PERMEABLE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
19600.9725A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. Microbes tailor macromolecules and metabolism to overcome specific environmental challenges. Acetic acid bacteria perform the aerobic oxidation of ethanol to acetic acid and are generally resistant to high levels of these two membrane-permeable poisons. The citric acid cycle (CAC) is linked to acetic acid resistance in Acetobacter aceti by several observations, among them the oxidation of acetate to CO2 by highly resistant acetic acid bacteria and the previously unexplained role of A. aceti citrate synthase (AarA) in acetic acid resistance at a low pH. Here we assign specific biochemical roles to the other components of the A. aceti strain 1023 aarABC region. AarC is succinyl-coenzyme A (CoA):acetate CoA-transferase, which replaces succinyl-CoA synthetase in a variant CAC. This new bypass appears to reduce metabolic demand for free CoA, reliance upon nucleotide pools, and the likely effect of variable cytoplasmic pH upon CAC flux. The putative aarB gene is reassigned to SixA, a known activator of CAC flux. Carbon overflow pathways are triggered in many bacteria during metabolic limitation, which typically leads to the production and diffusive loss of acetate. Since acetate overflow is not feasible for A. aceti, a CO(2) loss strategy that allows acetic acid removal without substrate-level (de)phosphorylation may instead be employed. All three aar genes, therefore, support flux through a complete but unorthodox CAC that is needed to lower cytoplasmic acetate levels.200818502856
782810.9708Simultaneous elimination of antibiotic-resistant bacteria and antibiotic resistance genes by different Fe-N co-doped biochars activating peroxymonosulfate: The key role of pyridine-N and Fe-N sites. The coexistence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment poses a potential threat to public health. In our study, we have developed a novel advanced oxidation process for simultaneously removing ARGs and ARB by two types of iron and nitrogen-doped biochar derived from rice straw (FeN-RBC) and sludge (FeN-SBC). All viable ARB (approximately 10(8) CFU mL(-1)) was inactivated in the FeN-RBC/ peroxymonosulfate (PMS) system within 40 min and did not regrow after 48 h even in real water samples. Flow cytometry identified 96.7 % of dead cells in the FeN-RBC/PMS system, which verified the complete inactivation of ARB. Thorough disinfection of ARB was associated with the disruption of cell membranes and intracellular enzymes related to the antioxidant system. Whereas live bacteria (approximately 200 CFU mL(-1)) remained after FeN-SBC/PMS treatment. Intracellular and extracellular ARGs (tetA and tetB) were efficiently degraded in the FeN-RBC/PMS system. The production of active species, primarily •OH, SO(4)(•-) and Fe (IV), as well as electron transfer, were essential to the effective disinfection of FeN-RBC/PMS. In comparison with FeN-SBC, the better catalytic performance of FeN-RBC was mainly ascribed to its higher amount of pyridine-N and Fe(0), and more reactive active sites (such as CO group and Fe-N sites). Density functional theory calculations indicated the greater adsorption energy and Bader charge, more stable Fe-O bond, more easily broken OO bond in FeN-RBC/PMS, which demonstrated the stronger electron transfer capacity between FeN-RBC and PMS. To encapsulate, our study provided an efficient and dependable method for the simultaneous elimination of ARGs and ARB in water.202438669989
52020.9702Respiratory chain components are required for peptidoglycan recognition protein-induced thiol depletion and killing in Bacillus subtilis and Escherichia coli. Mammalian peptidoglycan recognition proteins (PGRPs or PGLYRPs) kill bacteria through induction of synergistic oxidative, thiol, and metal stress. Tn-seq screening of Bacillus subtilis transposon insertion library revealed that mutants in the shikimate pathway of chorismate synthesis had high survival following PGLYRP4 treatment. Deletion mutants for these genes had decreased amounts of menaquinone (MK), increased resistance to killing, and attenuated depletion of thiols following PGLYRP4 treatment. These effects were reversed by MK or reproduced by inhibiting MK synthesis. Deletion of cytochrome aa(3)-600 or NADH dehydrogenase (NDH) genes also increased B. subtilis resistance to PGLYRP4-induced killing and attenuated thiol depletion. PGLYRP4 treatment also inhibited B. subtilis respiration. Similarly in Escherichia coli, deletion of ubiquinone (UQ) synthesis, formate dehydrogenases (FDH), NDH-1, or cytochrome bd-I genes attenuated PGLYRP4-induced thiol depletion. PGLYRP4-induced low level of cytoplasmic membrane depolarization in B. subtilis and E. coli was likely not responsible for thiol depletion. Thus, our results show that the respiratory electron transport chain components, cytochrome aa(3)-600, MK, and NDH in B. subtilis, and cytochrome bd-I, UQ, FDH-O, and NDH-1 in E. coli, are required for both PGLYRP4-induced killing and thiol depletion and indicate conservation of the PGLYRP4-induced thiol depletion and killing mechanisms in Gram-positive and Gram-negative bacteria.202133420211
849130.9695Hormesis-like effects of black phosphorus nanosheets on the spread of multiple antibiotic resistance genes. The production scalability and increasing demand for black phosphorus nanosheets (BPNSs) inevitably lead to environmental leakage. Although BPNSs' ecotoxicological effects have been demonstrated, their indirect health risks, such as inducing increased resistance in pathogenic bacteria, are often overlooked. This study explores the influence of BPNSs on the horizontal gene transfer of antibiotic resistance genes (ARGs) facilitated by the RP4 plasmid, which carries multiple resistance genes. The results indicated that BPNSs exhibited concentration-dependent hormesis-like effects on bacterial conjugation gene transfer. Specifically, at sub-inhibitory concentrations (0.0001-1 mg/L), BPNSs promoted both intra- and intergeneric conjugative transfer, demonstrating an initial increase followed by a decline, with transfer rates rising by 1.5-3.1-fold and 1.5-3.3-fold, respectively. BPNSs were found to induce reactive oxygen species (ROS) production, increase malondialdehyde levels, and trigger the SOS response, enhancing plasmid uptake. Additionally, BPNSs increased membrane permeability by forming pores and upregulating outer membrane porins (OMPs) genes. At higher BPNSs concentrations (0.1-1 mg/L), conjugative frequency was inhibited due to the disruption of the cellular antioxidant system and changes in the adsorption process. These findings underscore the influence of BPNSs on the conjugative transfer of ARGs, complementing current knowledge of the biotoxicity and potential ecological risks associated with BPNSs.202539827804
849240.9694Promotion effects and mechanisms of molybdenum disulfide on the propagation of antibiotic resistance genes in soil. The rapid development of nanotechnology has aroused considerable attentions toward understanding the effects of engineered nanomaterials (ENMs) on the propagation of antibiotic resistance. Molybdenum disulfide (MoS(2)) is an extensively used ENM and poses potential risks associated with environmental exposure; nevertheless, the role of MoS(2) toward antibiotic resistance genes (ARGs) transfer remains largely unknown. Herein, it was discovered that MoS(2) nanosheets accelerated the horizontal transfer of RP4 plasmid across Escherichia coli in a dose-dependent manner (0.5-10 mg/L), with the maximum transfer frequency 2.07-fold higher than that of the control. Integration of physiological, transcriptomics, and metabolomics analyses demonstrated that SOS response in bacteria was activated by MoS(2) due to the elevation of oxidative damage, accompanied by cell membrane permeabilization. MoS(2) promoted bacterial adhesion and intercellular contact via stimulating the secretion of extracellular polysaccharides. The ATP levels were maximally increased by 305.7 % upon exposure to MoS(2), and the expression of plasmid transfer genes was up-regulated, contributing to the accelerated plasmid conjugation and increased ARG abundance in soil. Our findings highlight the roles of emerging ENMs (e.g., MoS(2)) in ARGs dissemination, which is significant for the safe applications and risk management of ENMs under the development scenarios of nanotechnology.202337062264
786050.9694Enhanced removal of antibiotic-resistant bacteria and resistance genes by three-dimensional electrochemical process using MgFe(2)O(4)-loaded biochar as both particle electrode and catalyst for peroxymonosulfate activation. In this study, MgFe(2)O(4)-loaded biochar (MFBC) was used as a three-dimensional particle electrode to active peroxymonosulfate (EC/MFBC/PMS) for the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The results demonstrated that, under the conditions of 1.0 mM PMS concentration, 0.4 g/L material dosage, 5 V voltage intensity, and MFBC preparation temperature of 600 °C, the EC/MFBC600/PMS system achieved complete inactivation of E. coli DH5α within 5 min and the intracellular sul1 was reduced by 81.5 % after 30 min of the treatment. Compared to EC and PMS alone treatments, the conjugation transfer frequency of sul1 rapidly declined by 92.9 % within 2 min. The cell membrane, proteins, lipids, as well as intracellular and extracellular ARGs in E. coli DH5α were severely damaged by free radicals in solution and intracellular reactive oxygen species (ROS). Furthermore, up-regulation was observed in genes associated with oxidative stress, SOS response and cell membrane permeability in E. coli DH5α, however, no significant changes were observed in functional genes related to gene conjugation and transfer mechanisms. This study would contribute to the underlying of PMS activation by three-dimensional particle electrode, and provide novel insights into the mechanism of ARB inactivation and ARGs degradation under PMS advanced oxidation treatment.202439197284
787960.9693Multidrug-resistant plasmid RP4 increases NO and N(2)O yields via the electron transport system in Nitrosomonas europaea ammonia oxidation. Antibiotic resistance genes (ARGs) have recently become an important public health problem and therefore several studies have characterized ARG composition and distribution. However, few studies have assessed their impact on important functional microorganisms in the environment. Therefore, our study sought to investigate the mechanisms through which multidrug-resistant plasmid RP4 affected the ammonia oxidation capacity of ammonia-oxidizing bacteria, which play a key role in the nitrogen cycle. The ammonia oxidation capacity of N. europaea ATCC25978 (RP4) was significantly inhibited, and NO and N(2)O were produced instead of nitrite. Our findings demonstrated that the decrease in electrons from NH(2)OH decreased the ammonia monooxygenase (AMO) activity, leading to a decrease in ammonia consumption. In the ammonia oxidation process, N. europaea ATCC25978 (RP4) exhibited ATP and NADH accumulation. The corresponding mechanism was the overactivation of Complex Ⅰ, ATPase, and the TCA cycle by the RP4 plasmid. The genes encoding TCA cycle enzymes related to energy generation, including gltA, icd, sucD, and NE0773, were upregulated in N. europaea ATCC25978 (RP4). These results demonstrate the ecological risks of ARGs, including the inhibition of the ammonia oxidation process and an increased production of greenhouse gases such as NO and N(2)O.202337421866
54270.9693Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Yersinia enterocolitica is a pathogen endowed with two adhesins, Inv and YadA, and with the Ysc type III secretion system, which allows extracellular adherent bacteria to inject Yop effectors into the cytosol of animal target cells. We tested the influence of all of these virulence determinants on opsonic and nonopsonic phagocytosis by PU5-1.8 and J774 mouse macrophages, as well as by human polymorphonuclear leukocytes (PMNs). The adhesins contributed to phagocytosis in the absence of opsonins but not in the presence of opsonins. In agreement with previous results, YadA counteracted opsonization. In every instance, the Ysc-Yop system conferred a significant level of resistance to phagocytosis. Nonopsonized single-mutant bacteria lacking either YopE, -H, -T, or -O were phagocytosed significantly more by J774 cells and by PMNs. Opsonized bacteria were phagocytosed more than nonopsonized bacteria, and mutant bacteria lacking either YopH, -T, or -O were phagocytosed significantly more by J774 cells and by PMNs than were wild-type (WT) bacteria. Opsonized mutants lacking only YopE were phagocytosed significantly more than were WT bacteria by PMNs but not by J774 cells. Thus, YopH, -T, and -O were involved in all of the phagocytic processes studied here but YopE did not play a clear role in guarding against opsonic phagocytosis by J774. Mutants lacking YopP and YopM were, in every instance, as resistant as WT bacteria. Overexpression of YopE, -H, -T, or -O alone did not confer resistance to phagocytosis, although it affected the cytoskeleton. These results show that YopH, YopT, YopO, and, in some instances, YopE act synergistically to increase the resistance of Y. enterocolitica to phagocytosis by macrophages and PMNs.200212117925
848680.9692Multidrug-resistant plasmid modulates ammonia oxidation efficiency in Nitrosomonas europaea through cyclic di-guanylate and acyl-homoserine lactones pathways. Antibiotic resistance genes present a major public health challenge and have potential implications for global biogeochemical cycles. However, their impacts on biological nitrogen removal systems remain poorly understood. In the ammonia-oxidizing bacteria Nitrosomonas europaea ATCC 19718 harboring the multidrug-resistant plasmid RP4, a significant decrease in ammonia oxidation efficiency was observed, accompanied by markedly elevated levels of cyclic di-guanylate (c-di-GMP) and acyl-homoserine lactones (AHLs), compared to plasmid-free controls. The results demonstrated that c-di-GMP facilitates the secretion of AHLs, while elevated levels of AHLs inhibit the ammonia oxidation efficiency of Nitrosomonas europaea ATCC 19718. These results revealed that RP4 plasmid significantly impaired ammonia oxidation efficiency through the c-di-GMP and AHLs pathways. Our findings indicate that the multidrug-resistant plasmid RP4 adversely affects the nitrogen metabolism of ammonia-oxidizing bacteria, potentially disrupting the nitrogen biogeochemical cycle and posing substantial ecological and environmental risks.202640945801
54190.9692A Teleost Bactericidal Permeability-Increasing Protein Kills Gram-Negative Bacteria, Modulates Innate Immune Response, and Enhances Resistance against Bacterial and Viral Infection. Bactericidal/permeability-increasing protein (BPI) is an important factor of innate immunity that in mammals is known to take part in the clearance of invading Gram-negative bacteria. In teleost, the function of BPI is unknown. In the present work, we studied the function of tongue sole (Cynoglossus semilaevis) BPI, CsBPI. We found that CsBPI was produced extracellularly by peripheral blood leukocytes (PBL). Recombinant CsBPI (rCsBPI) was able to bind to a number of Gram-negative bacteria but not Gram-positive bacteria. Binding to bacteria led to bacterial death through membrane permeabilization and structural destruction, and the bound bacteria were more readily taken up by PBL. In vivo, rCsBPI augmented the expression of a wide arrange of genes involved in antibacterial and antiviral immunity. Furthermore, rCsBPI enhanced the resistance of tongue sole against bacterial as well as viral infection. These results indicate for the first time that a teleost BPI possesses immunoregulatory effect and plays a significant role in antibacterial and antiviral defense.201627105425
8494100.9689Biochar effectively inhibits the horizontal transfer of antibiotic resistance genes via transformation. The rapid spread of antibiotic resistance genes (ARGs) has posed a risk to human health. Here, the effects of biochar (BC) on the horizontal transfer of ARG-carrying plasmids to Escherichia coli via transformation were systematically investigated. BC could significantly inhibit the transformation of ARGs and the inhibition degree increased with pyrolysis temperature. Rice straw-derived BC showed a stronger inhibitory effect on the transformation of ARGs than that of peanut shell-derived BC from the same pyrolysis temperature. The inhibitory effect of BC from low pyrolysis temperature (300 ℃) was mainly caused by BC dissolutions, while it was mainly attributed to BC solids for high pyrolysis temperature (700 ℃) BC. BC dissolutions could induce intramolecular condensation and even agglomeration of plasmids, hindering their transformation into competent bacteria. The cell membrane permeability was slightly decreased in BC dissolutions, which might also contribute to the inhibitory effect. Plasmid can be adsorbed by BC solids and the adsorption increased with BC pyrolysis temperature. Meanwhile, BC-adsorbed plasmid could hardly be transformed into E. coli. BC solids could also deactivate E. coli and thereby inhibit their uptake of ARGs. These findings provide a way using BC to limit the spread of ARGs in the environment.202234530277
7864110.9687Simultaneous removal of antibiotics and antibiotic resistant genes using a CeO(2)@CNT electrochemical membrane-NaClO system. The simultaneous removal of antibiotic and antibiotic resistance genes (ARGs) are important to inhibit the spread of antibiotic resistance. In this study, a coupled treatment system was developed using a CeO(2) modified carbon nanotube electrochemical membrane and NaClO (denoted as CeO(2)@CNT-NaClO) to treat simulated water samples containing antibiotics and antibiotic-resistant bacteria (ARB). As the mass ratio of CeO(2) to CNT was 5:7 and the current density was 2.0 mA/cm(2), the CeO(2)@CNT-NaClO system removed 99% of sulfamethoxazole, 4.6 log sul1 genes, and 4.7 log intI1 genes from the sulfonamide-resistance water samples, and removed 98% of tetracycline, 2.0 log tetA genes, and 2.6 log intI1 genes of the tetracycline-resistance water samples. The outstanding performance of the CeO(2)@CNT-NaClO system for simultaneously removing antibiotic and ARGs was mainly ascribed to the generation of multiple reactive species, including •OH, •ClO, •O(2)(-) and (1)O(2). Antibiotics can undergo efficient degradation by •OH. However, the reaction between •OH and antibiotics reduces the availability of •OH to permeate into the cells and react with DNA. Nevertheless, the presence of •OH enhancd the effects of •ClO, •O(2)(-), and (1)O on ARG degradation. Through the coupled action of •OH, •ClO, •O(2)(-), and (1)O(2), the cell membranes of ARB experience severe damage, resulting in an increase in intracellular reactive oxygen species (ROS) and a decrease in superoxide dismutase (SOD) activity. Consequently, this coordinated mechanism leads to superior removal of ARGs.202337429382
7871120.9685Effects of different quaternary ammonium compounds on intracellular and extracellular resistance genes in nitrification systems under the pre-contamination of benzalkyl dimethylammonium compounds. As the harm of benzalkyl dimethylammonium compounds (BACs) on human health and environment was discovered, alkyltrimethyl ammonium compound (ATMAC) and dialkyldimethyl ammonium compound (DADMAC), which belong to quaternary ammonium compounds (QACs), were likely to replace BACs as the main disinfectants. This study simulated the iterative use of QACs to explore their impact on resistance genes (RGs) in nitrification systems pre-contaminated by BACs. ATMAC could initiate and maintain partial nitrification. DADMAC generated higher levels of reactive oxygen species and lactate dehydrogenase, leading to increased biological toxicity in bacteria. The abundance of intracellular RGs of sludge was higher with the stress of QACs. DADMAC also induced higher extracellular polymeric substance secretion. Moreover, it facilitated the transfer of RGs from sludge to water, with ATMAC disseminating RGs through si-tnpA-04 and DADMAC through si-intI1. Sediminibacterium might be potential hosts for RGs. This study offered insights into disinfectant usage in the post-COVID-19 era.202539612960
519130.9683The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate. The Escherichia coli YhdH polypeptide is in the MDR012 sub-group of medium chain reductase/dehydrogenases, but its biological function was unknown and no phenotypes of YhdH(-) mutants had been described. We found that an E. coli strain with an insertional mutation in yhdH was hyper-sensitive to inhibitory effects of acrylate, and, to a lesser extent, to those of 3-hydroxypropionate. Close homologues of YhdH occur in many Bacterial taxa and at least two animals. The acrylate sensitivity of YhdH(-) mutants was corrected by the corresponding, cloned homologues from several bacteria. One such homologue is acuI, which has a role in acrylate degradation in marine bacteria that catabolise dimethylsulfoniopropionate (DMSP) an abundant anti-stress compound made by marine phytoplankton. The acuI genes of such bacteria are often linked to ddd genes that encode enzymes that cleave DMSP into acrylate plus dimethyl sulfide (DMS), even though these are in different polypeptide families, in unrelated bacteria. Furthermore, most strains of Roseobacters, a clade of abundant marine bacteria, cleave DMSP into acrylate plus DMS, and can also demethylate it, using DMSP demethylase. In most Roseobacters, the corresponding gene, dmdA, lies immediately upstream of acuI and in the model Roseobacter strain Ruegeria pomeroyi DSS-3, dmdA-acuI were co-regulated in response to the co-inducer, acrylate. These observations, together with findings by others that AcuI has acryloyl-CoA reductase activity, lead us to suggest that YdhH/AcuI enzymes protect cells against damaging effects of intracellular acryloyl-CoA, formed endogenously, and/or via catabolising exogenous acrylate. To provide "added protection" for bacteria that form acrylate from DMSP, acuI was recruited into clusters of genes involved in this conversion and, in the case of acuI and dmdA in the Roseobacters, their co-expression may underpin an interaction between the two routes of DMSP catabolism, whereby the acrylate product of DMSP lyases is a co-inducer for the demethylation pathway.201222563425
8506140.9683Extracellular Polymeric Substances Acting as a Permeable Barrier Hinder the Lateral Transfer of Antibiotic Resistance Genes. Antibiotic resistance genes (ARGs) in bacteria are emerging contaminants as their proliferation in the environment poses significant threats to human health. It is well recognized that extracellular polymeric substances (EPS) can protect microorganisms against stress or damage from exogenous contaminants. However, it is not clear whether EPS could affect the lateral transfer of ARGs into bacteria, which is one of the major processes for the dissemination of ARGs. This study investigated the lateral transfer of ARGs carried by plasmids (pUC19, pHSG298, and pHSG396) into competent Escherichia coli cells with and without EPS. Transformant numbers and transformation efficiency for E. coli without EPS were up to 29 times of those with EPS at pH 7.0 in an aqueous system. The EPS removal further increased cell permeability in addition to the enhanced cell permeability by Ca(2+), which could be responsible for the enhanced lateral transfer of ARGs. The fluorescence quenching experiments showed that EPS could strongly bind to plasmid DNA in the presence of Ca(2+) and the binding strength (LogK (A) = 10.65-15.80 L mol(-1)) between EPS and plasmids was positively correlated with the enhancement percentage of transformation efficiency resulting from the EPS removal. X-ray photoelectron spectroscopy (XPS) analyses and model computation further showed that Ca(2+) could electrostatically bind with EPS mainly through the carboxyl group, hydroxyl group, and RC-O-CR in glucoside, thus bridging the plasmid and EPS. As a result, the binding of plasmids with EPS hindered the lateral transfer of plasmid-borne ARGs. This study improved our understanding on the function of EPS in controlling the fate and transport of ARGs on the molecular and cellular scales.201931057498
7851150.9683Breaking antibiotic resistance: Sunlight-powered calcium peroxide for dual bactericidal and genetic elimination. Antibiotic-resistant bacteria (ARB) and associated antibiotic resistance genes (ARGs) have emerged as critical waterborne contaminants, posing serious public health risks. This study proposes a disinfection strategy through sunlight powered calcium peroxide (CaO(2)) treatment that simultaneously inactivates ARB and degrades ARGs in aquatic environments. Solar irradiation combined with CaO(2) (3.0 mM) activates dual mechanisms: alkaline-driven microbial inactivation (pH increase from 6.4 to 8.2 within 30 min) and ROS-mediated oxidative damage (ROS: (•)OH, H(2)O(2), (1)O(2) and O(2)(•-)), achieving complete 5-log inactivation of tetracycline and sulfonamides-resistant E. coli (TSRE). ARGs (tetA and sul2) showed 70-80 % reduction in absolute abundance, although the log removal did not exceed 1-log. Compared to sunlight alone, the addition of CaO(2) significantly enhanced disinfection efficiency. Alkaline and ROS-induced oxidative stress caused membrane lipid breakdown, protein denaturation, and suppression of antioxidant enzymes, along with DNA damage, lipid peroxidation, and enzyme inactivation. These effects increased membrane permeability, impaired bacterial recovery by downregulating DNA repair genes, and disrupted cellular integrity, ultimately limiting ARGs persistence. These findings highlight the synergistic effect of alkaline and oxidative stress in effectively inactivating ARB and degrading ARGs, positioning sunlight powered CaO(2) as a promising, highly efficient disinfection strategy for environmental water treatment.202540876436
7829160.9682Insights into capture-inactivation/oxidation of antibiotic resistance bacteria and cell-free antibiotic resistance genes from waters using flexibly-functionalized microbubbles. The spread of antibiotic resistance in the aquatic environment severely threatens the public health and ecological security. This study investigated simultaneously capturing and inactivating/oxidizing the antibiotic resistant bacteria (ARB) and cell-free antibiotic resistance genes (ARGs) in waters by flexibly-functionalized microbubbles. The microbubbles were obtained by surface-modifying the bubbles with coagulant (named as coagulative colloidal gas aphrons, CCGAs) and further encapsulating ozone in the gas core (named as coagulative colloidal ozone aphrons, CCOAs). CCGAs removed 92.4-97.5% of the sulfamethoxazole-resistant bacteria in the presence of dissolved organic matter (DOM), and the log reduction of cell-free ARGs (particularly, those encoded in plasmid) reached 1.86-3.30. The ozone release from CCOAs led to efficient in-situ oxidation: 91.2% of ARB were membrane-damaged and inactivated. In the municipal wastewater matrix, the removal of ARB increased whilst that of cell-free ARGs decreased by CCGAs with the DOM content increasing. The ozone encapsulation into CCGAs reinforced the bubble performance. The predominant capture mechanism should be electrostatic attraction between bubbles and ARB (or cell-free ARGs), and DOM enhanced the sweeping and bridging effect. The functionalized microbubble technology can be a promising and effective barrier for ARB and cell-free ARGs with shortened retention time, lessened chemical doses and simplified treatment unit.202235063836
8557170.9680Efficient inactivation of antibiotic resistant bacteria by iron-modified biochar and persulfate system: Potential for controlling antimicrobial resistance spread and mechanism insights. Antimicrobial resistance (AMR) is a critical global health threat, further intensified by the widespread dissemination of plasmid-encoded antibiotic resistance genes (ARGs), which poses a significant challenge to the "One Health" concept. Persulfate-based advanced oxidation processes (PS-AOPs) have emerged as effective disinfection methods, capable of degrading antibiotics, inactivating bacteria, and eliminating ARGs, whereas their efficacy towards blocking ARGs horizontal transfer remains elusive. This work constructed a series of Fe-modified soybean straw biochar (FeSSB) as persulfate (PS) activators through Fe-modification and temperature regulation. Among the tested systems, FeSSB800/PS achieved complete inactivation of antibiotic resistant bacteria (ARB) with a 7.04-log reduction within 60 min, outperforming others. FeSSB800, featuring the highest exposed-Fe(II) sites, most CO groups, and lowest charge transfer resistance, obtaining optimal PS activation and reactive species generation, which caused irreversible damage to ARB cells and significantly inhibited the transformation and conjugation efficiency of plasmid RP4. The inhibition mechanism is driven by the aggressive action of free radicals, which injure cell envelopes, induce oxidative stress, disrupt ATP synthesis, and alter intercellular adhesion. These findings underscore the potential of PS-AOPs as a promising strategy to mitigate AMR by simultaneously inactivating ARB and impeding ARGs dissemination.202540203758
7810180.9680Photoelectrocatalytic coupling system synergistically removal of antibiotics and antibiotic resistant bacteria from aquatic environment. Antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are ubiquitous in the reclaimed water, posing a potential threat to human and ecological health. Nowadays, the reuse technology of reclaimed water has been widely concerned, but the removal of antibiotics, ARB and ARGs in reclaimed water has not been sufficiently studied. This study used TiO2 nanotube arrays (TNTs) decorated with Ag/SnO2-Sb nanoparticles (TNTs-Ag/SnO2-Sb) as the anode and Ti-Pd/SnO2-Sb as the cathode to construct an efficient photoelectrocatalytic (PEC) system. In this system, 99.9% of ARB was inactivated in 20 min, meanwhile, ARGs was removed within 30 min, and antibiotics were almost completely degraded within 1 h. Furthermore, the effects of system parameters on the removals of antibiotics, ARB and ARGs were also studied. The redox performance of the system was verified by adding persulfate. Escherichia coli, as a representative microorganism in aquatic environments, was used to evaluate the ecotoxicity of PEC treated chloramphenicol (CAP) solution. The ecotoxicity of CAP solution was significantly reduced after being treated by PEC. In addition, transformation intermediates of CAP were identified using liquid chromatography-tandems mass spectrometry (LC-MS/MS) and the possible degradation pathways were proposed. This study could provide a potential alternative method for controlling antibiotic resistance and protecting the quality of reclaimed water.202234736195
6780190.9680Enhanced uptake of antibiotic resistance genes in the presence of nanoalumina. Nanomaterial pollution and the spread of antibiotic resistance genes (ARGs) are global public health and environmental concerns. Whether nanomaterials could aid the transfer of ARGs released from dead bacteria into live bacteria to cause spread of ARGs is still unknown. Here, we demonstrated that nano-Al2O3 could significantly promote plasmid-mediated ARGs transformation into Gram-negative Escherichia coli strains and into Gram-positive Staphylococcus aureus; however, bulk Al2O3 did not have this effect. Under suitable conditions, 7.4 × 10(6) transformants of E. coli and 2.9 × 10(5) transformants of S. aureus were obtained from 100 ng of a pBR322-based plasmid when bacteria were treated with nano-Al2O3. Nanoparticles concentrations, plasmid concentrations, bacterial concentrations, interaction time between the nanomaterial and bacterial cells and the vortexing time affected the transformation efficiency. We also explored the mechanisms underlying this phenomenon. Using fluorescence in situ hybridization and scanning electron microscopy, we found that nano-Al2O3 damaged the cell membrane to produce pores, through which plasmid could enter bacterial cells. Results from reactive oxygen species (ROS) assays, genome-wide expression microarray profiling and quantitative real-time polymerase chain reactions suggested that intracellular ROS damaged the cell membrane, and that an SOS response promoted plasmid transformation. Our results indicated the environmental and health risk resulting from nanomaterials helping sensitive bacteria to obtain antibiotic resistance.201626946995