treatment at the thermophilic stage achieves more effective control of heavy metal resistance in swine manure composting. Excessive heavy metals (HMs) and metal resistance genes (MRGs) in manure pose significant environmental and human health risks. Our previous work proved enhanced control of antibiotic resistance and quality of swine manure composting with electrokinetic technology (EK). As a continuous study, EK treatments were further employed at typical stages of composting. The humification level increased significantly in EK treatments applied at the thermophilic stage (EK1) and throughout the whole composting period (EK2). The immobilization efficiency of heavy metals increased by 3.02 %-20.90 % for EK1, and 3.86 %-20.56 % for EK2, compared with the EK treatment applied at maturity stage (EK3). EK1 showed the highest ability to remove MRGs (29.38 %-87.13 %), while the abundance of potential host bacteria increased in EK2, raising potential transmission risk of MRGs. Furthermore, there was an elevated presence of bacteria associated with membrane transport as a response mechanism to HMs stress in EK1. Considering economic factors and environmental effects, EK treatment during the thermophilic stage was more effective in compost maturation, HMs passivation, as well as control of HMs resistance. This study provides an effective method to address HMs-related contamination with highly efficient maturation in swine manure composting. | 2025 | 40543370 |
| 7940 | 17 | 0.8712 | Microplastics affect the ammonia oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes. Microplastics (MPs) and antibiotic resistance genes (ARGs), as emerging pollutants, are frequently detected in wastewater treatment plants, and their threats to the environment have received extensive attentions. However, the effects of MPs on the nitrification of aerobic granular sludge (AGS) and the spread patterns of intracellular and extracellular ARGs (iARGs and eARGs) in AGS were still unknown. In this study, the responses of AGS to the exposure of 1, 10 and 100 mg/L of typical MPs (polyvinyl chloride (PVC), polyamide (PA), polystyrene (PS) and polyethylene (PE)) and tetracycline were focused on in 3 L nitrifying sequencing batch reactors. 10 mg/L MPs decreased the nitrification function, but nitrification could recover. Furthermore, MPs inhibited ammonia-oxidizing bacteria and enriched nitrite-oxidizing bacteria, leading partial nitrification to losing stability. PVC, PA and PS stimulated the secretion of extracellular polymeric substances and reactive oxygen species. PE had less negative effect on AGS than PVC, PA and PS. The abundances of iARGs and eARGs (tetW, tetE and intI1) increased significantly and the intracellular and extracellular microbial communities obviously shifted in AGS system under MPs stress. Potential pathogenic bacteria might be the common hosts of iARGs and eARGs in AGS system and were enriched in AGS and MPs biofilms. | 2021 | 33387747 |
| 7869 | 18 | 0.8711 | Nano-CeO(2) activates physical and chemical defenses of garlic (Allium sativum L.) for reducing antibiotic resistance genes in plant endosphere. The transmission of manure- and wastewater-borne antibiotic-resistant bacteria (ARB) to plants contributes to the proliferation of antimicrobial resistance in agriculture, necessitating effective strategies for preventing the spread of antibiotic resistance genes (ARGs) from ARB in the environment to humans. Nanomaterials are potential candidates for efficiently controlling the dissemination of ARGs. The present study investigated the abundance of ARGs in hydroponically grown garlic (Allium sativum L.) following nano-CeO(2) (nCeO(2)) application. Specifically, root exposure to nCeO(2) (1, 2.5, 5, 10 mg L(-1), 18 days) reduced ARG abundance in the endosphere of bulbs and leaves. The accumulation of ARGs (cat, tet, and aph(3')-Ia) in garlic bulbs decreased by 24.2-32.5 % after nCeO(2) exposure at 10 mg L(-1). Notably, the lignification extent of garlic stem-disc was enhanced by 10 mg L(-1) nCeO(2), thereby accelerating the formation of an apoplastic barrier to impede the upward transfer of ARG-harboring bacteria to garlic bulbs. Besides, nCeO(2) upregulated the gene expression related to alliin biosynthesis and increased allicin content by 15.9-16.2 %, promoting a potent antimicrobial defense for reducing ARG-harboring bacteria. The potential exposure risks associated with ARGs and Ce were evaluated according to the estimated daily intake (EDI). The EDI of ARGs exhibited a decrease exceeding 95 %, while the EDI of Ce remained below the estimated oral reference dose. Consequently, through stimulating physical and chemical defenses, nCeO(2) contributed to a reduced EDI of ARGs and Ce, highlighting its potential for controlling ARGs in plant endosphere within the framework of nano-enabled agrotechnology. | 2024 | 38570269 |
| 7877 | 19 | 0.8709 | External circuit loading mode regulates anode biofilm electrochemistry and pollutants removal in microbial fuel cells. This study investigated the effects of different external circuit loading mode on pollutants removal and power generation in microbial fuel cells (MFC). The results indicated that MFC exhibited distinct characteristics of higher maximum power density (P(max)) (named MFC-HP) and lower P(max) (named MFC-LP). And the capacitive properties of bioanodes may affect anodic electrochemistry. Reducing external load to align with the internal resistance increased P(max) of MFC-LP by 54.47 %, without no obvious effect on MFC-HP. However, intermittent external resistance loading (IER) mitigated the biotoxic effects of sulfamethoxazole (SMX) (a persistent organic pollutant) on chemical oxygen demand (COD) and NH(4)(+)-N removal and maintained high P(max) (424.33 mW/m(2)) in MFC-HP. Meanwhile, IER mode enriched electrochemically active bacteria (EAB) and environmental adaptive bacteria Advenella, which may reduce antibiotic resistance genes (ARGs) accumulation. This study suggested that the external circuit control can be effective means to regulate electrochemical characteristics and pollutants removal performance of MFC. | 2024 | 39153696 |