# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 536 | 0 | 0.9873 | Thymidylate synthase gene from Lactococcus lactis as a genetic marker: an alternative to antibiotic resistance genes. The potential of the thymidylate synthase thyA gene cloned from Lactococcus lactis subsp. lactis as a possible alternative selectable marker gene to antibiotic resistance markers has been examined. The thyA mutation is a recessive lethal one; thyA mutants cannot survive in environments containing low amounts of thymidine or thymine (such as Luria-Bertani medium) unless complemented by the thyA gene. The cloned thyA gene was strongly expressed in L. lactis subsp. lactis, Escherichia coli, Rhizobium meliloti, and a fluorescent Pseudomonas strain. In addition, when fused to a promoterless enteric lac operon, the thyA gene drove expression of the lac genes in a number of gram-negative bacteria. In transformation experiments with thyA mutants of E. coli and conjugation experiments with thyA mutants of R. meliloti, the lactococcal thyA gene permitted selection of transformants and transconjugants with the same efficiency as did genes for resistance to ampicillin, chloramphenicol, or tetracycline. Starting from the broad-host-range plasmid pGD500, a plasmid, designated pPR602, was constructed which is completely free of antibiotic resistance genes and has the lactococcal thyA gene fused to a promoterless lac operon. This plasmid will permit growth of thyA mutant strains in the absence of thymidine or thymine and has a number of unique restriction sites which can be used for cloning. | 1990 | 2117883 |
| 392 | 1 | 0.9869 | Stable Tagging of Rhizobium meliloti with the Firefly Luciferase Gene for Environmental Monitoring. A system for stable tagging of gram-negative bacteria with the firefly luciferase gene, luc, is described. A previously constructed fusion constitutively expressing luc from the lambdap(R) promoter was used. Stable integration into the bacterial genome was achieved by use of mini-Tn5 delivery vectors. The procedure developed was applied for tagging of representative gram-negative bacteria, such as Escherichia coli, Rhizobium meliloti, Pseudomonas putida, and Agrobacterium tumefaciens. The system permitted the detection of tagged R. meliloti in the presence of more than 10 CFU per plate without the use of any selective markers (such as antibiotic resistance genes). No significant differences in growth rates or soil survival were found between the marked strain and the wild-type strain. Studies of bioluminescent R. meliloti also revealed a good correlation between cell biomass and bioluminescence. The firefly luciferase tagging system is an easy, safe, and sensitive method for the detection and enumeration of bacteria in the environment. | 1993 | 16349015 |
| 750 | 2 | 0.9867 | Mutations in Genes with a Role in Cell Envelope Biosynthesis Render Gram-Negative Bacteria Highly Susceptible to the Anti-Infective Small Molecule D66. Anti-infectives include molecules that target microbes in the context of infection but lack antimicrobial activity under conventional growth conditions. We previously described D66, a small molecule that kills the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) within cultured macrophages and murine tissues, with low host toxicity. While D66 fails to inhibit bacterial growth in standard media, the compound is bacteriostatic and disrupts the cell membrane voltage gradient without lysis under growth conditions that permeabilize the outer membrane or reduce efflux pump activity. To gain insights into specific bacterial targets of D66, we pursued two genetic approaches. Selection for resistance to D66 revealed spontaneous point mutations that mapped within the gmhB gene, which encodes a protein involved in the biosynthesis of the lipopolysaccharide core molecule. E. coli and S. Typhimurium gmhB mutants exhibited increased resistance to antibiotics, indicating a more robust barrier to entry. Conversely, S. Typhimurium transposon insertions in genes involved in outer membrane permeability or efflux pump activity reduced fitness in the presence of D66. Together, these observations underscore the significance of the bacterial cell envelope in safeguarding Gram-negative bacteria from small molecules. | 2025 | 40732029 |
| 391 | 3 | 0.9865 | New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in gram-negative bacteria. Three types of new variants of the broad-host-range transposon Tn5 are described. (i) Tn5-mob derivatives with the new selective resistance (R) markers GmR, SpR and TcR facilitate the efficient mobilization of replicons within a wide range of Gram-negative bacteria. (ii) Promoter probe transposons carry the promoterless reporter genes lacZ, nptII, or luc, and NmR, GmR or TcR as selective markers. These transposons can be used to generate transcriptional fusions upon insertion, thus facilitating accurate determinations of gene expression. (iii) Tn5-P-out derivatives carry the npt- or tac-promoter reading out from the transposon, and TcR, NmR or GmR genes. These variants allow the constitutive expression of downstream genes. The new Tn5 variants are available on mobilizable Escherichia coli vectors suitable as suicidal carriers for transposon mutagenesis of non-E. coli recipients and some on a phage lambda mutant to be used for transposon mutagenesis in E. coli. | 1989 | 2551782 |
| 534 | 4 | 0.9863 | Plasmid shuttle vector with two insertionally inactivable markers for coryneform bacteria. A new shuttle vector pCEM500 replicating in Escherichia coli and in Brevibacterium flavum was constructed. It carries two antibiotic resistance determinants (Kmr/Gmr from plasmid pSa of Gram-negative bacteria and Smr/Spr from plasmid pCG4 of Corynebacterium glutamicum) which are efficiently expressed in both hosts and can be inactivated by insertion of DNA fragments into the unique restriction endonuclease sites located within them. This vector was found to be stably maintained in B. flavum and can be used for transfer of the cloned genes into this amino-acid-producing coryneform bacterium. | 1990 | 2148164 |
| 535 | 5 | 0.9861 | Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Improved broad-host-range plasmid vectors were constructed based on existing plasmids RSF1010 and RK404. The new plasmids pDSK509, pDSK519, and pRK415, have several additional cloning sites and improved antibiotic-resistance genes which facilitate subcloning and mobilization into various Gram-negative bacteria. Several new polylinker sites were added to the Escherichia coli plasmids pUC118 and pUC119, resulting in the new plasmids, pUC128 and pUC129. These plasmids facilitate the transfer of cloned DNA fragments to the broad-host-range vectors. Finally, the broad-host-range cosmid cloning vector pLAFR3 was improved by the addition of a double cos casette to generate the new plasmid, pLAFR5. This latter cosmid simplifies vector preparation and has permitted the rapid cloning of genomic DNA fragments generated with Sau3A. The resulting clones may be introduced into other Gram-negative bacteria by conjugation. | 1988 | 2853689 |
| 537 | 6 | 0.9860 | Omegon-Km: a transposable element designed for in vivo insertional mutagenesis and cloning of genes in gram-negative bacteria. To combine the features of the omega interposons with the advantages of in vivo transposition mutagenesis, we have constructed an artificial transposon, called Omegon-Km. The Omegon-Km transposon is carried on the plasmid pJFF350 which can be conjugally mobilized into a broad range of Gram-negative bacteria. Omegon-Km is flanked, in inverted orientation, by synthetic 28-bp repeats derived from the ends of IS1. In addition, each end of Omegon-Km has the very efficient transcription and translation terminators of the omega interposon. Internally, Omegon-Km carries the selectable kanamycin (Km)-neomycin resistance gene (alph A) which is expressed well in many Gram-negative bacteria. The IS1 transposition functions are located on the donor plasmid but external to Omegon-Km. Thus, insertions of Omegon-Km are very stable because they lack the capacity for further transposition. Omegon-Km mutagenesis is performed by conjugal transfer of pJFF350 from Escherichia coli into any Gram-negative recipient strain in which this plasmid is unable to replicate. Those cells which have had a transposition event are selected by their resistance to Km. Very high frequencies of Omegon-Km transposition were observed in Pseudomonas putida. Preliminary experiments with other Gram-negative soil and water bacteria (Rhizobium leguminosarum, Paracoccus denitrificans) yielded mutants at reasonable levels. The presence of an E. coli-specific origin of replication (ori) within Omegon-Km allows the rapid and easy cloning, in E. coli, of the nucleotide sequences flanking the site of the transposition event. | 1989 | 2546859 |
| 8434 | 7 | 0.9860 | A potent and selective antimicrobial poly(amidoamine) dendrimer conjugate with LED209 targeting QseC receptor to inhibit the virulence genes of gram negative bacteria. The pandemic of multidrug-resistant Gram negative bacteria (GNB) is a worldwide healthcare concern, and very few antibiotics are being explored to match the clinical challenge. Recently, amino-terminated poly(amidoamine) (PAMAM) dendrimers have shown potential to function as broad antimicrobial agents. However, PAMAM displays a generation dependent cytotoxicity to mammalian cells and low selectivity on bacterial cells, which limits PAMAM to be developed as an antibacterial agent for systemic administration. We conjugated G3 PAMAM with LED209, a specific inhibitor of quorum sensor QseC of GNB, to generate a multifunctional agent PAMAM-LED209. Intriguingly, PAMAM-LED209 showed higher selectivity on GNB and lower cytotoxicity to mammalian cells, yet remained strong antibacterial activity. PAMAM-LED209 also inhibited virulence gene expression of GNB, and did not induce antibiotic-resistance. The present work firstly demonstrated that PAMAM-LED209 conjugate had a highly selective anti-GNB activity and low cytotoxicity, which offered a feasible strategy for combating multidrug-resistant GNB infections. FROM THE CLINICAL EDITOR: This research team demonstrated that a novel PAMAM-LED209 conjugate had highly selective activity against Gram-negative bacteria, coupled with low cytotoxicity, offering a potential strategy for combating multidrug-resistant infections. | 2015 | 25461286 |
| 591 | 8 | 0.9860 | Muramyl Endopeptidase Spr Contributes to Intrinsic Vancomycin Resistance in Salmonella enterica Serovar Typhimurium. The impermeability barrier provided by the outer membrane of enteric bacteria, a feature lacking in Gram-positive bacteria, plays a major role in maintaining resistance to numerous antimicrobial compounds and antibiotics. Here we demonstrate that mutational inactivation of spr, coding for a muramyl endopeptidase, significantly sensitizes Salmonella enterica serovar Typhimurium to vancomycin without any accompanying apparent growth defect or outer membrane destabilization. A similar phenotype was not achieved by deleting the genes coding for muramyl endopeptidases MepA, PbpG, NlpC, YedA, or YhdO. The spr mutant showed increased autolytic behavior in response to not only vancomycin, but also to penicillin G, an antibiotic for which the mutant displayed a wild-type MIC. A screen for suppressor mutations of the spr mutant phenotype revealed that deletion of tsp (prc), encoding a periplasmic carboxypeptidase involved in processing Spr and PBP3, restored intrinsic resistance to vancomycin and reversed the autolytic phenotype of the spr mutant. Our data suggest that Spr contributes to intrinsic antibiotic resistance in S. Typhimurium without directly affecting the outer membrane permeability barrier. Furthermore, our data suggests that compounds targeting specific cell wall endopeptidases might have the potential to expand the activity spectrum of traditional Gram-positive antibiotics. | 2018 | 30619108 |
| 390 | 9 | 0.9859 | A new simple method for introducing an unmarked mutation into a large gene of non-competent Gram-negative bacteria by FLP/FRT recombination. BACKGROUND: For the disruption of a target gene in molecular microbiology, unmarked mutagenesis is preferable to marked mutagenesis because the former method raises no concern about the polar effect and leaves no selection marker. In contrast to naturally competent bacteria, there is no useful method for introducing an unmarked mutation into a large gene of non-competent bacteria. Nevertheless, large genes encoding huge proteins exist in diverse bacteria and are interesting and important for physiology and potential applications. Here we present a new method for introducing an unmarked mutation into such large genes of non-competent Gram-negative bacteria. RESULTS: Two gene replacement plasmids, pJQFRT and pKFRT/FLP, were constructed to apply the FLP/FRT recombination system to introduce an unmarked mutation into a large gene of non-competent Gram-negative bacteria. In our methodology, pJQFRT and pKFRT/FLP are integrated into the upstream and the downstream regions of a target gene, respectively, through homologous recombination. The resultant mutant has antibiotic resistance markers, the sacB counter-selection marker, flp recombinase under the control of the tetR regulator, and identical FRT sites sandwiching the target gene and the markers on its chromosome. By inducing the expression of flp recombinase, the target gene is completely deleted together with the other genes derived from the integrated plasmids, resulting in the generation of an unmarked mutation. By this method, we constructed an unmarked mutant of ataA, which encodes the huge trimeric autotransporter adhesin (3,630 aa), in a non-competent Gram-negative bacterium, Acinetobacter sp. Tol 5. The unmarked ataA mutant showed the same growth rate as wild type Tol 5, but lost the adhesive properties of Tol 5, similar to the transposon-inserted mutant of ataA that we generated previously. CONCLUSIONS: The feasibility of our methodology was evidenced by the construction of an unmarked ataA mutant in the Tol 5 strain. Since FLP/FRT recombination can excise a long region of DNA exceeding 100 kb, our method has the potential to selectively disrupt much larger genes or longer regions of gene clusters than ataA. Our methodology allows the straightforward and efficient introduction of an unmarked mutation into a large gene or gene cluster of non-enterobacterial Gram-negative bacteria. | 2013 | 23594401 |
| 579 | 10 | 0.9859 | Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations. There is accumulating evidence that transenvelope efflux pumps of the resistance, nodulation, cell division protein family (RND) are excreting toxic substances from the periplasm across the outer membrane directly to the outside. This would mean that resistance of Gram-negative bacteria to organic toxins and heavy metals is in fact a two-step process: one set of resistance factors control the concentration of a toxic substance in the periplasm, another one that in the cytoplasm. Efficient periplasmic detoxification requires periplasmic toxin sensing and transduction of this signal into the cytoplasm to control expression of the periplasmic detoxification system. Such a signal transduction system was analyzed using the Cnr nickel resistance system from Cupriavidus (Wautersia, Ralstonia, Alcaligenes) metallidurans strain CH34. Resistance is based on nickel efflux mediated by the CnrCBA efflux pump encoded by the cnrYHXCBAT metal resistance determinant. The products of the three genes cnrYXH transcriptionally regulate expression of cnr. CnrY and CnrX are membrane-bound proteins probably functioning as anti sigma factors while CnrH is a cnr-specific extracytoplasmic functions (ECF) sigma factors. Experimental data provided here indicate a signal transduction chain leading from nickel in the periplasm to transcription initiation at the cnr promoters cnrYp and cnrCp, which control synthesis of the nickel efflux pump CnrCBA. | 2005 | 16158236 |
| 389 | 11 | 0.9858 | Implantation of unmarked regulatory and metabolic modules in Gram-negative bacteria with specialised mini-transposon delivery vectors. Engineering of robust and safe microbial cell factories requires genetic tools somewhat different from those traditionally used for laboratory-adapted microorganisms. We took advantage of the properties of broad-host-range mini-Tn5 vectors and two regulated expression systems (LacI(Q)/P(trc) and XylS/Pm), together with FRT-flanked, excisable antibiotic resistance determinants, to generate a set of vectors for the delivery of gene(s) into the chromosome of Gram-negative bacteria. This arrangement of modular elements allows the cloning and subsequent markerless insertion of expression cargoes and leaves behind an antibiotic-sensitive host upon the action of the yeast Flp recombinase. We engineered a Pseudomonas putida KT2440 Pm::gfp strain that displayed strong fluorescence upon exposure to 3-methylbenzoate, a XylS effector, and allowed us to examine the performance of the Pm promoter at the single cell level. We also reconstructed a device for sugar transport and phosphorylation in Escherichia coli independent of the native phosphoenolpyruvate-dependent phosphotransferase system by the stable implantation of genes derived from the obligate anaerobe Zymomonas mobilis. In both cases, the information carried by the implanted genes was stably inherited in the absence of any selective pressure. Deliverable expression systems such as those described here will enhance the applicability of various Gram-negative bacteria in biocatalysis and environmental bioremediation. | 2013 | 22609234 |
| 349 | 12 | 0.9857 | Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. A collection of Tn5-derived minitransposons has been constructed that simplifies substantially the generation of insertion mutants, in vivo fusions with reporter genes, and the introduction of foreign DNA fragments into the chromosome of a variety of gram-negative bacteria, including the enteric bacteria and typical soil bacteria like Pseudomonas species. The minitransposons consist of genes specifying resistance to kanamycin, chloramphenicol, streptomycin-spectinomycin, and tetracycline as selection markers and a unique NotI cloning site flanked by 19-base-pair terminal repeat sequences of Tn5. Further derivatives also contain lacZ, phoA, luxAB, or xylE genes devoid of their native promoters located next to the terminal repeats in an orientation that affords the generation of gene-operon fusions. The transposons are located on a R6K-based suicide delivery plasmid that provides the IS50R transposase tnp gene in cis but external to the mobile element and whose conjugal transfer to recipients is mediated by RP4 mobilization functions in the donor. | 1990 | 2172217 |
| 354 | 13 | 0.9855 | New cloning vectors to facilitate quick allelic exchange in gram-negative bacteria. New cloning vectors have been developed with features to enhance quick allelic exchange in gram-negative bacteria. The conditionally replicative R6K and transfer origins facilitate conjugation and chromosomal integration into a variety of bacterial species, whereas the sacB gene provides counterselection for allelic exchange. The vectors have incorporated the lacZ alpha fragment with an enhanced multicloning site for easy blue/white screening and priming sites identified for efficient in vivo assembly or other DNA assembly cloning techniques. Different antibiotic resistance markers allow versatility for use with different bacteria, and transformation into an Escherichia coli strain capable of conjugation enables a quick method for allelic exchange. As a proof of principle, the authors used these vectors to inactivate genes in Vibrio cholerae and Salmonella typhimurium. | 2021 | 33492170 |
| 617 | 14 | 0.9855 | Lytic action of cloned pneumococcal phage lysis genes in Streptococcus pneumoniae. The genes hbl3, cpl1 and cpl7 coding for the pneumococcal phage lytic enzymes HBL3, CPL1 and CPL7, respectively, have been cloned into shuttle plasmids that can replicate in Streptococcus pneumoniae and Escherichia coli. All these genes were expressed in E. coli under the control of either the lytP promoter of the lytA gene, which codes for the major pneumococcal autolysin, or the promoter of the tetracycline-resistance gene (tetP). In contrast, cpl1 and cpl7 genes that code for lysozymes were expressed in pneumococcus only under the control of tetP, whereas the hbl3 gene that codes for an amidase can be expressed using either promoter. The phage lysozymes or amidase expressed in S. pneumoniae M31, a mutant deleted in the lytA gene coding for short chains, were placed under physiological control since these transformed bacteria grew as normal 'diplo' cells during the exponential phase and underwent autolysis only after long incubation at 37 degrees C. The lysis genes appear to be expressed constitutively in the transformed pneumococci, since sharply defined lysis of these cultures could be induced prematurely during the exponential phase of growth by addition of sodium deoxycholate. | 1993 | 8472929 |
| 352 | 15 | 0.9854 | Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. A simple procedure for cloning and stable insertion of foreign genes into the chromosomes of gram-negative eubacteria was developed by combining in two sets of plasmids (i) the transposition features of Tn10 and Tn5; (ii) the resistances to the herbicide bialaphos, to mercuric salts and organomercurial compounds, and to arsenite, and (iii) the suicide delivery properties of the R6K-based plasmid pGP704. The resulting constructions contained unique NotI or SfiI sites internal to either the Tn10 or the Tn5 inverted repeats. These sites were readily used for cloning DNA fragments with the help of two additional specialized cloning plasmids, pUC18Not and pUC18Sfi. The newly derived constructions could be maintained only in donor host strains that produce the R6K-specified pi protein, which is an essential replication protein for R6K and plasmids derived therefrom. Donor plasmids containing hybrid transposons were transformed into a specialized lambda pir lysogenic Escherichia coli strain with a chromosomally integrated RP4 that provided broad-host-range conjugal transfer functions. Delivery of the donor plasmids into selected host bacteria was accomplished through mating with the target strain. Transposition of the hybrid transposon from the delivered suicide plasmid to a replicon in the target cell was mediated by the cognate transposase encoded on the plasmid at a site external to the transposon. Since the transposase function was not maintained in target cells, such cells were not immune to further transposition rounds. Multiple insertions in the same strain are therefore only limited by the availability of distinct selection markers. The utility of the system was demonstrated with a kanamycin resistance gene as a model foreign insert into Pseudomonas putida and a melanin gene from Streptomyces antibioticus into Klebsiella pneumoniae. Because of the modular nature of the functional parts of the cloning vectors, they can be easily modified and further selection markers can be incorporated. The cloning system described here will be particularly useful for the construction of hybrid bacteria that stably maintain inserted genes, perhaps in competitive situations (e.g., in open systems and natural environments), and that do not carry antibiotic resistance markers characteristic of most available cloning vectors (as is currently required of live bacterial vaccines). | 1990 | 2172216 |
| 381 | 16 | 0.9854 | A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. The use of Tn7-based systems for site-specific insertion of DNA into the chromosome of Gram-negative bacteria has been limited due to the lack of appropriate vectors. We therefore developed a flexible panel of Tn7 delivery vectors. In one group of vectors, the miniTn7 element, which is inserted into the chromosome, contains a multiple cloning site (MCS) and the kanamycin, streptomycin or gentamicin resistance markers. Another group of vectors intended for tagging with green fluorescent protein (GFP) carries the gfpmut3* gene controlled by the modified lac promoter PA1/04/03, several transcriptional terminators, and various resistance markers. These vectors insert Tn7 into a specific, neutral intergenic region immediately downstream of the gene encoding glucosamine-6-phosphate synthetase (GlmS) in the tested fluorescent Pseudomonas strains. The gfp-tagging vector containing a gentamicin-resistance marker is useful for tagging strains carrying a Tn5 transposon. Tn5 transposons often carry kanamycin-resistance-encoding genes and are frequently used to generate bacterial mutants and to deliver reporter constructions in gene expression studies. To demonstrate the utility of a dual marker/reporter system, the Tn7-gfp marker system was combined with a Tn5-delivered luxAB reporter system in Pseudomonas fluorescens. The system allowed detection of gfp-tagged cells in the barley rhizosphere, while expression of the Tn5-tagged locus could be determined by measuring bioluminescence. | 2001 | 11348676 |
| 353 | 17 | 0.9854 | Genome modifications and cloning using a conjugally transferable recombineering system. The genetic modification of primary bacterial disease isolates is challenging due to the lack of highly efficient genetic tools. Herein we describe the development of a modified PCR-based, λ Red-mediated recombineering system for efficient deletion of genes in Gram-negative bacteria. A series of conjugally transferrable plasmids were constructed by cloning an oriT sequence and different antibiotic resistance genes into recombinogenic plasmid pKD46. Using this system we deleted ten different genes from the genomes of Edwardsiella ictaluri and Aeromonas hydrophila. A temperature sensitive and conjugally transferable flp recombinase plasmid was developed to generate markerless gene deletion mutants. We also developed an efficient cloning system to capture larger bacterial genetic elements and clone them into a conjugally transferrable plasmid for facile transferring to Gram-negative bacteria. This system should be applicable in diverse Gram-negative bacteria to modify and complement genomic elements in bacteria that cannot be manipulated using available genetic tools. | 2015 | 28352570 |
| 395 | 18 | 0.9853 | O-antigen protects gram-negative bacteria from histone killing. Beyond their traditional role of wrapping DNA, histones display antibacterial activity to Gram-negative and -positive bacteria. To identify bacterial components that allow survival to a histone challenge, we selected resistant bacteria from homologous Escherichia coli libraries that harbor plasmids carrying pieces of the chromosome in different sizes. We identified genes required for exopolysaccharide production and for the synthesis of the polysaccharide domain of the lipopolysaccharide, called O-antigen. Indeed, O-antigen and exopolysaccharide conferred further resistance to histones. Notably, O-antigen also conferred resistance to histones in the pathogens Shigella flexneri and Klebsiella pneumoniae. | 2013 | 23951089 |
| 8210 | 19 | 0.9853 | Bacterial sensing of antimicrobial peptides. Antimicrobial peptides (AMPs) form a crucial part of human innate host defense, especially in neutrophil phagosomes and on epithelial surfaces. Bacteria have a variety of efficient resistance mechanisms to human AMPs, such as efflux pumps, secreted proteases, and alterations of the bacterial cell surface that are aimed to minimize attraction of the typically cationic AMPs. In addition, bacteria have specific sensors that activate AMP resistance mechanisms when AMPs are present. The prototypical Gram-negative PhoP/PhoQ and the Gram-positive Aps AMP-sensing systems were first described and investigated in Salmonella typhimurium and Staphylococcus epidermidis, respectively. Both include a classical bacterial two-component sensor/regulator system, but show many structural, mechanistic, and functional differences. The PhoP/PhoQ regulon controls a variety of genes not necessarily limited to AMP resistance mechanisms, but apparently aimed to combat innate host defense on a broad scale. In contrast, the staphylococcal Aps system predominantly upregulates AMP resistance mechanisms, namely the D-alanylation of teichoic acids, inclusion of lysyl-phosphati-dylglycerol in the cytoplasmic membrane, and expression of the putative VraFG AMP efflux pump. Notably, both systems are crucial for virulence and represent possible targets for antimicrobial therapy. | 2009 | 19494583 |