PERSISTENT - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
693800.9980Assessment of the Effects of Biodegradable and Nonbiodegradable Microplastics Combined with Pesticides on the Soil Microbiota. Microplastics (MPs) and pesticides pose significant threats to the health of soil ecosystems. This study investigated the individual and combined effects of biodegradable polylactic acid (PLA) and nonbiodegradable polyethylene terephthalate (PET) microplastics alongside glyphosate and imidacloprid pesticides on soil microbial communities and antibiotic resistance genes (ARGs) via microcosm experiments. Compared with the control, PLA significantly increased microbial alpha diversity and enhanced microbial functions related to environmental information processing and metabolism. However, PLA also selectively enriched populations of beneficial and potentially pathogenic bacteria, whereas PET had comparatively weaker effects. Crucially, PLA exposure resulted in substantially higher total abundance and ecological risk levels of soil ARGs than did PET. Coexposure with pesticides further amplified these effects, with PLA demonstrating notable synergistic interactions with both glyphosate and imidacloprid. These findings challenge the conventional assumption that biodegradable MPs such as PLA are environmentally safer than nonbiodegradable MPs, thus highlighting their potential to induce more complex and potentially severe ecological risks under co-contamination scenarios with pesticides.202541175058
792810.9980Insight into the responses of antibiotic resistance genes in microplastic biofilms to zinc oxide nanoparticles and zinc ions pressures in landfill leachate. Microplastic (MP) biofilms are hotspots of antibiotic resistance genes (ARGs) in landfill environment. MP biofilms in landfill leachate coexist with heavy metals and metallic nanoparticles (NPs) that considered to be the selective agents of ARGs. However, the effects of these selective pressures on ARGs in MP biofilms and their differences in MP-surrounding leachate have not been well understood. Herein, the changes of ARG abundances in MP biofilms and corresponding leachate under zinc oxide (ZnO) NPs and zinc ion (Zn(2+)) pressures were comparatively analyzed. The presence of ZnO NPs and Zn(2+) promoted the enrichment of ARGs in MP biofilms, and the enrichment was more pronounced in ZnO NPs groups. ZnO NPs and especially Zn(2+) mainly decreased the abundances of ARGs in leachate. The increase of integron abundances and reactive oxygen species production in MP biofilms implied the enhanced potential for horizontal transfer of ARGs under ZnO NPs and Zn(2+) pressures. Meanwhile, the co-occurrence pattern between ARGs and bacterial genera in MP biofilms with more diverse potential ARG hosts was more complex than in leachate, and the enrichment of ARG-hosting bacteria in MP biofilms under ZnO NPs and Zn(2+) pressures supported the enrichment of ARGs.202337480611
693420.9980Impact of protist predation on bacterial community traits in river sediments. Sediment-associated microbial communities are pivotal in driving biogeochemical processes and serve as key indicators of ecosystem health and function. However, the ecological impact of protist predation on these microbial communities remains poorly understood. Here, sediment microcosms were established with varying concentrations of indigenous protists. Results revealed that protist predation exerted strong and differential effects on the bacterial community composition, functional capabilities, and antibiotic resistance profiles. Higher levels of protist predation pressure increased bacterial alpha diversity and relative abundance of genera associated with carbon and nitrogen cycling, such as Fusibacter, Methyloversatilis, Azospirillum, and Holophaga. KEGG analysis indicated that protist predation stimulated microbial processes related to the carbon, nitrogen, and sulfur cycles. Notably, the relative abundance and associated health risks of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and mobile genetic elements (MGEs) were affected by predation pressure. Medium protist predation pressure increased the relative abundance and potential risks associated with ARGs, whereas high protist concentrations led to a reduction in both, likely due to a decrease in the relative abundance of ARG-hosting pathogenic bacteria such as Pseudomonas, Acinetobacter, and Aeromonas. These findings provide comprehensive insights into the dynamics of bacterial communities under protist predation in river sediment ecosystems.202540885182
857930.9980Microplastics and chemical leachates from plastic pipes are associated with increased virulence and antimicrobial resistance potential of drinking water microbial communities. There is increasing recognition of the potential impacts of microplastics (MPs) on human health. As drinking water is the most direct route of human exposure to MPs, there is an urgent need to elucidate MPs source and fate in drinking water distribution system (DWDS). Here, we showed polypropylene random plastic pipes exposed to different water quality (chlorination and heating) and environmental (freeze-thaw) conditions accelerated MPs generation and chemical leaching. MPs showed various morphology and aggregation states, and chemical leaches exhibited distinct profiles due to different physicochemical treatments. Based on the physiological toxicity of leachates, oxidative stress level was negatively correlated with disinfection by-products in the leachates. Microbial network analysis demonstrated exposure to leachates (under three treatments) undermined microbial community stability and increased the relative abundance and dominance of pathogenic bacteria. Leachate physical and chemical properties (i.e., MPs abundance, hydrodynamic diameter, zeta potential, total organic carbon, dissolved ECs) exerted significant (p < 0.05) effects on the functional genes related to virulence, antibiotic resistance and metabolic pathways. Notably, chlorination significantly increased correlations among pathogenic bacteria, virulence genes, and antibiotic resistance genes. Overall, this study advances the understanding of direct and indirect risks of these MPs released from plastic pipes in the DWDS.202437935064
812340.9979The effect of bulk-biochar and nano-biochar amendment on the removal of antibiotic resistance genes in microplastic contaminated soil. Biochar amendment has significant benefits in removing antibiotic resistance genes (ARGs) in the soil. Nevertheless, there is little information on ARGs removal in microplastic contaminated soil. Herein, a 42-day soil microcosm experiment were carried out to study how two coconut shell biochars (bulk- and nano-size) eliminate soil ARGs with/without microplastic presence. The results showed that microplastic increased significantly the numbers and abundances of ARGs in soil at 14d of cultivation. And, two biochars amendment effectively inhibited soil ARGs spread whether or not microplastic was present, especially for nano-biochar which had more effective removal compared to bulk-biochar. However, microplastic weakened soil ARGs removal after applying same biochar. Two biochars removed ARGs through decreasing horizontal gene transfer (HGT) of ARGs, potential host-bacteria abundances, some bacteria crowding the eco-niche of hosts and promoting soil properties. The adverse effect of microplastic on ARGs removal was mainly caused by weakening mobile genetic elements (MGEs) removal, and by changing soil properties. Structural equation modeling (SEM) analysis indicated that biochar's effect on ARGs profile was changed by its size and microplastic presence through altering MGEs abundances. These results highlight that biochar amendment is still an effective method for ARGs removal in microplastic contaminated soil.202437907163
858050.9979Mitigation of microplastic-associated emerging pollutants by chlorination using field-collected microplastic: Antimicrobial-resistant genes and pathogens. The ubiquity of microplastics (MPs) in aquatic environments has raised significant concerns regarding their roles as vectors for antibiotic-resistance genes (ARGs) and antibiotic-resistant pathogens (ARPs). This study investigated the mitigation of ARGs and ARPs associated with field-collected MPs through chlorination using free available chlorine (FAC) at varying concentrations. FAC effectively reduced the absolute abundance of ARGs on MPs by up to 99.69 %, although the relative abundance of certain ARGs persisted or increased after treatments. Results revealed that the three-dimensional structure of biofilms on MPs significantly influenced FAC efficacy, with interior biofilm bacteria demonstrating greater resistance than outer biofilm. Additionally, FAC induced fragmentation of MPs, particularly increasing the proportion of particles smaller than 100 μm. Notably, ARGs such as sul1 and ermB showed substantial reductions in absolute abundance, whereas ermC and sul2 exhibited less reduction, highlighting the complexity of disinfection in MP-associated biofilms. These findings underscore the need for optimizing disinfection strategies to mitigate ARG dissemination and address environmental risks posed by MPs in wastewater effluents.202540436100
858160.9979Tire particles and its leachates: Impact on antibiotic resistance genes in coastal sediments. Tire particles (TPs), a significant group of microplastics, can be discharged into the coastal environments in various ways. However, our understanding of how TPs impact the antibiotic resistance and pathogenic risks of microorganisms in coastal sediments remains limited. In this study, we used metagenomics to investigate how TPs and their leachates could affect the prevalence of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their potential risks to the living creatures such as soil invertebrates and microorganisms in the coastal sediments. We discovered that TP addition significantly increased the abundance and diversity of ARGs and VFGs in coastal sediments, with raw TPs displayed higher impacts than TP leachates and TPs after leaching on ARGs and VFGs. With increasing TP exposure concentrations, the co-occurrence frequency of ARGs and mobile genetic elements (MGEs) in the same contig also increased, suggesting that TPs could enhance the dispersal risk of ARGs. Our metagenome-based binning analysis further revealed that exposure to TPs increased the abundance of potentially pathogenic antibiotic-resistant bacteria (PARB). In addition, chemical additives of TP leachates (e.g., Zn and N-cyclohexylformamide) significantly affected the changes of ARGs in the pore water. In summary, our study provides novel insights into the adverse effects of TP pollutions on aggravating the dissemination and pathogenic risks of ARGs and PARB in the coastal environment.202438147751
705270.9978Plastisphere enrich antibiotic resistance genes and potential pathogenic bacteria in sewage with pharmaceuticals. Microplastics (MPs) and pharmaceuticals are common emerging pollutants in sewage, and their coexistence may have more negative effects on the environments. This study chose tetracycline (TC), ampicillin (AMP) and triclosan (TCS) to investigate the responses of antibiotic resistance genes (ARGs) and microbial communities on different MPs (polyvinyl chloride (PVC), polyethylene (PE)) biofilms (plastisphere). The adsorption capacity of three pharmaceuticals on PVC and PE decreased in the order of AMP > TC > TCS. PE was more conducive to microbial attachment than PVC. MPs led to the increase of the total copies of ARGs and mobile genetic elements (MGEs) in the sewage. Importantly, multidrug ARGs and MGEs were enriched on plastisphere. Furthermore, the co-occurrence of TC and MPs led to higher risks of spreading ARGs and MGEs. In addition, potential pathogenic bacteria Legionella, Mycobacterium, Neisseria and Arcobacter were more abundant on plastisphere than those in sewage, and these bacteria might be the hosts for ARGs and MGEs. This study showed that plastisphere could be repositories of ARGs and MGEs in sewage and accumulated potential pathogenic bacteria.202133454495
639580.9978Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review. Sewage sludge is an important reservoir of antibiotics, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) in wastewater treatment plants (WWTPs), and the reclamation of sewage sludge potentially threats human health and environmental safety. Sludge treatment and disposal are expected to control these risks, and this review summarizes the fate and controlling efficiency of antibiotics, ARGs, and ARB in sludge involved in different processes, i.e., disintegration, anaerobic digestion, aerobic composting, drying, pyrolysis, constructed wetland, and land application. Additionally, the analysis and characterization methods of antibiotics, ARGs, and ARB in complicate sludge are reviewed, and the quantitative risk assessment approaches involved in land application are comprehensively discussed. This review benefits process optimization of sludge treatment and disposal, with regard to environmental risks control of antibiotics, ARGs, and ARB in sludge. Furthermore, current research limitations and gaps, e.g., the antibiotic resistance risk assessment in sludge-amended soil, are proposed to advance the future studies.202336933744
854990.9978Current perspectives on microalgae and extracellular polymers for reducing antibiotic resistance genes in livestock wastewater. Antibiotic resistance genes (ARGs) in livestock wastewater resulting from excessive antibiotics used in animal farming pose significant environmental and public health risks. Conventional treatment methods are often costly, inefficient, and may inadvertently promote ARG transmission. Microalgae, with their long genetic distance from bacteria and strong ability to utilize wastewater nutrients, offer a sustainable solution for ARG mitigation. This review studied the abundance and characterization of ARGs in livestock wastewater, highlighted microalgal-based removal mechanisms of ARGs, including phagocytosis, competition, and absorption by extracellular polymeric substances (EPS), and explored factors influencing their efficacy. Notably, the microalgae-EPS system reduced ARGs by 0.62-3.00 log, demonstrating significant potential in wastewater treatment. Key challenges, such as optimizing algal species, understanding EPS-ARG interactions, targeted reduction of host bacteria, and scaling technologies, were discussed. This work provides critical insights for advancing microalgal-based strategies for ARG removal, promoting environmentally friendly and efficient wastewater management.202540324729
8124100.9978Effect of graphene and graphene oxide on antibiotic resistance genes during copper-contained swine manure anaerobic digestion. Copper is an important selectors for antibiotic resistance genes (ARGs) transfer because of metal-antibiotic cross-resistance and/or coresistance. Due to carbon-based materials' good adsorption capacity for heavy metals, graphene and graphene oxide have great potential to reduce ARGs abundance in the environment with copper pollution. To figure out the mechanics, this study investigated the effects of graphene and graphene oxide on the succession of ARGs, mobile genetic elements (MGEs), heavy metal resistance genes (HMRGs), and bacterial communities during copper-contained swine manure anaerobic digestion. Results showed that graphene and graphene oxide could reduce ARGs abundance in varying degrees with the anaerobic reactors that contained a higher concentration of copper. Nevertheless, graphene decreased the abundance of ARGs more effectively than graphene oxide. Phylum-level bacteria such as Firmicutes, Bacteroidetes, Spirochaetes, and Verrucomicrobiaat were significantly positively correlated with most ARGs. Network and redundancy analyses demonstrated that alterations in the bacterial community are one of the main factors leading to the changes in ARGs. Firmicutes, Bacteroidetes, and Spirochaetes were enriched lower in graphene reactor than graphene oxide in anaerobic digestion products, which may be the main reason that graphene is superior to graphene oxide in reduced ARGs abundance. Additionally, ARGs were close to HMRGs than MGEs in the treatments with graphene, the opposite in graphene oxide reactors. Therefore, we speculate that the reduction of HMRGs in graphene may contribute to the result that graphene is superior to graphene oxide in reduced ARGs abundance in anaerobic digestion.202336394812
7927110.9978Different microplastics distinctively enriched the antibiotic resistance genes in anaerobic sludge digestion through shifting specific hosts and promoting horizontal gene flow. Both microplastics (MPs) and antibiotic resistance genes (ARGs) are intensively detected in waste activated sludge (WAS). However, the distinctive impacts of different MPs on ARGs emergence, dissemination, and its potential mechanisms remain unclear. In this study, long-term semi-continuous digesters were performed to examine the profiles of ARGs and antibiotic-resistant bacteria (ARB) in response to two different typical MPs (polyethylene (PE) and polyvinyl chloride (PVC)) in anaerobic sludge digestion. Metagenomic results show that PE- and PVC-MPs increase ARGs abundance by 14.8% and 23.6% in digester, respectively. ARB are also enriched by PE- and PVC-MPs, Acinetobacter sp. and Salmonella sp. are the dominant ARB. Further exploration reveals that PVC-MPs stimulates the acquisition of ARGs by human pathogen bacteria (HPB) and functional microorganisms (FMs), but PE-MPs doesn't. Network analysis shows that more ARGs tend to co-occur with HBP and FMs after MPs exposure, and more importantly, new bacteria are observed to acquire ARGs possibly via horizontal gene flow (HGF) in MPs-stressed digester. The genes involved in the HGF process, including reactive oxygen species (ROS) production, cell membrane permeability, extracellular polymeric substances (EPS) secretion, and ATP synthesis, are also enhanced by MPs, thereby attributing to the promoted ARGs dissemination. These findings offer advanced insights into the distinctive contribution of MPs to fate, host, dissemination of ARGs in anaerobic sludge digestion.202336423550
7929120.9978Size-dependent effects of microplastics on antibiotic resistance genes fate in wastewater treatment systems: The role of changed surface property and microbial assemblages in a continuous exposure mode. Microplastics (MPs) were continuously transported to wastewater treatment systems and accumulated in sludge constantly, potentially affecting systems function and co-occurrent contaminants fate. However, previous studies were based on acute exposure of MPs, which could not reflect the dynamics of MPs accumulation. Herein, this study firstly raised a more realistic method to evaluate the practical impacts of MPs on systems purification efficiency and antibiotic resistance genes (ARGs) fate. Continuous exposure of MPs did not pose negative effects on nutrients removal, but significantly changed the occurrence patterns of ARGs. ARGs abundances increased by 42.8 % and 54.3 % when exposed to millimeter-size MPs (mm-MPs) polyamide and polyethylene terephthalate, but increased by 31.3 % and 39.4 % to micron-size MPs (μm-MPs), respectively. Thus, mm-MPs posed severer effects on ARGs than μm-MPs. Further, mm-MPs surface properties were obviously altered after long-term exposure (higher specific surface area and O-containing species), which benefited microbes attachment. More importantly, more taxa linkages and changed topological properties (higher average degree and average weight) of co-occurrent network were observed in sludge with mm-MPs than with μm-MPs, as well as totally different potential host bacteria of ARGs. Rough surface of MPs and closer relations between ARGs and bacteria taxa contributed to the propagation of ARGs, which accounted for the observed higher ARGs abundances of mm-MPs. This study demonstrated that long-term accumulation of MPs in wastewater treatment systems affected ARGs fate, and mm-MPs caused severer risk due to their enrichment of ARGs. The results would promote the understanding of MPs real environmental behavior and influences.202236037899
7053130.9978Plastisphere showing unique microbiome and resistome different from activated sludge. Plastisphere (the biofilm on microplastics) in wastewater treatment plants (WWTPs) may enrich pathogens and antibiotic resistance genes (ARGs) which can cause risks to the ecological environment by discharging into receiving waters. However, the microbiome and resistome of plastisphere in activated sludge (AS) systems remain inconclusive. Here, metagenome was applied to investigate the microbial composition, functions and ARGs of the Polyvinyl chloride (PVC) plastisphere in lab-scale reactors, and revealed the effects of tetracycline (TC) and/or Cu(II) pressures on them. The results indicated that the plastisphere provided a new niche for microbiota showing unique functions distinct from the AS. Particularly, various potentially pathogenic bacteria tended to enrich in PVC plastisphere. Moreover, various ARGs were detected in plastisphere and AS, but the plastisphere had more potential ARGs hosts and a stronger correlation with ARGs. The ARGs abundances increased after exposure to TC and/or Cu(II) pressures, especially tetracycline resistance genes (TRGs), and the results further showed that TRGs with different resistance mechanisms were separately enriched in plastisphere and AS. Furthermore, the exogenous pressures from Cu(II) or/and TC also enhanced the association of potential pathogens with TRGs in PVC plastisphere. The findings contribute to assessing the potential risks of spreading pathogens and ARGs through microplastics in WWTPs.202236041613
6426140.9978Deciphering the pathogenic risks of microplastics as emerging particulate organic matter in aquatic ecosystem. Microplastics are accumulating rapidly in aquatic ecosystems, providing habitats for pathogens and vectors for antibiotic resistance genes (ARGs), potentially increasing pathogenic risks. However, few studies have considered microplastics as particulate organic matter (POM) to elucidate their pathogenic risks and underlying mechanisms. Here, we performed microcosm experiments with microplastics and natural POM (leaves, algae, soil), thoroughly investigating their distinct effects on the community compositions, functional profiles, opportunistic pathogens, and ARGs in Particle-Associated (PA) and Free-Living (FL) bacterial communities. We found that both microplastics and leaves have comparable impacts on microbial community structures and functions, enriching opportunistic pathogens and ARGs, which may pose potential environmental risks. These effects are likely driven by their influences on water properties, including dissolved organic carbon, nitrate, DO, and pH. However, microplastics uniquely promoted pathogens as keystone species and further amplified their capacity as hosts for ARGs, potentially posing a higher pathogenic risk than natural POM. Our research also emphasized the importance of considering both PA and FL bacteria when assessing microplastic impacts, as they exhibited different responses. Overall, our study elucidates the role and underlying mechanism of microplastics as an emerging POM in intensifying pathogenic risks of aquatic ecosystems in comparison with conventional natural POM.202438805824
7930150.9978Fates of extracellular and intracellular antibiotic resistance genes in activated sludge and plastisphere under sulfadiazine pressure. Microplastics, antibiotics, and antibiotic resistance genes (ARGs) represent prominent emerging contaminants that can potentially hinder the efficacy of biological wastewater treatment and pose health risks. Plastisphere as a distinct ecological niche for microorganisms, acts as a repository for ARGs and potential pathogenic bacteria. Nonetheless, the spread pattern of extracellular ARGs (eARGs) and intracellular ARGs (iARGs) in plastisphere under antibiotic exposure was not yet known. This study aimed to investigate disparities in extracellular polymeric substances (EPS) production, extracellular and intracellular microbial community structures, as well as the transmission of eARGs and iARGs between activated sludge and plastisphere in an anaerobic/anoxic/oxic system under sulfadiazine (SDZ) exposure. SDZ was found to enhance EPS production in activated sludge and plastisphere. Interestingly, as SDZ removal efficiency increased, EPS content decreased in activated sludge and plastisphere collected from oxic zone, and continued to increase in plastisphere samples collected from anaerobic and anoxic zones. There were significant differences in microbial community structure between activated sludge and plastisphere, and the DNA fragments of potential pathogenic bacteria were detected in extracellular samples. SDZ exhibited a promoting effect on the propagation of eARGs, which were more abundant in the plastisphere than in activated sludge, thus heightening the risk of ARGs dissemination. Extracellular mobile genetic elements played a pivotal role in driving the spread of eARGs, while the microbial community induced the changes of iARGs. Potential pathogenic bacteria emerged as potential hosts for ARGs and mobile genetic elements within activated sludge and plastisphere, leading to more serious environmental threats.202337898001
8575160.9978Key factors driving the fate of antibiotic resistance genes and controlling strategies during aerobic composting of animal manure: A review. Occurrence of antibiotic resistance genes (ARGs) in animal manure impedes the reutilization of manure resources. Aerobic composting is potentially effective method for resource disposal of animal manure, but the fate of ARGs during composting is complicated due to the various material sources and different operating conditions. This review concentrates on the biotic and abiotic factors influencing the variation of ARGs in composting and their potential mechanisms. The dynamic variations of biotic factors, including bacterial community, mobile genetic elements (MGEs) and existence forms of ARGs, are the direct driving factors of the fate of ARGs during composting. However, most key abiotic indicators, including pH, moisture content, antibiotics and heavy metals, interfere with the richness of ARGs indirectly by influencing the succession of bacterial community and abundance of MGEs. The effect of temperature on ARGs depends on whether the ARGs are intracellular or extracellular, which should be paid more attention. The emergence of various controlling strategies renders the composting products safer. Four potential removal mechanisms of ARGs in different controlling strategies have been concluded, encompassing the attenuation of selective/co-selective pressure on ARGs, killing the potential host bacteria of ARGs, reshaping the structure of bacterial community and reducing the cell-to-cell contact of bacteria. With the effective control of ARGs, aerobic composting is suggested to be a sustainable and promising approach to treat animal manure.202134139488
6920170.9978Dynamics and key drivers of antibiotic resistance genes during aerobic composting amended with plant-derived and animal manure-derived biochars. Plant-derived and animal manure-derived biochars have been used to improve the quality of compost but the differences in their effects on antibiotic resistance genes (ARGs) during composting are unclear. This study selected two types of biochar (RB and PB) produced from abundant agricultural waste to be added to the compost. Adding plant-derived RB performed better in ARGs, mobile genetic elements, and human pathogenic bacteria removal during aerobic composting, whereas adding manure-derived PB even increased ARGs abundance. Vertical gene transfer was possibly the key mechanism for persistent ARGs, and easily removed ARGs were regulated by horizontal and vertical gene transfer. Adding plant-derived RB reduced the abundances of persistent ARG hosts (e.g., Pseudomonas and Longispora) and ARG-related metabolic pathways and genes. The higher nitrogen content of manure-derived PB may have promoted the proliferation of ARG hosts. Overall, adding manure-derived biochar during composting may not be the optimal option for eliminating ARGs.202235487450
8583180.9977Microplastics Enhance the Prevalence of Antibiotic Resistance Genes in Anaerobic Sludge Digestion by Enriching Antibiotic-Resistant Bacteria in Surface Biofilm and Facilitating the Vertical and Horizontal Gene Transfer. Antibiotic resistance genes (ARGs) and microplastics (MPs) are recognized as emerging contaminants and threats to global human health. Despite both of them being significantly detected in their "hotspots", i.e., waste activated sludge (WAS), rare studies on how MPs affect ARGs and antibiotic-resistant bacteria (ARB) in anaerobic sludge digestion are available. Herein, the fate of ARGs and ARB after exposure to MPs of three dosages (10, 30, and 80 particles/g-TS), three polymer types (LDPE, PET, and PS), and three branching extents (LDPE, LLDPE, and HDPE) in anaerobic sludge digestion was investigated. Metagenomic results indicated that all variants of MPs resulted in an increase of the relative abundance of ARGs in the digester compared to the control. The abundance of ARGs demonstrated a dosage-dependent relationship within the range from 10 to 80 particles/g-TS, resulting in an increase from 4.5 to 27.9% compared to the control. Branching structure and polymer type influence ARG level in the sludge digester as well. Mechanism studies revealed that LDPE selectively enriched potential ARB and ARGs in the surface biofilm, possibly creating a favorable environment for ARB proliferation and ARG exchange. Furthermore, vertical transfer of ARGs was facilitated by LDPE through increasing bacterial cell proliferation accompanied by the enhancement of relevant functional genes. The elevated abundance of mobile genetic elements (MGEs) and ARGs-carrying plasmids also demonstrated that MGE-mediated horizontal transfer was promoted by LDPE at 80 particles/g-TS. This effect was compounded by increased oxidative stress, cell membrane permeability, and cell cohesion, collectively facilitating horizontal ARG transfer. Consequently, both vertical and horizontal transfer of ARGs could be concurrently promoted by LDPE an in anaerobic sludge digester.202337733635
6936190.9977Pivotal role of earthworm gut protists in mediating antibiotic resistance genes under microplastic and sulfamethoxazole stress in soil-earthworm systems. Microplastics (MPs) are currently receiving widespread attention worldwide, and their co-occurrence with antibiotics is unavoidable. However, our understanding of how protists respond to co-pollution and mediate antibiotic resistance genes (ARGs) profiles remains exceedingly limited, particularly within non-target animals' guts. To bridge these gaps, we investigated the individual and combined effects of polyethylene and sulfamethoxazole (SMZ) on microbial communities and ARGs in soil and earthworm guts. We found that the MP-SMZ combination significantly elevated the abundance and richness of ARGs in the soil and earthworm. Protistan compositions (particularly consumers) responded more strongly to pollutants than did bacterial and fungal communities, especially under combined pollution. Interkingdom cooccurrence network analysis revealed that protists had stronger and more effective interactions with the resistome in the earthworm guts, suggesting that the impact of these protists on ARGs compositional changes was potentially modulated through the "top-down" regulation of bacteria and fungi. Meta-cooccurrence networks further confirmed that protist-related networks had more keystone pollution-sensitive ASVs (psASVs) and these psASVs were mostly associated with protistan consumers. Our study highlights protists as promising agents for regulating and monitoring microbial functions, as well as the ecological risks of the antibiotic resistome associated with MPs and SMZ pollution in agricultural ecosystems.202540412325