PERU - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
139100.9832Faecal carriage of extended-spectrum β-lactamase-producing and AmpC β-lactamase-producing bacteria among Danish army recruits. During May and June 2008, 84 Danish army recruits were tested for faecal carriage of extended-spectrum β-lactamase (ESBL)-producing and AmpC β-lactamase-producing bacteria. Three ESBL-producing (CTX-M-14a) Escherichia coli isolates, two AmpC-producing (CMY-2) E. coli isolates and one AmpC-producing (CMY-34) Citrobacter freundii isolate were detected. Two of the CTX-M-14a E. coli isolates had similar pulsed-field gel electrophoresis and multilocus sequence typing profiles, indicating the same origin or transmission between the two army recruits. The bla(CTX-M-14a) genes were transferable to an E. coli recipient. These commensal bacteria therefore constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria in the intestine.201120718802
138710.9830Whole-Genome Characterisation of ESBL-Producing E. coli Isolated from Drinking Water and Dog Faeces from Rural Andean Households in Peru. E. coli that produce extended-spectrum β-lactamases (ESBLs) are major multidrug-resistant bacteria. In Peru, only a few reports have characterised the whole genome of ESBL enterobacteria. We aimed to confirm the identity and antimicrobial resistance (AMR) profile of two ESBL isolates from dog faeces and drinking water of rural Andean households and determine serotype, phylogroup, sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their plasmids. To confirm the identity and AMR profiles, we used the VITEK(®)2 system. Whole-genome sequencing (WGS) and bioinformatics analysis were performed subsequently. Both isolates were identified as E. coli, with serotypes -:H46 and O9:H10, phylogroups E and A, and ST/CC 5259/- and 227/10, respectively. The isolates were ESBL-producing, carbapenem-resistant, and not harbouring carbapenemase-encoding genes. Isolate 1143 ST5259 harboured the astA gene, encoding the EAST(1) heat-stable toxin. Both genomes carried ESBL genes (bla(EC-15), bla(CTX-M-8), and bla(CTX-M-55)). Nine plasmids were detected, namely IncR, IncFIC(FII), IncI, IncFIB(AP001918), Col(pHAD28), IncFII, IncFII(pHN7A8), IncI1, and IncFIB(AP001918). Finding these potentially pathogenic bacteria is worrisome given their sources and highlights the importance of One-Health research efforts in remote Andean communities.202235625336
139020.9823Oxacillinase-484-Producing Enterobacterales, France, 2018-2023. We examined the emergence and characteristics of oxacillinase-484-producing Enterobacterales in France during 2012-2023. Genomic analysis identified 2 predominant sequence types in Escherichia coli: ST410 and ST1722. Plasmid analysis revealed that bla(OXA-484) genes were carried mostly on an IncX3-type plasmid associated with genetic elements including insertion sequences IS3000 and ISKpn19.202439320334
138530.9819GENOMIC CHARACTERIZATION OF MULTIDRUG-RESISTANT EXTENDED-SPECTRUM β-LACTAMASE-PRODUCING ESCHERICHIA COLI AND KLEBSIELLA PNEUMONIAE FROM CHIMPANZEES (PAN TROGLODYTES) FROM WILD AND SANCTUARY LOCATIONS IN UGANDA. Farm and wild animals may serve as reservoirs of antimicrobial-resistant bacteria of human health relevance. We investigated the occurrence and genomic characteristics of extended spectrum β-lactamase (ESBL)-producing bacteria in Ugandan chimpanzees (Pan troglodytes) residing in two environments with or without close contact to humans. The ESBL-producing Escherichia coli and Klebsiella pneumoniae were isolated from fecal material of chimpanzees from Budongo Forest and Ngamba Island Chimpanzee Sanctuary in Uganda and were more commonly isolated from chimpanzees in Ngamba Island Chimpanzee Sanctuary, where animals have close contact with humans. Selected ESBL isolates (E. coli n=9, K. pneumoniae n=7) were analyzed by whole-genome sequencing to determine the presence of resistance genes, as well as sequence type and virulence potential; the blaCTX-M-15 gene was present in all strains. Additionally, the ESBL genes blaSHV-11 and blaSHV-12 were found in strains in the study. All strains were found to be multidrug resistant. The E. coli strains belonged to four sequence types (ST2852, ST215, ST405, and ST315) and the K. pneumoniae strains to two sequence types (ST1540 and ST597). Virulence genes did not indicate that strains were of common E. coli pathotype, but strains with the same sequence types as isolated in the current study have previously been reported from clinical cases in Africa. The findings indicate that chimpanzees in close contact with humans may carry ESBL bacteria at higher frequency than those in the wild, indicating a potential anthropogenic transmission.202235255126
122140.9817Invasive whistling frogs (Eleutherodactylus johnstonei) act as a reservoir for antimicrobial-resistant Enterobacteriaceae in Latin America's most populous city. Invasive species represent a significant threat to ecological balance and the maintenance of native populations. Besides, these have been associated with the emergence of pathogens of public health importance, including multidrug-resistant bacteria. This study aimed to screen and describe the antimicrobial resistance profile of clinically important Enterobacteriaceae species isolated from whistling frogs (Eleutherodactylus johnstonei), an invasive anuran species in São Paulo, Brazil. Clinically relevant Enterobacteriaceae strains (n = 35) were isolated from oral and skin swabs of 19 whistling frogs and tested for antimicrobial susceptibility and antimicrobial resistance encoding genes. Resistance to amoxicillin + clavulanate and cefoxitin were the most frequent (16.67%; 4/24), followed by cefotaxime (5.71%; 2/35), ceftriaxone (2.86%; 1/35), and tetracycline (2.86%; 1/35). Among the antimicrobial resistance genes screened, bla(CTX-M group 8), bla(TEM), and bla(CMY) were identified. The whole genome of the bla(CTX-M group 8)-positive E. coli strain was assessed and confirmed bla(CTX-M-8) presence and phylogenetic analysis. Given the synanthropic behavior of whistling frogs, these amphibians may act as carriers of antimicrobial-resistant bacteria.202540884707
122950.9817Detection of multi-drug resistance and AmpC β-lactamase/extended-spectrum β-lactamase genes in bacterial isolates of loggerhead sea turtles (Caretta caretta) from the Mediterranean Sea. Sea turtles are useful sentinels to monitor the dissemination of antimicrobial resistance (AMR) in the marine coastal ecosystems. Forty Gram negative bacteria were isolated from wounds of 52 injured Caretta caretta, living in the Mediterranean Sea. Bacteria were identified using 16S rRNA gene sequencing and tested for susceptibility to 15 antibiotics. In addition, NGS amplicon sequencing was performed to detect the presence of AmpC β-lactamase genes (bla(AmpC)) and extended-spectrum β-lactamase (ESBL) genes (bla(CTX-M,)bla(SHV,)bla(TEM)). Seventy-five percent of the isolates (30/40 isolates) exhibited multidrug resistance (MDR) phenotypes and 32.5% (13/40 isolates) were confirmed to be positive for at least one gene. The variants of ESBLs genes were bla(CTX-M-3,)bla(TEM-236) and bla(SHV-12). Variants of the bla(AmpC)β-lactamase gene i.e., bla(ACT-24), bla(ACT-2), bla(ACT-17), bla(DHA-4) and bla(CMY-37), were also detected. In addition, 4 isolates were found simultaneously harboring CTX and AmpC genes while 2 strains harbored 3 genes (bla(ACT-2+TEM-236+SHV-12), and bla(CTX-M-3+ACT-24+TEM-236)).202133513540
141360.9817Occurrence of Carbapenemases, Extended-Spectrum Beta-Lactamases and AmpCs among Beta-Lactamase-Producing Gram-Negative Bacteria from Clinical Sources in Accra, Ghana. Beta-lactamase (β-lactamase)-producing Gram-negative bacteria (GNB) are of public health concern due to their resistance to routine antimicrobials. We investigated the antimicrobial resistance and occurrence of carbapenemases, extended-spectrum β-lactamases (ESBLs) and AmpCs among GNB from clinical sources. GNB were identified using matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDITOF-MS). Antimicrobial susceptibility testing was performed via Kirby-Bauer disk diffusion and a microscan autoSCAN system. β-lactamase genes were determined via multiplex polymerase chain reactions. Of the 181 archived GNB analyzed, Escherichia coli and Klebsiella pneumoniae constituted 46% (n = 83) and 17% (n = 30), respectively. Resistance to ampicillin (51%), third-generation cephalosporins (21%), and ertapenem (21%) was observed among the isolates, with 44% being multi-drug resistant (MDR). β-lactamase genes such as AmpCs ((bla(FOX-M) (64%) and bla(DHA-M) and bla(EDC-M) (27%)), ESBLs ((bla(CTX-M) (81%), other β-lactamase genes bla(TEM) (73%) and bla(SHV) (27%)) and carbapenemase ((bla(OXA-)(48) (60%) and bla(NDM) and bla(KPC) (40%)) were also detected. One K. pneumoniae co-harbored AmpC (bla(FOX-M) and bla(EBC-M)) and carbapenemase (bla(KPC) and bla(OXA-)(48)) genes. bla(OXA-)(48) gene was detected in one carbapenem-resistant Acinetobacter baumannii. Overall, isolates were resistant to a wide range of antimicrobials including last-line treatment options. This underpins the need for continuous surveillance for effective management of infections caused by these pathogens in our settings.202337370334
174070.9815MDR Escherichia coli carrying CTX-M-24 (IncF[F-:A1:B32]) and KPC-2 (IncX3/IncU) plasmids isolated from community-acquired urinary trainfection in Brazil. Acquired antibiotic resistance in bacteria has become an important worldwide challenge. Currently, several bacteria, including Escherichia coli, have multidrug resistance profiles. Genes such as bla CTX-M-24 and bla KPC-2 (carbapenemase) are widespread. This research letter reports about a genomic surveillance study where multidrug-resistant E. coli containing CTX-M-24(IncF [F-:A1:B32]) and KPC-2(IncX3/IncU) plasmids were obtained from community- acquired urinary tract infection in Brazil.202236228665
138680.9814ESBL/pAmpC-producing Enterobacterales in common leopard geckos (Eublepharis macularius) and central bearded dragons (Pogona vitticeps) from Portugal. Common leopard geckos (Eublepharis macularius) and central bearded dragon (Pogona vitticeps) are widely kept as pets but can harbor pathogenic bacteria, including antimicrobial-resistant (AMR) bacteria. This study aimed to research the frequency of β-lactamase-producing Enterobacterales in these two reptile species. A total of 132 samples were collected from the oral and cloacal cavities of healthy common leopard geckos and central bearded dragons in the Lisbon area, Portugal. Antimicrobial resistance was assessed for third-generation cephalosporin (3GC)-resistant Enterobacterales. The results revealed that 3GC-resistant Enterobacterales were observed in 17.9% (n = 14/78) of the reptiles. The most commonly identified species were: Citrobacter freundii and Klebsiella aerogenes. Furthermore, some isolates produced extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases (AmpC) encoding genes such as bla (CMY-2), bla (CTX-M-15,) and bla (TEM-1). These findings emphasize the potential role of these reptiles in the spread of AMR bacteria, particularly in urban settings where human- animal interactions are frequent. Given the zoonotic risks, this study emphasizes the importance of continued surveillance and responsible antimicrobial use in both veterinary and human medicine to mitigate the spread of AMR bacteria.202540370835
139790.9814Genomic Features of an MDR Escherichia coli ST5506 Harboring an IncHI2/In229/bla(CTX-M-2) Array Isolated from a Migratory Black Skimmer. Migratory birds have contributed to the dissemination of multidrug-resistant (MDR) bacteria across the continents. A CTX-M-2-producing Escherichia coli was isolated from a black skimmer (Rynchops niger) in Southeast Brazil. The whole genome was sequenced using the Illumina NextSeq platform and de novo assembled by CLC. Bioinformatic analyses were carried out using tools from the Center for Genomic Epidemiology. The genome size was estimated at 4.9 Mb, with 4790 coding sequences. A wide resistome was detected, with genes encoding resistance to several clinically significant antimicrobials, heavy metals, and biocides. The bla(CTX-M-2) gene was inserted in an In229 class 1 integron inside a ∆TnAs3 transposon located in an IncHI2/ST2 plasmid. The strain was assigned to ST5506, CH type fumC19/fimH32, serotype O8:K87, and phylogroup B1. Virulence genes associated with survival in acid conditions, increased serum survival, and adherence were also identified. These data highlight the role of migratory seabirds as reservoirs and carriers of antimicrobial resistance determinants and can help to elucidate the antimicrobial resistance dynamics under a One Health perspective.202438251370
1388100.9813Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, bla(CTX-M1,15,55), bla(CMY-2), gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified.202033172096
958110.9813Whole-Genome Analysis of Multidrug-Resistant Klebsiella pneumoniae Kp04 Reveals Distinctive Antimicrobial and Arsenic-Resistance Genomic Features: A Case Study from Bangladesh. Multidrug-resistant bacteria, particularly extended-spectrum-beta-lactamase-producing (ESBL) bacteria, pose a significant global public health challenge. Klebsiella pneumoniae (KPN) is frequently implicated in cases of this resistance. This study aimed to investigate the presence of drug and metal resistance genes in clinical K. pneumoniae isolate Kp04 and comparative genomics of clinical KPN isolates characterized from Bangladesh. A total of 12 isolates were collected. Disk-diffusion assay showed that all five isolates were resistant to 14 out of 21 tested antibiotics and sensitive to only three-tigecycline, imipenem, and meropenem. KPN Kp04 was positive for both bla(SHV) and bla(CTX-M) ESBL genes in PCR. All five isolates produced PCR amplicons of the correct size for ampicillin (ampC), tetracycline (tetC), fluoroquinolone (qnrS), and aminoglycoside (aadA) resistance genes. The whole genome of Kp04 was sequenced using the MiSeq Platform (V3 kit, 2 × 300 cycles). We utilized different databases to detect Antibiotic-Resistant Genes (ARGs), virulence factor genes (VFGs), and genomic functional features of the Kp04 strain. Whole-genome sequencing identified 75 ESBL, virulence, and multiple drug-resistant (MDR) genes including bla(SHV), tetA, oqxA, oqxB, aadA, sul1-5, and mphA in KPN Kp04 isolate. Pan-genomic analysis of 43 Bangladeshi KPN isolates showed similarities between Dhaka and Chattogram isolates regarding virulence and antibiotic-resistant genes. Our results indicate the transmission of similar virulent KPN strains in Dhaka and Chattogram. This study would provide valuable information about drug sensitivity, antibiotic, and metal resistance features of K. pneumoniae circulated among hospitalized patients in Bangladeshi megacities.202439613891
1067120.9813Virulence and plasmidic resistance determinants of Escherichia coli isolated from municipal and hospital wastewater treatment plants. Escherichia coli is simultaneously an indicator of water contamination and a human pathogen. This study aimed to characterize the virulence and resistance of E. coli from municipal and hospital wastewater treatment plants (WWTPs) in central Portugal. From a total of 193 isolates showing reduced susceptibility to cefotaxime and/or nalidixic acid, 20 E. coli with genetically distinct fingerprint profiles were selected and characterized. Resistance to antimicrobials was determined using the disc diffusion method. Extended spectrum β-lactamase and plasmid-mediated quinolone resistance genes, phylogroups, pathogenicity islands (PAIs) and virulence genes were screened by polymerase chain reaction (PCR). CTX-M producers were typed by multilocus sequence typing. Resistance to beta-lactams was associated with the presence of bla(TEM), bla(SHV), bla(CTX-M-15) and bla(CTX-M-32). Plasmid-mediated quinolone resistance was associated with qnrA, qnrS and aac(6')-Ib-cr. Aminoglycoside resistance and multidrug-resistant phenotypes were also detected. PAI IV(536), PAI II(CFT073), PAI II(536) and PAI I(CFT073), and uropathogenic genes iutA, papAH and sfa/foc were detected. With regard to the clinical ST131 clone, it carried bla(CTX-M-15), blaTEM-type, qnrS and aac(6')-lb-cr; IncF and IncP plasmids, and virulence factors PAI IV(536), PAI I(CFT073), PAI II(CFT073), iutA, sfa/foc and papAH were identified in the effluent of a hospital plant. WWTPs contribute to the dissemination of virulent and resistant bacteria in water ecosystems, constituting an environmental and public health risk.201526042965
1238130.9812Lineages, Virulence Gene Associated and Integrons among Extended Spectrum β-Lactamase (ESBL) and CMY-2 Producing Enterobacteriaceae from Bovine Mastitis, in Tunisia. Extended Spectrum Beta-Lactamase (ESBL) Enterobacteriaceae are becoming widespread enzymes in food-producing animals worldwide. Escherichia coli and Klebseilla pneumoniae are two of the most significant pathogens causing mastitis. Our study focused on the characterization of the genetic support of ESBL/pAmpC and antibiotic resistance mechanisms in cefotaxime-resistant (CTXR) and susceptible (CTXS) Enterobacteriaceae isolates, recovered from bovine mastitis in Tunisia, as well as the analyses of their clonal lineage and virulence-associated genes. The study was carried out on 17 ESBL/pAmpC E. coli and K. pneumoniae and 50 CTXS E. coli. Detection of resistance genes and clonal diversity was performed by PCR amplification and sequencing. The following β-lactamase genes were detected: blaCTX-M-15 (n = 6), blaCTX-M-15 + blaOXA-1 (2), bla CTX-M-15 + blaOXA-1 + blaTEM-1b (2), blaCTX-M-15 + blaTEM-1b (4), blaCMY-2 (3). The MLST showed the following STs: ST405 (n = 4 strains); ST58 (n = 3); ST155 (n = 3); ST471 (n = 2); and ST101 (n = 2). ST399 (n = 1) and ST617 (n = 1) were identified in p(AmpC) E. coli producer strains. The phylogroups A and B1 were the most detected ones, followed by the pathogenic phylogroup B2 that harbored the shigatoxin genes stx1/stx2, associated with the cnf, fimA, and aer virulence factors. The qnrA/qnrB, aac(6′)-Ib-cr genes and integrons class 1 with different gene cassettes were detected amongst these CTXR/S isolated strains. The presence of different genetic lineages, associated with resistance and virulence genes in pathogenic bacteria in dairy farms, may complicate antibiotic therapies and pose a potential risk to public health.202236015067
1063140.9812Enterobacteriaceae resistant to third-generation cephalosporins and quinolones in fresh culinary herbs imported from Southeast Asia. Since multidrug resistant bacteria are frequently reported from Southeast Asia, our study focused on the occurrence of ESBL-producing Enterobacteriaceae in fresh imported herbs from Thailand, Vietnam and Malaysia. Samples were collected from fresh culinary herbs imported from Southeast Asia in which ESBL-suspected isolates were obtained by selective culturing. Analysis included identification by MALDI-TOF mass spectrometry, susceptibility testing, XbaI-PFGE, microarray, PCR and sequencing of specific ESBL genes, PCR based replicon typing (PBRT) of plasmids and Southern blot hybridization. In addition, the quinolone resistance genotype was characterized by screening for plasmid mediated quinolone resistance (PMQR) genes and mutations in the quinolone resistance determining region (QRDR) of gyrA and parC. The study encompassed fifty samples of ten batches of culinary herbs (5 samples per batch) comprising nine different herb variants. The herbs originated from Thailand (Water morning glory, Acacia and Betel leaf), Vietnam (Parsley, Asian pennywort, Houttuynia leaf and Mint) and Malaysia (Holy basil and Parsley). By selective culturing 21 cefotaxime resistant Enterobacteriaceae were retrieved. Array analysis revealed 18 isolates with ESBL genes and one isolate with solely non-ESBL beta-lactamase genes. Mutations in the ampC promoter region were determined in two isolates with PCR and sequencing. The isolates were identified as Klebsiella pneumoniae (n=9), Escherichia coli (n=6), Enterobacter cloacae complex (n=5) and Enterobacter spp. (n=1). All isolates tested were multidrug resistant. Variants of CTX-M enzymes were predominantly found followed by SHV enzymes. PMQR genes (including aac(6')-1b-cr, qnrB and qnrS) were also frequently detected. In almost all cases ESBL and quinolone resistance genes were located on the same plasmid. Imported fresh culinary herbs from Southeast Asia are a potential source for contamination of food with multidrug resistant bacteria. Because these herbs are consumed without appropriate heating, transfer to human bacteria cannot be excluded.201424607424
1135150.9812OXA-48-Producing Uropathogenic Escherichia coli Sequence Type 127, the Netherlands, 2015-2022. During 2015-2022, a genetic cluster of OXA-48-producing uropathogenic Escherichia coli sequence type 127 spread throughout the Netherlands. The 20 isolates we investigated originated mainly from urine, belonged to Clermont phylotype B2, and carried 18 genes encoding putative uropathogenicity factors. The isolates were susceptible to first-choice antimicrobial drugs for urinary tract infections.202337987600
952160.9811Molecular Surveillance of ESBL and Carbapenemase Genes in Gram-Negative Bacterial Pathogens Isolated from Various Clinical Samples Collected from Northern Region of United Arab Emirates. The aim of this study was to explore the prevalence of ESBL and carbapenemase genes in Gram-negative bacteria isolated from various clinical samples collected from northern regions of UAE. In total 3670 clinical samples were obtained from patients attending various hospitals and clinics in the northern regions of the UAE. All the samples underwent routine bacterial culture examination, and their antibiotic sensitivity patterns mainly on beta-lactam and carbapenem resistance in Gram-negative bacteria. Molecular detection of ESBL and carbapenemase genes (bla(CTX-M), bla(TEM), bla(SHV), bla(NDM), bla(IMP), and bla(OXA-48)) was performed on them. A total of 249 MDR Gram-negative bacteria (E. coli, K. pneumoniae, P. aeruginosa, P. mirabilis and A. baumannii) were isolated. The genes bla(CTX-M), bla(TEM), and bla(SHV) were detected in all the MDR isolates. Among them, the bla(CTX-M) was predominant especially in E. coli. The bla(NDM) and bla(IMP) were detected in a few K. pneumoniae and A. baumannii. The genes combination bla(CTX-M+TEM) and bla(CTX-M+SHV), bla(CTX-M+SHV), bla(TEM+SHV), and bla(TEM+NDM) were detected mostly in K. pneumoniae and E. coli, and few A. baumannii. The gene combination bla(CTX-M+TEM+SHV) and bla(CTX-M+TEM+SHV+IMP) were also detected in few E. coli, P. aeruginosa, and A. baumannii. The current findings highlight the importance of molecular detection of ESBL and carbapenemase genes to emphasize monitoring and controlling the development of MDR bacterial pathogens.202540871384
1090170.9811Distribution of extended-spectrum cephalosporin resistance determinants in Salmonella enterica and Escherichia coli isolated from broilers in southern Japan. This study was conducted to investigate the distribution and diversity of extended-spectrum cephalosporin (ESC) resistance determinants in Salmonella enterica and Escherichia coli obtained from the same cecal samples and to provide evidence of transmission of the resistance determinants among these bacteria in broiler farms in southern Japan. Salmonella enterica and E. coli were characterized by serotyping and multilocus sequence typing, respectively. An antimicrobial susceptibility test, plasmid analysis, and identification and localization of resistance genes were performed to determine the relatedness of ESC resistance determinants among the isolates. Of 48 flocks examined, 14 had S. enterica. In total, 57 S. enterica isolates were obtained, 45 of which showed ESC resistance. Extended-spectrum cephalosporin-resistant E. coli were also obtained from all of these ESC-resistant Salmonella-positive samples. β-Lactamase genes, blaTEM-52 (38 isolates), blaCTX-M-14 (1 isolate), and blaCMY-2 (6 isolates), were carried by conjugative untypable or IncP plasmids detected in the S. enterica serovars Infantis and Manhattan. The β-lactamase genes blaCTX-M-14 (3 isolates), blaCTX-M-15 (3 isolates), blaSHV-2 (1 isolate), blaSHV-12 (2 isolates), and blaCMY-2 (32 isolates) associated with IncI1-Iγ, IncFIB, IncFIC, IncK, IncB/O, and IncY plasmids were detected in E. coli co-isolates. Restriction mapping revealed similar plasmids in Salmonella Infantis and Salmonella Manhattan and in different sequence types of E. coli. Intraspecies transmission of plasmids was suggested within S. enterica and E. coli populations, whereas interspecies transmission was not observed. This study highlights the importance of plasmids as carriers of ESC resistance determinants.201323687161
1098180.9811Extended spectrum beta-lactamase and fluoroquinolone resistance genes among Escherichia coli and Salmonella isolates from children with diarrhea, Burkina Faso. BACKGROUND: The emergence and spread of multidrug-resistant gram-negative bacteria (MDR) has become a major public health concern worldwide. This resistance is caused by enzymes-mediated genes (i.e., extended spectrum beta-lactamases) that are common in certain Enterobacterioceae species. However, the distribution of these genes is poorly documented in Burkina Faso. This study aims to determine the prevalence and distribution of the resistant genes coding for broad spectrum beta-lactamases and quinolones in rural Burkina Faso. METHODS: Multiplex PCR assays were carried out to detect ESBL-encoding genes, including bla(OXA), bla(TEM), bla(CTX-M), bla(SHV). The assays also assessed the presence of quinolone resistance gene namely qnrA, qnrB and qnrS in the quinolone-resistance DEC and Salmonella strains. RESULTS: The Extended-Spectrum Beta-Lactamases (ESBL) resistance phenotype was reported in all the E. coli isolates (5/5). Cross-resistance phenotype to quinolones (CRQ) was shown by one Salmonella strain (1/9) and three E. coli (3/5). Cross-resistance phenotypes to fluoroquinolones (CRFQ) were harboured by one Salmonella (1/9) and carbapenemase phenotypes were detected in two E. coli strains (2/5). Whilst the bla(OXA) genes were detected in 100% (5/5) of E. coli isolates and in 33.33% (3/9) Salmonella isolates. One strain of E. coli (1/5) harbored the bla(CTX-M) gene and the qnrB gene simultaneously. CONCLUSIONS: This study identified β-lactam (bla) and quinolone resistance (qnr) genes in multidrug-resistant E. coli and Salmonella spp. in rural Burkina Faso. Our finding which highlighted the enterobacteriaceae strains resistance to β-lactams and quinolones are of high interest for adequate management of antimicrobial resistant genes outbreak in Burkina Faso.202033010801
1088190.9811Detection and Molecular Characterization of Escherichia coli Strains Producers of Extended-Spectrum and CMY-2 Type Beta-Lactamases, Isolated from Turtles in Mexico. Multidrug-resistant bacteria are a growing problem in different environments and hosts, but scarce information exists about their prevalence in reptiles. The aim of this study was to analyze the resistance mechanisms, molecular typing, and plasmid content of cefotaxime-resistant (CTX(R)) Escherichia coli isolates recovered from cloacal samples of 71 turtles sheltered in a herpetarium in Mexico. CTX(R)-E. coli were recovered in 11 of 71 samples (15.5%), and one isolate/sample was characterized. Extended-spectrum β-lactamase (ESBL)-producing E. coli isolates were detected in four samples (5.6%): two strains carried the blaCTX-M-2 gene (phylogroup D and ST2732) and two contained the blaCTX-M-15 gene (phylogroup B1 and lineages ST58 and ST156). The blaCMY-2 gene was detected by PCR in E. coli isolates of eight samples (9.8%) (one of them also carried blaCTX-M-2); these isolates were distributed into phylogroups A (n = 1), B1 (n = 6), and D (n = 1) and typed as ST155, ST156, ST2329, and ST2732. Plasmid-mediated quinolone resistance (PMQR) genes were detected in five isolates [aac(6')Ib-cr, qnrA, qnrB19, and oqxB]. From three to five replicon plasmids were detected among the strains, being IncFIB, IncI1, IncFrep, and IncK the most prevalent. ESBL or pAmpC genes were transferred by conjugation in four strains, and the blaCTX-M-15 and blaCMY-2 genes were localized in IncFIB or IncI1 plasmids by Southern blot hybridization assays. Class 1 and/or class 2 integrons were detected in eight strains with six different structures of gene cassette arrays. Nine pulsed-field gel electrophoresis patterns were found among the 11 studied strains. To our knowledge, this is the first detection of ESBL, CMY-2, PMQR, and mobile determinants of antimicrobial resistance in E. coli of turtle origin, highlighting the potential dissemination of multidrug-resistant bacteria from these animals to other environments and hosts, including humans.201627482752