PERIPHYTON - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
307500.9321Comparison of environmental microbiomes in an antibiotic resistance-polluted urban river highlights periphyton and fish gut communities as reservoirs of concern. Natural waterways near urban areas are heavily impacted by anthropogenic activities, including their microbial communities. A contaminant of growing public health concern in rivers is antibiotic resistant genes (ARGs), which can spread between neighboring bacteria and increase the potential for transmission of AR bacteria to animals and humans. To identify the matrices of most concern for AR, we compared ARG burdens and microbial community structures between sample types from the Scioto River Watershed, Ohio, the United States, from 2017 to 2018. Five environmental matrices (water, sediment, periphyton, detritus, and fish gut) were collected from 26 river sites. Due to our focus on clinically relevant ARGs, three carbapenem resistance genes (bla(KPC), bla(NDM), and bla(OXA-48)) were quantified via DropletDigital™ PCR. At a subset of nine urbanized sites, we conducted16S rRNA gene sequencing and functional gene predictions. Carbapenem resistance genes were quantified from all matrices, with bla(KPC) being the most detected (88 % of samples), followed by bla(NDM) (64 %) and bla(OXA-48) (23 %). Fish gut samples showed higher concentrations of bla(KPC) and bla(NDM) than any other matrix, indicating potential ARG bioaccumulation, and risk of broader dissemination through aquatic and nearshore food webs. Periphyton had higher concentrations of bla(NDM) than water, sediment, or detritus. Microbial community analysis identified differences by sample type in community diversity and structure. Sediment samples had the most diverse microbial communities, and detritus, the least. Spearman correlations did not reveal significant relationships between the concentrations of the monitored ARGs and microbial community diversity. However, several differentially abundant taxa and microbial functions were identified by sample type that is definitive of these matrices' roles in the river ecosystem and habitat type. In summary, the fish gut and periphyton are a concern as AR reservoirs due to their relatively high concentration of carbapenem resistance genes, diverse microbial communities, and natural functions that promote AR.202235973543
306910.9304The hospital sink drain biofilm resistome is independent of the corresponding microbiota, the environment and disinfection measures. In hospitals, the transmission of antibiotic-resistant bacteria (ARB) may occur via biofilms present in sink drains, which can lead to infections. Despite the potential role of sink drains in the transmission of ARB in nosocomial infections, routine surveillance of these drains is lacking in most hospitals. As a result, there is currently no comprehensive understanding of the transmission of ARB and the dissemination of antimicrobial resistance genes (ARGs) and associated mobile genetic elements (MGEs) via sink drains. This study employed a multifaceted approach to monitor the total aerobic bacteria as well as the presence of carbapenemase-producing Enterobacterales (CPEs), the microbiota and the resistome of sink drain biofilms (SDBs) and hospital wastewater (WW) of two separate intensive care units (ICUs) in the same healthcare facility in France. Samples of SDB and WW were collected on a monthly basis, from January to April 2023, in the neonatal (NICU) and the adult (AICU) ICUs of Grenoble Alpes University Hospital. In the NICU, sink drain disinfection with surfactants was performed routinely. In the AICU, routine disinfection is not carried out. Culturable aerobic bacteria were quantified on non-selective media, and CPEs were screened using two selective agars. Isolates were identified by MALDI-TOF MS, and antibiotic susceptibility testing (AST) was performed on Enterobacterales and P. aeruginosa. The resistome was analyzed by high-throughput qPCR targeting >80 ARGs and MGEs. The overall bacterial microbiota was assessed via full-length 16S rRNA sequencing. No CPEs were isolated from SDBs in either ICU by bacterial culture. Culture-independent approaches revealed an overall distinct microbiota composition of the SDBs in the two ICUs. The AICU SDBs were dominated by pathogens containing Gram-negative bacterial genera including Pseudomonas, Stenotrophomona, Klebsiella, and Gram-positive Staphylococcus, while the NICU SDBs were dominated by the Gram-negative genera Achromobacter, Serratia, and Acidovorax, as well as the Gram-positive genera Weisella and Lactiplantibacillus. In contrast, the resistome of the SDBs exhibited no significant differences between the two ICUs, indicating that the abundance of ARGs and MGEs is independent of microbiota composition and disinfection practices. The AICU WW exhibited more distinct aerobic bacteria than the NICU WW. In addition, the AICU WW yielded 15 CPEs, whereas the NICU WW yielded a single CPE. All the CPEs were characterized at the species level. The microbiota of the NICU and AICU WW samples differed from their respective SDBs and exhibited distinct variations over the four-month period:the AICU WW contained a greater number of genes conferring resistance to quinolones and integron integrase genes, whereas the NICU WW exhibited a higher abundance of streptogramin resistance genes. Our study demonstrated that the resistome of the hospital SDBs in the two ICUs of the investigated healthcare institute is independent of the microbiota, the environment, and the local disinfection measures. However, the prevalence of CPEs in the WW pipes collecting the waste from the investigated drains differed. These findings offer valuable insights into the resilience of resistance genes in SDBs in ICUs, underscoring the necessity for innovative strategies to combat antimicrobial resistance in clinical environments.202540483807
638620.9295Distribution of antibiotic and metal resistance genes in two glaciers of North Sikkim, India. Glacier studies as of late have ruffled many eyeballs, exploring this frigid ecology to understand the impact of climate change. Mapquesting the glaciers led to the discovery of concealed world of "psychrophiles" harboring in it. In the present study, the antibiotic resistance genes (ARGs) and heavy metal resistance genes (MRGs) were evaluated through both the culture-dependent and culture-independent methods. Samples were collected from two different glaciers, i.e., debris-covered glacier (Changme Khangpu) and debris-free glacier (Changme Khang). Functional metagenomics of both the glacier samples, provided evidence of presence of resistant genes against various antibiotic groups. Bacitracin resistant gene (bacA) was the predominant ARG in both the glaciers. MRGs in both the glacier samples were diversified as the genes detected were resistant against various heavy metals such as arsenic, tungsten, mercury, zinc, chromium, copper, cobalt, and iron. Unique MRGs identified from Changme Khangpu glacier were resistant to copper (cutA, cutE, cutC, cutF, cueR, copC, and copB) and chromium (yelf, ruvB, nfsA, chrR, and chrA) whereas, from Changme Khang glacier they showed resistance against cobalt (mgtA, dmef, corD, corC, corB, and cnrA), and iron (yefD, yefC, yefB, and yefA) heavy metals. ARGs aligned maximum identity with Gram-negative psychrotolerant bacteria. The cultured bacterial isolates showed tolerance to high concentrations of tested heavy metal solutions. Interestingly, some of the antibiotic resistant bacterial isolates also showed tolerance towards the higher concentrations of heavy metals. Thus, an introspection of the hypothesis of co-occurrence and/co-selection of ARGs and MRGs in such environments has been highlighted here.202032888596
307230.9291Faecal microbiota and antibiotic resistance genes in migratory waterbirds with contrasting habitat use. Migratory birds may have a vital role in the spread of antimicrobial resistance across habitats and regions, but empirical data remain scarce. We investigated differences in the gut microbiome composition and the abundance of antibiotic resistance genes (ARGs) in faeces from four migratory waterbirds wintering in South-West Spain that differ in their habitat use. The white stork Ciconia ciconia and lesser black-backed gull Larus fuscus are omnivorous and opportunistic birds that use highly anthropogenic habitats such as landfills and urban areas. The greylag goose Anser anser and common crane Grus grus are herbivores and use more natural habitats. Fresh faeces from 15 individuals of each species were analysed to assess the composition of bacterial communities using 16S rRNA amplicon-targeted sequencing, and to quantify the abundance of the Class I integron integrase gene (intI1) as well as genes encoding resistance to sulfonamides (sul1), beta-lactams (bla(TEM), bla(KPC) and bla(NDM)), tetracyclines (tetW), fluoroquinolones (qnrS), and colistin (mcr-1) using qPCR. Bacterial communities in gull faeces were the richest and most diverse. Beta diversity analysis showed segregation in faecal communities between bird species, but those from storks and gulls were the most similar, these being the species that regularly feed in landfills. Potential bacterial pathogens identified in faeces differed significantly between bird species, with higher relative abundance in gulls. Faeces from birds that feed in landfills (stork and gull) contained a significantly higher abundance of ARGs (sul1, bla(TEM), and tetW). Genes conferring resistance to last resort antibiotics such as carbapenems (bla(KPC)) and colistin (mcr-1) were only observed in faeces from gulls. These results show that these bird species are reservoirs of antimicrobial resistant bacteria and suggest that waterbirds may disseminate antibiotic resistance across environments (e.g., from landfills to ricefields or water supplies), and thus constitute a risk for their further spread to wildlife and humans.202133872913
721540.9284High-throughput qPCR profiling of antimicrobial resistance genes and bacterial loads in wastewater and receiving environments. Wastewater treatment plants (WWTPs) are hot spots for the acquisition and spread of antimicrobial resistance (AMR). This regional-based study quantified antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacteria in hospital and community-derived wastewater and receiving environments, using high-throughput qPCR (HT-qPCR). This is the first study to apply Resistomap's Antibiotic Resistance Gene Index (ARGI) as a standardised metric to find the overall AMR level across different WWTPs. ARGI of WWTPs ranged from 2.0 to 2.3, indicating higher relative ARG levels than the mean European ARGI of 2.0, but lower than the global mean of 2.4. The highest diversity and abundance of ARGs were observed in untreated hospital and community wastewater. The reduction of total ARGs during wastewater treatment (0.2-2 logs) and bacteria (0.3-1.5 logs) varied spatio-temporally across the WWTPs. Despite a decrease in ARG and bacterial abundance in treated effluents, substantial loads were still released into receiving environments. Notably, ARG levels in coastal sediments were comparable to those in untreated wastewater, and most ARGs were shared between wastewater and receiving environments, highlighting the impact of wastewater discharge on these ecosystems. Sewage outfall exposure increased ARGs in shellfish, emphasising risks to shellfish hygiene. This study provides evidence to inform policymaking, emphasising advanced wastewater treatment methods and combined sewer overflow (CSO) management to mitigate ARG release, protecting water users and the food chain.202540127809
527950.9281Occurrence of integrons and antibiotic resistance genes in cryoconite and ice of Svalbard, Greenland, and the Caucasus glaciers. The prevalence of integrons and antibiotic resistance genes (ARGs) is a serious threat for public health in the new millennium. Although commonly detected in sites affected by strong anthropogenic pressure, in remote areas their occurrence, dissemination, and transfer to other ecosystems is poorly recognized. Remote sites are considered as a benchmark for human-induced contamination on Earth. For years glaciers were considered pristine, now they are regarded as reservoirs of contaminants, thus studies on contamination of glaciers, which may be released to other ecosystems, are highly needed. Therefore, in this study we evaluated the occurrence and frequency of clinically relevant ARGs and resistance integrons in the genomes of culturable bacteria and class 1 integron-integrase gene copy number in the metagenome of cryoconite, ice and supraglacial gravel collected on two Arctic (South-West Greenland and Svalbard) and two High Mountain (the Caucasus) glaciers. Altogether, 36 strains with intI1 integron-integrase gene were isolated. Presence of class 1 integron-integrase gene was also recorded in metagenomic DNA from all sampling localities. The mean values of relative abundance of intI1 gene varied among samples and ranged from 0.7% in cryoconite from Adishi Glacier (the Caucasus) to 16.3% in cryoconite from Greenland. Moreover, antibiotic-resistant strains were isolated from all regions. Genes conferring resistance to β-lactams (bla(SHV), bla(TEM), bla(OXA), bla(CMY)), fluoroquinolones (qepA, qnrC), and chloramphenicol (cat, cmr) were detected in the genomes of bacterial isolates.202032059297
249960.9276The threat of carbapenem-resistant bacteria in the environment: Evidence of widespread contamination of reservoirs at a global scale. Environmental reservoirs of antibiotic resistance (AR) are a growing concern that are gathering more attention as potential sources for human infection. Carbapenem-resistant Enterobacteriaceae (CRE) are extremely dangerous, as carbapenems are often drugs of last resort that are used to treat multi-drug resistant infections. Among the genes capable of conferring carbapenem resistance to bacteria, the most transferrable are those that produce carbapenemase, an enzyme that hydrolyzes carbapenems and other β-lactam antibiotics. The goal of this review was to comprehensively identify global environmental reservoirs of carbapenemase-producing genes, as well as identify potential routes of transmission to humans. The genes of interest were Klebsiella pneumoniae carbapenemase (KPC), New Delhi Metallo-β-lactamase (NDM), Oxacillinase-48-type carbapenemases (OXA-48), and Verona Integron-Mediated Metallo-β-lactamase (VIM). Carbapenemase genes have been reported in the environment on almost every continent. Hospital and municipal wastewater, drinking water, natural waterways, sediments, recreational waters, companion animals, wildlife, agricultural environments, food animals, and retail food products were identified as current reservoirs of carbapenemase-producing bacteria and genes. Humans have been recorded as carrying CRE, without recent admittance to a hospital or long-term care facility in France, Egypt, and China. CRE infections from the environment have been reported in patients in Montpellier, France and Cairo, Egypt. This review demonstrates the need for 1) comprehensive monitoring of AR not only in waterways, but also other types of environmental matrices, such as aerosol, dusts, periphyton, and surfaces in indoor environments; and 2) action to reduce the prevalence and mitigate the effects of these potentially deadly resistance genes. In order to develop an accurate quantitative model for environmental dimensions of AR, longitudinal sampling and quantification of AR genes and bacteria are needed, using a One Health approach.201931541827
348870.9275Characteristics of Antibiotic Resistance Genes and Antibiotic-Resistant Bacteria in Full-Scale Drinking Water Treatment System Using Metagenomics and Culturing. The contamination of antibiotic resistance genes (ARGs) may directly threaten human health. This study used a metagenomic approach to investigate the ARG profile in a drinking water treatment system (DWTS) in south China. In total, 317 ARG subtypes were detected; specifically, genes encoding bacitracin, multidrug, and sulfonamide were widely detected in the DWTS. Putative ARG hosts included Acidovorax (6.0%), Polynucleobacter (4.3%), Pseudomonas (3.4%), Escherichia (1.7%), and Klebsiella (1.5%) as the enriched biomarkers in the DWTS, which mainly carried bacitracin, beta-lactam, and aminoglycoside ARGs. From a further analysis of ARG-carrying contigs (ACCs), Stenotrophomonas maltophilia and Pseudomonas aeruginosa were the most common pathogens among the 49 ACC pathogens in the DWTS. The metagenomic binning results demonstrated that 33 high-quality metagenome-assembled genomes (MAGs) were discovered in the DWTS; particularly, the MAG identified as S. maltophilia-like (bin.195) harbored the greatest number of ARG subtypes (n = 8), namely, multidrug (n = 6; smeD, semE, multidrug_transporter, mexE, semB, and smeC), beta-lactam (n = 1; metallo-beta-lactamase), and aminoglycoside [n = 1; aph(3')-IIb]. The strong positive correlation between MGEs and ARG subtypes revealed a high ARG dissemination risk in the DWTS. Based on the pure-culture method, 93 isolates that belong to 30 genera were recovered from the DWTS. Specifically, multidrug-resistant pathogens and opportunistic pathogens such as P. aeruginosa, Bacillus cereus, and S. maltophilia were detected in the DWTS. These insights into the DWTS's antibiotic resistome indicated the need for more comprehensive ARG monitoring and management in the DWTS. Furthermore, more effective disinfection methods need to be developed to remove ARGs in DWTSs, and these findings could assist governing bodies in the surveillance of antibiotic resistance in DWTSs.202135273579
349880.9275Comparative study on the bacterial diversity and antibiotic resistance genes of urban landscape waters replenished by reclaimed water and surface water in Xi'an, China. Pathogenic bacteria and antibiotic resistance genes (ARGs) in urban landscape waters may pose a potential threat to human health. However, the investigation of their occurrence in the urban landscape waters replenished by reclaimed water (RW) and surface water (SW) is still insufficient. The water samples collected from six urban landscape waters replenished by RW or SW were used to analyze bacterial diversity using high-throughput sequencing of 16S rRNA gene and to detect 18 ARGs and 2 integron-integrase genes by means of quantitative PCR array. Results indicated that Proteobacteria was the dominant phylum in all six urban landscape waters. The bacterial species richness was lower in urban landscape waters replenished by RW than that by SW. Sulfonamide resistance genes (sulI and sulIII) were the major ARGs in these urban landscape waters. No significant difference in the relative abundance of sulfonamide resistance genes, tetracycline resistance genes, and most of beta-lactam resistance genes was observed between RW-replenished and SW-replenished urban landscape waters. By contrast, the relative abundance of bla(ampC) gene and qnrA gene in RW-replenished urban landscape waters was significantly higher than that in SW-replenished urban landscape waters (p < 0.05), which suggested that use of RW may increase the amount of specific ARGs to urban landscape waters. Interestingly, among six urban landscape waters, RW-replenished urban landscape waters had a relatively rich variety of ARGs (12-15 of 18 ARGs) but a low relative abundance of ARGs (458.90-1944.67 copies/16S × 10(6)). The RW replenishment was found to have a certain impact on the bacterial diversity and prevalence of ARGs in urban landscape waters, which provide new insight into the effect of RW replenishment on urban landscape waters.202133786766
713390.9275Prevalence of antibiotic resistance genes in bacterial communities associated with Cladophora glomerata mats along the nearshore of Lake Ontario. The alga Cladophora glomerata can erupt in nuisance blooms throughout the lower Great Lakes. Since bacterial abundance increases with the emergence and decay of Cladophora, we investigated the prevalence of antibiotic resistance (ABR) in Cladophora-associated bacterial communities up-gradient and down-gradient from a large sewage treatment plant (STP) on Lake Ontario. Although STPs are well-known sources of ABR, we also expected detectable ABR from up-gradient wetland communities, since they receive surface run-off from urban and agricultural sources. Statistically significant differences in aquatic bacterial abundance and ABR were found between down-gradient beach samples and up-gradient coastal wetland samples (ANOVA, Holm-Sidak test, p < 0.05). Decaying and free-floating Cladophora sampled near the STP had the highest bacterial densities overall, including on ampicillin- and vancomycin-treated plates. However, quantitative polymerase chain reaction analysis of the ABR genes ampC, tetA, tetB, and vanA from environmental communities showed a different pattern. Some of the highest ABR gene levels occurred at the 2 coastal wetland sites (vanA). Overall, bacterial ABR profiles from environmental samples were distinguishable between living and decaying Cladophora, inferring that Cladophora may control bacterial ABR depending on its life-cycle stage. Our results also show how spatially and temporally dynamic ABR is in nearshore aquatic bacteria, which warrants further research.201728192677
3073100.9273A watershed impacted by anthropogenic activities: Microbial community alterations and reservoir of antimicrobial resistance genes. Water is the main resource for maintaining life. Anthropic activities influence the microbial epidemiological chain in watersheds, which can act as ways of disseminating microorganisms resistant to antimicrobial drugs, with impacts on human, animal, and environmental health. Here, we characterized aquatic microbial communities and their resistomes in samples collected along Rio das Ostras watershed during two seasons. Surface water samples were collected at eleven sites from the Jundiá, Iriry, and Rio das Ostras rivers in two seasons (dry and wet season). Microbial DNA was extracted, high-throughput sequenced and screened for antimicrobial resistance genetic (ARG) markers. The physicochemical characteristics and the microbiota data confirmed that Rio das Ostras watershed can be divided into three well defined portions: rural, urban, and marine. Rural areas were enriched by bacteria typically found in limnic environments and Patescibacteria phyla. The urban portion was characterized by sites with low pH and groups associated with iron oxidation. Some genera of clinical relevance were also identified, though in relatively low abundance. The marine site was enriched mainly by Cyanobacteria and bacteria that showed strong correlation with conductivity, salinity, and chloride. Twenty-six ARG markers were identified on the resistome, being found most frequently in the urban area, despite being present in rural sites. Among them were some related to classes of great clinical concern, such as genes coding for extended-spectrum beta-lactamase (bla(CTX-M) and bla(TEM)), resistance to carbapenems (bla(KPC)) and to methicillin by Staphylococcus aureus (mecA). These results broaden our understanding of the microbial community of a watershed impacted by anthropogenic actions. The large number of ARGs detected along the Rio das Ostras watershed contrasts with the small number of microorganisms of clinical relevance observed, suggesting that antimicrobial resistance has arisen from non-clinical environments and microbes. Our results corroborate that freshwater acts as a reservoir of antimicrobial resistance genes.202134328962
7646110.9272Assessment of Bacterial Community and Other Microorganism Along the Lam Takhong Watercourse, Nakhon Ratchasima, Thailand. Lam Takhong, a vital watercourse in Nakhon Ratchasima province, Thailand, supports agricultural, recreational, and urban activities. Originating in a national park, it flows through urban areas before discharging into a dam and running off via the sluice gate. While water quality monitoring is routine, microbial community data have never been reported. This study assesses the microorganism diversity and functional genes in Lam Takhong watercourse using a shotgun sequencing metagenomics approach. Water samples were collected from the upstream, midstream, and downstream sections. The midstream area exhibited the highest abundance of fecal coliform bacteria, plankton, and benthos, suggesting elevated pollution levels. Genes related to metabolism, particularly carbohydrate and amino acid pathways, were predominant. Proteobacteria was the most abundant phylum found in the water, with Limnohabitans as the dominant planktonic bacteria. Bacteria such as Staphylococcus, Mycobacterium, Escherichia, Pseudomonas, Enterococcus, Neisseria, Streptomyces, and Salmonella were detected, along with antibiotic resistance genes, raising public health concerns. These findings emphasize the need for microbial monitoring in the Lam Takhong to determine the potential water quality bioindicator and prevent potential disease spread through the water system.202540244481
7216120.9272Tracking antibiotic resistance through the environment near a biosolid spreading ground: Resistome changes, distribution, and metal(loid) co-selection. The application of urban wastewater treatment plants (WWTPs) products to agricultural lands has contributed to the rising level of antibiotic resistance and drawn a critical public health concern. It has not been thoroughly investigated at which spatial scales a biosolid applied area as a potentially predominant source affects surrounding soil resistomes. This study investigated distribution and impact of WWTP biosolids treated with anaerobic digestion on an agricultural area. Heterotrophic plate counts (HPCs) and quantitative polymerase chain reaction (qPCR) were performed for detection of selected antibiotic-resistant bacteria (ARB), selected antibiotic resistance genes (ARGs), intI1 genes, and 16S rRNA genes. Biosolid samples contained significantly higher levels of selected ARGs than the raw agricultural soils (p < 0.05). The average relative abundances of intI1, sul1, bla(SHV), and ermB genes were significantly higher in biosolid-amended soils than nearby agricultural soils (p < 0.05). Spatial interpolation analysis of relative gene abundances of intI1, sul1, sul2, and tetW across the studied area further indicated directional trends towards the northwest and southeast directions, highlighting possible airborne spread. Concentrations of Co, Cu, Ni, and Fe were found to be significantly and positively correlated with relative abundances of intI1, sul1, and tetW genes (p < 0.05). The resistance ratios of culturable antibiotic-resistant bacteria in agricultural soils with biosolid amendments were generally identical to those without biosolid amendments. This study will advance the understanding of the antibiotic resistome in agricultural soils impacted by long-term waste reuse and inform the evaluation strategies for future biosolids application and management.202235121038
3179130.9271Deciphering the mobility, pathogenic hosts, and co-selection of antibiotic resistance genes in untreated wastewater from three different hospitals. OBJECTIVE: Antibiotic resistance genes (ARGs) in hospital wastewater pose significant environmental and public health risks, yet the co-selection mechanisms involving metal/biocide resistance genes (MRGs/BRGs) and the role of mobile genetic elements (MGEs) remain poorly characterized. This study aimed to comprehensively assess the abundance, mobility, pathogenic hosts, and co-selection patterns of ARGs, MRGs, and BRGs in untreated wastewater from three types of hospitals. METHODS: Untreated wastewater samples from nine sources across three hospital types (general, traditional Chinese medicine, and dental) were analyzed using metagenomic sequencing and assembly. ARGs, MRGs, and BRGs were identified via the SARG and BacMet databases. ARG hosts, mobility, and MGE co-occurrence were analyzed using PlasFlow and MOB-suite, with risk levels evaluated alongside pathogenic bacteria databases. RESULTS: A total of 1911 ARGs (222 subtypes), 1662 MRGs (167 subtypes), and 916 BRGs (139 subtypes) were detected. Tetracycline, multidrug, and β-lactam resistance genes were predominant, with 46.43 % of ARGs being plasmid-associated. Key pathogens including Klebsiella pneumoniae and Enterococcus spp. harbored high-risk ARGs such as KPC-2 and NDM-1. Notably, 76.2 % of ARGs in traditional Chinese medicine hospital wastewater were classified as high-risk. Significant co-occurrence of ARGs with MGEs (e.g., DDE recombinases) and MRGs/BRGs was observed, underscoring the role of horizontal gene transfer and co-selection. CONCLUSION: Untreated hospital wastewater represents a significant reservoir of ARGs, with risks exacerbated by pathogenic hosts, MGE-mediated HGT, and metal/biocide co-selection. These findings underscore the urgent need for optimized wastewater treatment strategies to curb the spread of antibiotic resistance and inform future intervention efforts.202541067299
3295140.9271Metagenomic Analysis of the Abundance and Composition of Antibiotic Resistance Genes in Hospital Wastewater in Benin, Burkina Faso, and Finland. Antibiotic resistance is a global threat to human health, with the most severe effect in low- and middle-income countries. We explored the presence of antibiotic resistance genes (ARGs) in the hospital wastewater (HWW) of nine hospitals in Benin and Burkina Faso, two low-income countries in West Africa, with shotgun metagenomic sequencing. For comparison, we also studied six hospitals in Finland. The highest sum of the relative abundance of ARGs in the 68 HWW samples was detected in Benin and the lowest in Finland. HWW resistomes and mobilomes in Benin and Burkina Faso resembled each other more than those in Finland. Many carbapenemase genes were detected at various abundances, especially in HWW from Burkina Faso and Finland. The bla(GES) genes, the most widespread carbapenemase gene in the Beninese HWW, were also found in water intended for hand washing and in a puddle at a hospital yard in Benin. mcr genes were detected in the HWW of all three countries, with mcr-5 being the most common mcr gene. These and other mcr genes were observed in very high relative abundances, even in treated wastewater in Burkina Faso and a street gutter in Benin. The results highlight the importance of wastewater treatment, with particular attention to HWW. IMPORTANCE The global emergence and increased spread of antibiotic resistance threaten the effectiveness of antibiotics and, thus, the health of the entire population. Therefore, understanding the resistomes in different geographical locations is crucial in the global fight against the antibiotic resistance crisis. However, this information is scarce in many low- and middle-income countries (LMICs), such as those in West Africa. In this study, we describe the resistomes of hospital wastewater in Benin and Burkina Faso and, as a comparison, Finland. Our results help to understand the hitherto unrevealed resistance in Beninese and Burkinabe hospitals. Furthermore, the results emphasize the importance of wastewater management infrastructure design to minimize exposure events between humans, HWW, and the environment, preventing the circulation of resistant bacteria and ARGs between humans (hospitals and community) and the environment.202336728456
7351150.9270Dynamics of integron structures across a wastewater network - Implications to resistance gene transfer. Class 1 and other integrons are common in wastewater networks, often being associated with antibiotic resistance genes (ARGs). However, the importance of different integron structures in ARG transfer within wastewater systems has only been implied, especially between community and hospital sources, among wastewater treatment plant compartments, and in receiving waters. This uncertainty is partly because current clinical class 1 integron qPCR assays (i.e., that target human-impacted structures, i.e., clintI1) poorly delineate clintI1 from non-impacted class 1 integron structures. They also say nothing about their ARG content. To fill these technical gaps, new real-time qPCR assays were developed for "impacted" class 1 structures (called aint1; i.e., anthropogenic class 1 integrons) and empty aint1 structures (i.e., carry no ARGs; called eaint1). The new assays and other integron assays then were used to examine integron dynamics across a wastewater network. 16S metagenomic sequencing also was performed to characterise associated microbiomes. aint1 abundances per bacterial cell were about 10 times greater in hospital wastewaters compared with other compartments, suggesting aint1 enrichment with ARGs in hospital sources. Conversely, the relative abundance of eaint1 structures were over double in recycled activated sludge compared with other compartments, except receiving waters (RAS; ∼30% of RAS class 1 structures did not carry ARGs). Microbiome analysis showed that human-associated bacterial taxa with mobile integrons also differed in RAS and river sediments. Further, class 1 integrons in RAS bacteria appear to have released ARGs, whereas hospital bacteria have accumulated ARGs. Results show that quantifying integron dynamics can help explain where ARG transfer occurs in wastewater networks, and should be considered in future studies on antibiotic resistance in the environment.202134673462
2271160.9270Detection of clinically relevant antibiotic-resistant bacteria in shared fomites, waste water and municipal solid wastes disposed near residential areas of a Nigerian city. Studies investigating environmental hotspots of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in Nigeria are limited. This study was designed to assess various environmental sources and commonly touched surfaces as potential carriers of ARB and ARGs with implications for public health. A total of 392 samples, including sewage (36), sludge (36), diapers (20), plastics (20), water sachet polythene bags (20), food wastes (20), soil beneath dump sites (20), and frequently touched surfaces such as restroom floors (80), corridors (24), door handles (56), and room floors and walls (60), were collected and screened for the presence of resistant bacteria carrying genes such as bla (KPC), bla (NDM-1), bla (CMY-2), bla (IMP), bla (OXA66) and MecA. Additionally, we employed standard techniques to detect methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii . We also evaluated the effectiveness of routine disinfection procedures in eliminating ARB from restroom floors. Our findings revealed that sewage, sludge, diapers, food wastes and restroom floors are frequently contaminated with highly and moderately resistant strains of E. coli, K. pneumoniae, P. aeruginosa and MRSA. Notably, we identified two variants of the bla (OXA51-like) gene (bla (OXA-66) and bla (OXA-180)) in A. baumannii isolated from these environmental sources. Furthermore, we detected seven ESBL- K. pneumoniae , five ESBL- A. baumannii , two ESBL- E. coli and one ESBL- P. aeruginosa , all carrying one or more ARGs (bla (KPC), bla (NDM-1), bla (CMY-2)), in isolates recovered from sewage, sludge, restroom floors and plastics. It is of note that ARB persisted on restroom floors even after disinfection procedures. In conclusion, this study highlights that environmental wastes indiscriminately discarded in residential areas and shared surfaces among individuals are heavily colonized by ARB carrying ARGs of significant public health importance.202338188243
3173170.9268Antibiotic-resistant bacteria in marine productive zones of the eastern Arabian Sea: Implications for human and environmental health. The increasing threat of antibiotic resistance is a major global concern affecting human and environmental health. Marine environments, though underexplored, are emerging as significant reservoirs for antibiotic resistance genes (ARGs). This study provides genome-resolved shotgun metagenomic insights into the seasonal and spatial dynamics of ARGs in the chlorophyll maximum zones of the eastern Arabian Sea, focusing on bacterial communities from coastal (30 m) and offshore (600 m) depths. Using a shotgun metagenomic approach, 31 potential ARGs were identified across both non-monsoon and monsoon seasons, with higher abundance observed in offshore stations during the non-monsoon season. Multidrug resistance genes such as blaEFM-1, catB2 and mexK, conferring resistance to carbapenems, chloramphenicol and multiple antibiotics, were prevalent in taxa like Staphylococcus sp., Qipengyuania sp. and Alcanivorax sp. Clinically relevant taxa, including Pseudomonas sp. and Staphylococcus sp., harbored ARGs, which may raise concerns regarding potential seafood-mediated ARG transmission. The significant enrichment and co-localization of mobile genetic elements (MGEs) with ARGs suggest enhanced horizontal gene transfer among native marine bacteria in the offshore environments. However, the limited distribution of ARGs and the absence of associated MGEs during the monsoon season may result from dilution caused by freshwater influx. Comparative functional analysis revealed stress-related functional enrichment in ARG-carrying metagenomic assembled genomes, suggesting environmental stress may enhance the spread of ARGs within offshore microbial communities. These findings challenge the coastal-centric view of marine antibiotic resistance by identifying offshore waters as underrecognized ARG reservoirs. Establishing a genomic baseline for One Health ARG surveillance, this study underscores the urgent need to integrate offshore regions into global monitoring frameworks to protect marine ecosystems and safeguard public health.202540633655
7458180.9268Hidden Resistome: Enrichment Reveals the Presence of Clinically Relevant Antibiotic Resistance Determinants in Treated Wastewater-Irrigated Soils. Treated-wastewater (TW) irrigation transfers antibiotic-resistant bacteria (ARB) to soil, but persistence of these bacteria is generally low due to resilience of the soil microbiome. Nonetheless, wastewater-derived bacteria and associated antibiotic resistance genes (ARGs) may persist below detection levels and potentially proliferate under copiotrophic conditions. To test this hypothesis, we exposed soils from microcosm, lysimeter, and field experiments to short-term enrichment in copiotroph-stimulating media. In microcosms, enrichment stimulated growth of multidrug-resistant Escherichia coli up to 2 weeks after falling below detection limits. Lysimeter and orchard soils irrigated in-tandem with either freshwater or TW were subjected to culture-based, qPCR and shotgun metagenomic analyses prior, and subsequent, to enrichment. Although native TW- and freshwater-irrigated soil microbiomes and resistomes were similar to each other, enrichment resulted in higher abundances of cephalosporin- and carbapenem-resistant Enterobacteriaceae and in substantial differences in the composition of microbial communities and ARGs. Enrichment stimulated ARG-harboring Bacillaceae in the freshwater-irrigated soils, whereas in TWW-irrigated soils, ARG-harboring γ-proteobacterial families Enterobacteriaceae and Moraxellaceae were more profuse. We demonstrate that TW-derived ARB and associated ARGs can persist at below detection levels in irrigated soils and believe that similar short-term enrichment strategies can be applied for environmental antimicrobial risk assessment in the future.202133904706
7327190.9267Exploring the microbiome, antibiotic resistance genes, mobile genetic element, and potential resistant pathogens in municipal wastewater treatment plants in Brazil. Wastewater treatment plants (WWTPs) have been widely investigated in Europe, Asia and North America regarding the occurrence and fate of antibiotic resistance (AR) elements, such as antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and antibiotic resistant bacteria and pathogens. However, monitoring data about AR elements in municipal WWTPs in Brazil are scarce. This study investigated the abundance of intI1, five ARGs (sul1, tetA, blaTEM, ermB and qnrB) and 16S rRNA in raw and treated wastewater of three WWTPs, using different sewage treatments named CAS (Conventional activated sludge), UASB/BTF (UASB followed by biological trickling filter) and MAS/UV (modified activated sludge with UV disinfection stage). Bacterial diversity and the presence of potentially pathogenic groups were also evaluated, and associations between genetic markers and the bacterial populations were presented. All WWTPs decreased the loads of genetic markers finally discharged to receiving water bodies and showed no evidence of being hotspots for antimicrobial resistance amplification in wastewater, since the abundances of intI1 and ARGs within the bacterial population were not increased in the treated effluents. UASB/BTF showed a similar performance to that of the CAS and MAS/UV, reinforcing the sanitary and environmental advantages of this biological treatment, widely applied for wastewater treatment in warm climate regions. Bacterial diversity and richness increased after treatments, and bacterial communities in wastewater samples differed due to catchment areas and treatment typologies. Potential pathogenic population underwent considerable decrease after the treatments; however, strong significant correlations with intI1 and ARGs revealed potential multidrug-resistant pathogenic bacteria (Aeromonas, Arcobacter, Enterobacter, Escherichia-Shigella, Stenotrophomonas and Streptococcus) in the treated effluents, although in reduced relative abundances. These are contributive results for understanding the fate of ARGs, MGEs and potential pathogenic bacteria after wastewater treatments, which might support actions to mitigate their release into Brazilian aquatic environments in the near future.202235724791