PERSISTENCE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
647400.9979Impact of treated wastewater irrigation on antibiotic resistance in the soil microbiome. The reuse of treated wastewater (TWW) for irrigation is a practical solution for overcoming water scarcity, especially in arid and semiarid regions of the world. However, there are several potential environmental and health-related risks associated with this practice. One such risk stems from the fact that TWW irrigation may increase antibiotic resistance (AR) levels in soil bacteria, potentially contributing to the global propagation of clinical AR. Wastewater treatment plant (WWTP) effluents have been recognized as significant environmental AR reservoirs due to selective pressure generated by antibiotics and other compounds that are frequently detected in effluents. This review summarizes a myriad of recent studies that have assessed the impact of anthropogenic practices on AR in environmental bacterial communities, with specific emphasis on elucidating the potential effects of TWW irrigation on AR in the soil microbiome. Based on the current state of the art, we conclude that contradictory to freshwater environments where WWTP effluent influx tends to expand antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes levels, TWW irrigation does not seem to impact AR levels in the soil microbiome. Although this conclusion is a cause for cautious optimism regarding the future implementation of TWW irrigation, we conclude that further studies aimed at assessing the scope of horizontal gene transfer between effluent-associated ARB and soil bacteria need to be further conducted before ruling out the possible contribution of TWW irrigation to antibiotic-resistant reservoirs in irrigated soils.201323378260
653310.9979The Role of the Environment (Water, Air, Soil) in the Emergence and Dissemination of Antimicrobial Resistance: A One Health Perspective. Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments-water, soil, and air-as dynamic reservoirs and transmission routes for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs). Recent metagenomic, epidemiological, and mechanistic evidence demonstrates that anthropogenic pressures-including pharmaceutical effluents, agricultural runoff, untreated sewage, and airborne emissions-amplify resistance evolution and interspecies gene transfer via horizontal gene transfer mechanisms, biofilms, and mobile genetic elements. Importantly, it is not only highly polluted rivers such as the Ganges that contribute to the spread of AMR; even low concentrations of antibiotics and their metabolites, formed during or after treatment, can significantly promote the selection and dissemination of resistance. Environmental hotspots such as European agricultural soils and airborne particulate zones near wastewater treatment plants further illustrate the complexity and global scope of pollution-driven AMR. The synergistic roles of co-selective agents, including heavy metals, disinfectants, and microplastics, are highlighted for their impact in exacerbating resistance gene propagation across ecological and geographical boundaries. The efficacy and limitations of current mitigation strategies, including advanced wastewater treatments, thermophilic composting, biosensor-based surveillance, and emerging regulatory frameworks, are evaluated. By integrating a One Health perspective, this review underscores the imperative of including environmental considerations in global AMR containment policies and proposes a multidisciplinary roadmap to mitigate resistance spread across interconnected human, animal, and environmental domains.202540867959
653220.9978Antibiotic resistance in urban soils: Dynamics and mitigation strategies. Antibiotic resistance (AR) is a critical global health issue with significant clinical and economic implications. AR occurs when microorganisms develop mechanisms to withstand the effects of antibiotics, reducing treatment efficacy and increasing the risk of mortality and healthcare costs. While the connection between antibiotic use in clinical and agricultural settings and the emergence of AR is well-established, the role of urban soils as reservoirs and spreaders of AR is underexplored. This review examines the complex dynamics of AR in urban soils, highlighting the various sources of antibiotics, including domestic wastewater, industrial effluents, urban agricultural practices, but also microplastics and domestic animal excrements. The selective pressure exerted by these anthropogenic sources promotes the proliferation of antibiotic-resistant bacteria, particularly through horizontal gene transfer, which facilitates the transmission of resistance genes among soil microorganisms in urban environments. About that, the presence of antibiotics in urban soils poses a significant threat to public health by potentially transferring resistance genes to human pathogens through multiple pathways, including direct contact, food consumption, and water ingestion. Furthermore, AR in urban soils disrupts microbial community dynamics, impacting soil fertility, plant growth, and overall environmental quality. Therefore, this review aims to address gaps in understanding AR in urban soils, offering insights into its implications for human health and ecosystem integrity. By identifying these gaps and suggesting evidence-based strategies, this review proposes valid and sustainable solutions to mitigate and counteract the spread of AR in urban environments.202439384008
652730.9977Evaluating human exposure to antibiotic resistance genes. Antibiotic resistance is an escalating global concern, leading to millions of annual fatalities. Antibiotic resistance genes (ARGs) present in bacteria equip them to withstand the effects of antibiotics. Intra- and interspecific ARGs transmission through horizontal gene transfer further exacerbates resistance dissemination. The presence of ARGs in the environment heightens the probability of human exposure via direct inhalation, ingestion, or contact with polluted air, food, or water, posing substantial biosafety and health hazards. Consequently, ARGs represent a critical focal point in public health and environmental safety and are classified as emerging contaminants. This perspective underscores the necessity to assess ARG exposure within the One Health framework and to accord greater attention to the mitigation strategies and tactics associated with ARGs.202440078948
652640.9977The Complex Interplay Between Antibiotic Resistance and Pharmaceutical and Personal Care Products in the Environment. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are important environmental contaminants. Nonetheless, what drives the evolution, spread, and transmission of antibiotic resistance dissemination is still poorly understood. The abundance of ARB and ARGs is often elevated in human-impacted areas, especially in environments receiving fecal wastes, or in the presence of complex mixtures of chemical contaminants, such as pharmaceuticals and personal care products. Self-replication, mutation, horizontal gene transfer, and adaptation to different environmental conditions contribute to the persistence and proliferation of ARB in habitats under strong anthropogenic influence. Our review discusses the interplay between chemical contaminants and ARB and their respective genes, specifically in reference to co-occurrence, potential biostimulation, and selective pressure effects, and gives an overview of mitigation by existing man-made and natural barriers. Evidence and strategies to improve the assessment of human health risks due to environmental antibiotic resistance are also discussed. Environ Toxicol Chem 2024;43:637-652. © 2022 SETAC.202436582150
653050.9977Microplastic-associated pathogens and antimicrobial resistance in environment. The ubiquitous use of microplastics and their release into the environment especially the water bodies by anthropogenic/industrial activities are the major resources for microplastic contamination. The widespread and often injudicious use of antimicrobial drugs or antibiotics in various sectors including human health and hygiene, agriculture, animal husbandry and food industries are leading to the release of antibiotics into the wastewater/sewage and other water bodies, particularly in urban setups and thus leads to the antimicrobial resistance (AMR) in the microbes. Microplastics are emerging as the hubs as well as effective carriers of these microbial pathogens beside their AMR-genes (ARGs) in marine, freshwater, sewage/wastewater, and urban river ecosystems. These drug resistant bacteria interact with microplastics forming synthetic plastispheres, the ideal niche for biofilm formations which in turn facilitates the transfer of ARGs via horizontal gene transfer and further escalates the occurrence and levels of AMR. Microplastic-associated AMR is an emerging threat for human health and healthcare besides being a challenge for the research community for effective management/address of this menace. In this review, we encompass the increasing prevalence of microplastics in environment, emphasizing mainly on water environments, how they act as centers and vectors of microbial pathogens with their associated bacterial assemblage compositions and ultimately lead to AMR. It further discusses the mechanistic insights on how microplastics act as hosts of biofilms (creating the plastisphere). We have also presented the modern toolbox used for microplastic-biofilm analyses. A review on potential strategies for addressing microplastic-associated AMR is given with recent success stories, challenges and future prospects.202234813845
641060.9977Microplastics are a hotspot for antibiotic resistance genes: Progress and perspective. Antibiotic resistance genes (ARGs) and microplastics in the environment are of great public concern due to their potential risk to human health. Microplastics can form distinct bacterial communities and absorb pollutants from the surrounding environment, which provide potential hosts and exert possible selection pressure of ARGs. We provide a practical evaluation of the scientific literature regarding this issue. The occurrence and transport of ARGs on microplastics in wastewater treatment plants, aquatic, terrestrial, and air environments were summarized. Selective enrichment of ARGs and antibiotic resistance bacteria on microplastics have been confirmed in different environments. Aggregates may be crucial to understand the behavior and transport of ARGs on microplastics, especially in the aquatic and terrestrial environment. Microplastics could be a carrier of ARGs between the environment and animals. Accumulation of pollutants and dense bacterial communities on microplastics provide favorable conditions for higher transfer rate and evolution of ARGs. More studies are still needed to understand the enrichment, transport, and transfer of ARGs on microplastics and provide a fundamental basis for evaluating their exposure health risk to humans.202133940744
652570.9977The Role of Water as a Reservoir for Antibiotic-Resistant Bacteria. Water systems serve as multifaceted environmental pools for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs), influencing human, animal, and ecosystem health. This review synthesizes current understanding of how antibiotics, ARB, and ARGs enter surface, ground, and drinking waters via wastewater discharge, agricultural runoff, hospital effluents, and urban stormwater. We highlight key mechanisms of biofilm formation, horizontal gene transfer, and co-selection by chemical stressors that facilitate persistence and spread. Case studies illustrate widespread detection of clinically meaningful ARB (e.g., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and mobile ARGs (e.g., sul1/2, tet, bla variants) in treated effluents, recycled water, and irrigation return flows. The interplay between treatment inefficiencies and environmental processes underscores the need for advanced treatment technologies, integrated monitoring, and policy interventions. Addressing these challenges is critical to curbing the environmental dissemination of resistance and protecting human and ecosystem health.202540867958
652880.9977Antimicrobial resistance in urban river ecosystems. Antimicrobial resistance (AMR) with the ability to thwart clinical therapies and escalate mortality rates is emerging as one of the most pressing global health and environmental concerns. Urban rivers as an important subsystem of the environment offer galore of ecological services which benefit the city dwellers. However, with increased urbanization, industrialization, and heavy discharge of anthropogenic waste harboring antibiotics, heavy metals, pesticides, antibiotic resistance genes (ARGs), antibiotic resistant bacteria (ARB), urban rivers are becoming major reservoirs of ARGs and a hotspot for accelerated selection of ARB. These ARGs in urban rivers have the potential of being transferred to clinically important pathogens. In addition, urban rivers also act as important vectors for AMR spread. This is mainly due to the direct exposure of humans and animals to the heavily contaminated river water and high mobility of organisms (aquatic animals, pathogenic, non-pathogenic bacteria) as well as the genetic elements including ARGs and mobile genetic elements (MGEs) in the river. However, in spite of recent advocacy for comprehensive research programs aimed to investigate the occurrence, extent and major drivers of AMR in urban rivers globally, such studies are missing largely. This review encompasses the issues of AMR, major drivers and their vital roles in the evolution and spread of ARB with an emphasis on sources and hotspots of diverse ARGs in urban rivers contributing to co-occurrence of ARGs and MGEs. Further, the causal factors leading to adverse effects of antibiotic-load to river organisms with an elaboration on the current measures to eradicate the ARB, ARGs, and remove antibiotics from the urban river ecosystems are also discussed. A perspective review of current and emerging strategies with potentials of combating AMR in urban river ecosystems including advanced water treatment methodologies and floating islands or constructed wetlands.202235926259
743190.9976Antibiotic Resistant Bacteria in Municipal Wastes: Is There Reason for Concern? Recently, there has been increased concern about the presence of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG), in treated domestic wastewaters, animal manures and municipal biosolids. The concern is whether these additional sources of ARB contribute to antibiotic resistance levels in the environment, that is, "environmental antibiotic resistance." ARB and ARG occur naturally in soil and water, and it remains unclear whether the introduction of ARB in liquid and solid municipal and animal wastes via land application have any significant impact on the background levels of antibiotic resistance in the environment, and whether they affect human exposure to ARB. In this current review, we examine and re-evaluate the incidence of ARB and ARG resulting from land application activities, and offer a new perspective on the threat of antibiotic resistance to public health via exposure from nonclinical environmental sources. Based on inputs of ARBs and ARGs from land application, their fate in soil due to soil microbial ecology principles, and background indigenous levels of ARBs and ARGs already present in soil, we conclude that while antibiotic resistance levels in soil are increased temporally by land application of wastes, their persistence is not guaranteed and is in fact variable, and often contradictory based on application site. Furthermore, the application of wastes may not produce the most direct impact of ARGs and ARB on public health. Further investigation is still warranted in agriculture and public health, including continued scrutiny of antibiotic use in both sectors.201829505255
6425100.9976Freshwater plastisphere: a review on biodiversity, risks, and biodegradation potential with implications for the aquatic ecosystem health. The plastisphere, a unique microbial biofilm community colonizing plastic debris and microplastics (MPs) in aquatic environments, has attracted increasing attention owing to its ecological and public health implications. This review consolidates current state of knowledge on freshwater plastisphere, focussing on its biodiversity, community assembly, and interactions with environmental factors. Current biomolecular approaches revealed a variety of prokaryotic and eukaryotic taxa associated with plastic surfaces. Despite their ecological importance, the presence of potentially pathogenic bacteria and mobile genetic elements (i.e., antibiotic resistance genes) raises concerns for ecosystem and human health. However, the extent of these risks and their implications remain unclear. Advanced sequencing technologies are promising for elucidating the functions of plastisphere, particularly in plastic biodegradation processes. Overall, this review emphasizes the need for comprehensive studies to understand plastisphere dynamics in freshwater and to support effective management strategies to mitigate the impact of plastic pollution on freshwater resources.202438699475
6398110.9976The interplay between antimicrobial resistance, heavy metal pollution, and the role of microplastics. Environmental pollution with heavy metals (HMs) and microplastics (MPs) could enhance the global health challenge antimicrobial resistance (AMR). Herein, we explore the complicated mechanics of how HMs, MPs, and AMR are interlinked within microbial ecosystems, as well as the co-selection and cross-resistance mechanisms. Unlike antibiotics, HMs have influenced microbial evolution for billions of years, promoting resistance mechanisms that predate antibiotic resistance genes (ARGs). At the same time, this conundrum is further complicated by the pervasive spread of MPs in the aquatic and terrestrial environments, acting as substrates for bacterial pathogenic biofilms and accelerates the horizontal gene transfer (HGT) of ARGs and heavy metal resistance genes (MRGs). This review highlights that HMs such as lead (Pb), mercury (Hg), arsenic (As), chromium (Cr), cadmium (Cd), and nickel (Ni) have persistently selected for resistance traits through efflux systems and genetic co-regulation. Together, these interactions are amplified by MPs that create genetic exchange hotspots due to biofilm formation. These dynamics are modulated by organic matter, which serves both as a nutrient source and a mediator of HM bioavailability, directly influencing ARG abundance. Soil and water ecosystems, including riverine systems and landfill leachate, are reservoirs for ARGs and ARG-MRG combinations, with notable contributions originating from anthropogenic activities. This review also emphasizes the urgent need for integrated environmental and public health strategies to mitigate pollutant-driven AMR. This work seeks to approach HMs and MPs as synergistic drivers of AMR such that both HMs and MPs are upstream (causes) levers, a foundation from which future research on sustainable environmental management practices and health policy (One Health Approach), aimed at curbing the spread of resistance determinants can proceed.202540092036
6397120.9976Microplastics and antibiotic resistance genes as rising threats: Their interaction represents an urgent environmental concern. Microplastics (MPs) have been reported to be emerging contaminant of different environmental niches like air, soil, and water. When exposed to these environments, MPs interact with already existing antibiotics to create combined pollution that can harm organisms. MPs have garnered significant attention in academic circles due to their ability to adsorb antibiotics. This review article explores different dimensions of MPs, antibiotic resistance genes (ARGs), and the interplay between MPs, antibiotics, and antibiotic-resistant bacteria (ARB), emphasizing their interconnection with soil and water pollution. It also summarizes the mechanisms behind the interaction between antibiotics and MPs, detailing various physical and chemical interactions. Additionally, it outlines the pathways through which MPs and ARGs complexes spread, offering insights for future research and solutions to tackle compound pollution. The article concludes by providing targeted strategies to mitigate the environmental and public health risks posed by MP-associated ARG transmission, highlighting the need for integrated pollution control, advanced monitoring techniques, and stricter regulatory policies.202540756460
6416130.9976Antibiotic resistance in plastisphere. Microbial life on plastic debris, called plastisphere, has invoked special attention on aquatic ecosystems as emerging habitats for antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). There is scarce information concerning how properties of plastics influence ARGs and ARB, the effect of biofilms on enrichment of ARGs and ARB, and, especially, the influence of plastic transformation on ARGs and ARB. Limited research has shown that microplastic (MP) surfaces influence proliferation of antibiotic resistance (AR), aged MPs exhibit increased toxicity due to more adsorption-desorption of AR, and MP transformation is correlated with disseminating AR. Prevention measures of AR include minimizing MP releasing into aquatic environments and sewage treatment plants. The future research should aim to identify the interface mechanisms of transformed MNPs and antibiotics alone, or mixed with other contaminants, property changes of MNPs, and associated toxicity evaluation.202540265125
6531140.9976A comprehensive framework of health risk assessment for antibiotic resistance in aquatic environments: Status, progress, and perspectives. Antibiotic resistance (AR), driven by antibiotics as emerging pollutants, has become a critical global health threat, jeopardizing both environmental and human health. The persistence and spread of AR in aquatic ecosystems are governed by the intricate interplay between antibiotics, antibiotic resistance genes (ARGs), and antibiotic-resistant bacteria (ARB), which collectively influences its occurrence, transportation, and fate in aquatic ecosystems. However, most assessments focus primarily on antibiotics and ARGs, often relying on single-factor criteria while overlooking critical influence factors such as ARG forms, non-antibiotic chemicals, antibiotic pressure, and microbial competition. Furthermore, many fail to incorporate potential future risks, limiting their predictive accuracy and overall effectiveness in addressing AR in aquatic environments. To bridge these research gaps, we introduce a comprehensive health risk assessment framework that integrates the interactions among antibiotics, ARGs, and ARB. The proposed approach comprises four steps: 1. Determining the type of water body; 2. Performing model simulations; 3. Assessing antibiotics and ARGs; and 4. Evaluating ARB. Finally, a comprehensive risk index for AR is established, along with a corresponding hierarchical risk ranking system. Moreover, to demonstrate the practical application of the framework, an assessment of antibiotic resistance risk was conducted using a typical lake in Northeast China as a case study, indicating the efficacy of the proposed framework in quantifying the multidimensional health risk of AR. This framework not only provides a crucial foundation for dynamic health risk assessment, but also paving the way for more effective mitigation strategies to safeguard both aquatic ecosystems and human health in the future.202540914069
6407150.9976Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Urban wastewater treatment plants (UWTPs) are among the main sources of antibiotics' release into the environment. The occurrence of antibiotics may promote the selection of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB), which shade health risks to humans and animals. In this paper the fate of ARB and ARGs in UWTPs, focusing on different processes/technologies (i.e., biological processes, advanced treatment technologies and disinfection), was critically reviewed. The mechanisms by which biological processes influence the development/selection of ARB and ARGs transfer are still poorly understood. Advanced treatment technologies and disinfection process are regarded as a major tool to control the spread of ARB into the environment. In spite of intense efforts made over the last years to bring solutions to control antibiotic resistance spread in the environment, there are still important gaps to fill in. In particular, it is important to: (i) improve risk assessment studies in order to allow accurate estimates about the maximal abundance of ARB in UWTPs effluents that would not pose risks for human and environmental health; (ii) understand the factors and mechanisms that drive antibiotic resistance maintenance and selection in wastewater habitats. The final objective is to implement wastewater treatment technologies capable of assuring the production of UWTPs effluents with an acceptable level of ARB.201323396083
6445160.9976Microplastics: Disseminators of antibiotic resistance genes and pathogenic bacteria. Microplastics (MPs) are emerging pollutants that linger in the air, water, and land. Beyond their physical and chemical risks, there is growing evidence that MPs contribute to the worldwide antimicrobial resistance (AMR) dilemma by acting as carriers of harmful microbes and antibiotic resistance genes (ARGs). Despite an increase in research, the available literature is dispersed, and the part that MPs play in influencing microbial populations and fostering resistance is still not well understood. This review summarizes current research on how MPs contribute to the spread of antibiotic resistance. We concentrated on the ways in which MPs support horizontal gene transfer (HGT) processes such as conjugation, transformation, and transduction, assist biofilm development, and offer surfaces for microbial colonization. Evidence from a variety of settings suggests that MPs serve as vectors for opportunistic pathogens, such as the ESKAPE group, and ARGs, increasing the survival and movement of resistance determinants in ecosystems. Through the consolidation of current developments, this review emphasizes MPs as active resistance vectors instead of passive pollutants. We also point out important limitations, such as the lack of standardized procedures, inadequate risk assessment frameworks, and the absence of real-world exposure research. It is imperative that these issues be approached from a One Health standpoint in order to reduce the risks of both plastic pollution and antibiotic resistance.202541056605
6405170.9976Extracellular DNA (eDNA): Neglected and Potential Sources of Antibiotic Resistant Genes (ARGs) in the Aquatic Environments. Over the past decades, the rising antibiotic resistance bacteria (ARB) are continuing to emerge as a global threat due to potential public health risk. Rapidly evolving antibiotic resistance and its persistence in the environment, have underpinned the need for more studies to identify the possible sources and limit the spread. In this context, not commonly studied and a neglected genetic material called extracellular DNA (eDNA) is gaining increased attention as it can be one of the significant drivers for transmission of extracellular ARGS (eARGs) via horizontal gene transfer (HGT) to competent environmental bacteria and diverse sources of antibiotic-resistance genes (ARGs) in the environment. Consequently, this review highlights the studies that address the environmental occurrence of eDNA and encoding eARGs and its impact on the environmental resistome. In this review, we also brief the recent dedicated technological advancements that are accelerating extraction of eDNA and the efficiency of treatment technologies in reducing eDNA that focuses on environmental antibiotic resistance and potential ecological health risk.202033114079
6403180.9975Fate and transport modelling for evaluating antibiotic resistance in aquatic environments: Current knowledge and research priorities. Antibiotics have revolutionised medicine in the last century and enabled the prevention of bacterial infections that were previously deemed untreatable. However, in parallel, bacteria have increasingly developed resistance to antibiotics through various mechanisms. When resistant bacteria find their way into terrestrial and aquatic environments, animal and human exposures increase, e.g., via polluted soil, food, and water, and health risks multiply. Understanding the fate and transport of antibiotic resistant bacteria (ARB) and the transfer mechanisms of antibiotic resistance genes (ARGs) in aquatic environments is critical for evaluating and mitigating the risks of resistant-induced infections. The conceptual understanding of sources and pathways of antibiotics, ARB, and ARGs from society to the water environments is essential for setting the scene and developing an appropriate framework for modelling. Various factors and processes associated with hydrology, ecology, and climate change can significantly affect the fate and transport of ARB and ARGs in natural environments. This article reviews current knowledge, research gaps, and priorities for developing water quality models to assess the fate and transport of ARB and ARGs. The paper also provides inputs on future research needs, especially the need for new predictive models to guide risk assessment on AR transmission and spread in aquatic environments.202437788551
6791190.9975Microplastics in marine pollution: Oceanic hitchhikers for the global dissemination of antimicrobial-resistant bacteria. Microplastics (MPs) are globally anthropogenic contaminants of marine environments. Bacteria can colonize MPs forming biofilms that constitute the plastisphere. Carbapenem-resistant bacteria in plastisphere could be a hidden threat for marine life. The role of MPs in the spread of AMR bacteria/genes deserves global investigation.202540469541