PDFL - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
10400.9096Bile Salt Hydrolases with Extended Substrate Specificity Confer a High Level of Resistance to Bile Toxicity on Atopobiaceae Bacteria. The bile resistance of intestinal bacteria is among the key factors responsible for their successful colonization of and survival in the mammalian gastrointestinal tract. In this study, we demonstrated that lactate-producing Atopobiaceae bacteria (Leptogranulimonas caecicola TOC12(T) and Granulimonas faecalis OPF53(T)) isolated from mouse intestine showed high resistance to mammalian bile extracts, due to significant bile salt hydrolase (BSH) activity. We further succeeded in isolating BSH proteins (designated LcBSH and GfBSH) from L. caecicola TOC12(T) and G. faecalis OPF53(T), respectively, and characterized their enzymatic features. Interestingly, recombinant LcBSH and GfBSH proteins exhibited BSH activity against 12 conjugated bile salts, indicating that LcBSH and GfBSH have much broader substrate specificity than the previously identified BSHs from lactic acid bacteria, which are generally known to hydrolyze six bile salt isomers. Phylogenetic analysis showed that LcBSH and GfBSH had no affinities with any known BSH subgroup and constituted a new BSH subgroup in the phylogeny. In summary, we discovered functional BSHs with broad substrate specificity from Atopobiaceae bacteria and demonstrated that these BSH enzymes confer bile resistance to L. caecicola TOC12(T) and G. faecalis OPF53(T).202236142891
62710.9050Analysis of a gene family for PDF-like peptides from Arabidopsis. Plant defensins are small, basic peptides that have a characteristic three-dimensional folding pattern which is stabilized by four disulfide bridges. We show here that Arabidopsis contains in addition to the proper plant defensins a group of 9 plant defensin-like (PdfL) genes. They are all expressed at low levels while GUS fusions of the promoters showed expression in most tissues with only minor differences. We produced two of the encoded peptides in E. coli and tested the antimicrobial activity in vitro. Both were highly active against fungi but had lower activity against bacteria. At higher concentrations hyperbranching and swollen tips, which are indicative of antimicrobial activity, were induced in Fusarium graminearum by both peptides. Overexpression lines for most PdfL genes were produced using the 35S CaMV promoter to study their possible in planta function. With the exception of PdfL4.1 these lines had enhanced resistance against F. oxysporum. All PDFL peptides were also transiently expressed in Nicotiana benthamiana leaves with agroinfiltration using the pPZP3425 vector. In case of PDFL1.4 this resulted in complete death of the infiltrated tissues after 7 days. All other PDFLs resulted only in various degrees of small necrotic lesions. In conclusion, our results show that at least some of the PdfL genes could function in plant resistance.202134556705
874420.9025The Arabidopsis GPI-Anchored LTPg5 Encoded by At3g22600 Has a Role in Resistance against a Diverse Range of Pathogens. Arabidopsis contains 34 genes for glycosylphosphatidylinositol (GPI)-anchored LTPg proteins. A motif analysis has placed these into four groups. With one exception, all are produced with a signal peptide and are most likely attached to the cell membrane via the GPI anchor. Several of the LTPg genes across the four groups are downregulated in syncytia induced by the beet cyst nematode Heterodera schachtii. We have here studied At3g22600 encoding LTPg5, which is the most strongly downregulated LTPg gene. It is mainly expressed in roots, and a promoter::GUS line was used to confirm the downregulation in syncytia and also showed downregulation in galls of the root knot nematode Meloidogyne incognita. In contrast, infection with bacteria (Pseudomonas syringae) and fungi (Botrytis cinerea) led to the induction of the gene in leaves. This diverse regulation of LTPg5 indicated a role in resistance, which we confirmed with overexpression lines and a T-DNA mutant. The overexpression lines were more resistant to both nematode species and to P. syringae and B. cinerea, while a knock-out mutant was more susceptible to H. schachtii and P. syringae. Thus, LTPg5 encoded by At3g22600 is part of the Arabidopsis resistance mechanism against pathogens. LTPg5 has probably no direct antimicrobial activity but could perhaps act by associating with a receptor-like kinase, leading to the induction of defense genes such as PR1.202032150834
874630.8980Enhanced Resistance to Fungal and Bacterial Diseases Due to Overexpression of BSR1, a Rice RLCK, in Sugarcane, Tomato, and Torenia. Sugarcane smut caused by Sporisorium scitamineum is one of the most devastating sugarcane diseases. Furthermore, Rhizoctonia solani causes severe diseases in various crops including rice, tomato, potato, sugar beet, tobacco, and torenia. However, effective disease-resistant genes against these pathogens have not been identified in target crops. Therefore, the transgenic approach can be used since conventional cross-breeding is not applicable. Herein, the overexpression of BROAD-SPECTRUM RESISTANCE 1 (BSR1), a rice receptor-like cytoplasmic kinase, was conducted in sugarcane, tomato and torenia. BSR1-overexpressing tomatoes exhibited resistance to the bacteria Pseudomonas syringae pv. tomato DC3000 and the fungus R. solani, whereas BSR1-overexpressing torenia showed resistance to R. solani in the growth room. Additionally, BSR1 overexpression conferred resistance to sugarcane smut in the greenhouse. These three BSR1-overexpressing crops exhibited normal growth and morphologies except in the case of exceedingly high levels of overexpression. These results indicate that BSR1 overexpression is a simple and effective tool for conferring broad-spectrum disease resistance to many crops.202336835053
33240.8964Analysis and Reconstitution of the Menaquinone Biosynthesis Pathway in Lactiplantibacillus plantarum and Lentilactibacillus buchneri. In Lactococcus lactis and some other lactic acid bacteria, respiratory metabolism has been reported upon supplementation with only heme, leading to enhanced biomass formation, reduced acidification, resistance to oxygen, and improved long-term storage. Genes encoding a complete respiratory chain with all components were found in genomes of L. lactis and Leuconostoc mesenteroides, but menaquinone biosynthesis was found to be incomplete in Lactobacillaceae (except L. mesenteroides). Lactiplantibacillus plantarum has only two genes (menA, menG) encoding enzymes in the biosynthetic pathway (out of eight), and Lentilactobacillus buchneri has only four (menA, menB, menE, and menG). We constructed knock-out strains of L. lactis defective in menA, menB, menE, and menG (encoding the last steps in the pathway) and complemented these by expression of the extant genes from Lactipl. plantarum and Lent. buchneri to verify their functionality. Three of the Lactipl. plantarum biosynthesis genes, lpmenA1, lpmenG1, and lpmenG2, as well as lbmenB and lbmenG from Lent. buchneri, reconstituted menaquinone production and respiratory growth in the deficient L. lactis strains when supplemented with heme. We then reconstituted the incomplete menaquinone biosynthesis pathway in Lactipl. plantarum by expressing six genes from L. lactis homologous to the missing genes in a synthetic operon with two inducible promoters. Higher biomass formation was observed in Lactipl. plantarum carrying this operon, with an OD(600) increase from 3.0 to 5.0 upon induction.202134361912
80950.8963Molecular characterization and expression profiling of two flavohemoglobin genes play essential roles in dissolved oxygen and NO stress in Saitozyma podzolica zwy2-3. Flavohemoglobins (Fhbs) are key enzymes involved in microbial nitrosative stress resistance and nitric oxide degradation. However, the roles of Fhbs in fungi remain largely unknown. In this study, SpFhb1 and SpFhb2, two flavohemoglobin-encoding genes in Saitozyma podzolica zwy2-3 were characterized. Protein structure analysis and molecular docking showed that SpFhbs were conserved in bacteria and fungi. Phylogenetic analysis revealed that SpFhb2 may be acquired through the transfer event of independent horizontal genes from bacteria. The expression levels of SpFhb1 and SpFhb2 showed opposite trend under high/low dissolved oxygen, implying that they may exhibited different functions. Through deletion and overexpression of SpFhbs, we confirmed that SpFhbs were conducive to lipid accumulation under high stress. The sensitivities of ΔFhb mutants to NO stress were significantly increased compared with that in the WT, indicating that they were required for NO detoxification and nitrosative stress resistance in S. podzolica zwy2-3. Furthermore, SpAsg1 was identified that simultaneously regulates SpFhbs, which functions in the lipid accumulation under high/low dissolved oxygen and NO stress in S. podzolica zwy2-3. Overall, two different SpFhbs were identified in this study, providing new insights into the mechanism of lipid accumulation in fungi under high/low dissolved oxygen and NO stress.202337844810
874560.8956Enhanced resistance to seed-transmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall-bound thionin. Bacterial attack is a serious agricultural problem for growth of rice seedlings in the nursery and field. The thionins purified from seed and etiolated seedlings of barley are known to have antimicrobial activity against necrotrophic pathogens; however, we found that no endogenous rice thionin genes alone are enough for resistance to two major seed-transmitted phytopathogenic bacteria, Burkholderia plantarii and B. glumae, although rice thionin genes constitutively expressed in coleoptile, the target organ of the bacteria. Thus, we isolated thionin genes from oat, one of which was overexpressed in rice. When wild-type rice seed were germinated with these bacteria, all seedlings were wilted with severe blight. In the seedling infected with B. plantarii, bacterial staining was intensively marked around stomata and intercellular spaces. However, transgenic rice seedlings accumulating a high level of oat thionin in cell walls grew almost normally with bacterial staining only on the surface of stomata. These results indicate that the oat thionin effectively works in rice plants against bacterial attack.200212059099
34570.8946Genetic redundancy, proximity, and functionality of lspA, the target of antibiotic TA, in the Myxococcus xanthus producer strain. We recently showed that type II signal peptidase (SPaseII) encoded by lspA is the target of an antibiotic called TA (myxovirescin), which is made by Myxococcus xanthus. SPaseII cleaves the signal peptide during bacterial lipoprotein processing. Bacteria typically contain one lspA gene; however, strikingly, the M. xanthus DK1622 genome contains four (lspA1 to lspA4). Since two of these genes, lspA3 and lspA4, are located in the giant TA biosynthetic gene cluster, we hypothesized they may play a role in TA resistance. To investigate the functions of the four M. xanthus lspA (lspA(Mx)) genes, we conducted sequence comparisons and found that they contained nearly all the conserved residues characteristic of SPaseII family members. Genetic studies found that an Escherichia coli ΔlspA mutation could be complemented by any of the lspA(Mx) genes in an lpp mutant background, but not in an E. coli lpp(+) background. Because Lpp is the most abundant E. coli lipoprotein, these results suggest the M. xanthus proteins do not function as efficiently as the host enzyme. In E. coli, overexpression of each of the LspA(Mx) proteins conferred TA and globomycin resistance, although LspA3 conferred the highest degree of resistance. In M. xanthus, each lspA(Mx) gene could be deleted and was therefore dispensable for growth. However, lspA3 or lspA4 deletion mutants each exhibited a tan phase variation bias, which likely accounts for their reduced-swarming and delayed-development phenotypes. In summary, we propose that all four LspA(Mx) proteins function as SPaseIIs and that LspA3 and LspA4 might also have roles in TA resistance and regulation, respectively.201424391051
1680.8942A glycoside hydrolase 30 protein BpXynC of Bacillus paralicheniformis NMSW12 recognized as A MAMP triggers plant immunity response. Bacillus spp. has been widely used as a biocontrol agent to control plant diseases. However, little is known about mechanisms of the protein MAMP secreted by Bacillus spp. Herein, our study reported a glycoside hydrolase family 30 (GH30) protein, BpXynC, produced by the biocontrol bacteria Bacillus paralicheniformis NMSW12, that can induce cell death in several plant species. The results revealed that the recombinant protein triggers cell death in Nicotiana benthamiana in a BAK1-dependent manner and elicits an early defense response, including ROS burst, activation of MAPK cascades, and upregulation of plant immunity marker genes. BpXynC was also found to be a glucuronoxylanase that exhibits hydrolysis activity on xlyan. Two mutants of BpXynC which lost the glucuronoxylanase activity still retained the elicitor activity. The qRT-PCR results of defense-related genes showed that BpXynC induces plant immunity responses via an SA-mediated pathway. BpXynC and its mutants could induce resistance in N. benthamiana against infection by Sclerotinia sclerotiorum and tobacco mosaic virus (TMV). Furthermore, BpXynC-treated tomato fruits exhibited strong resistance to the infection of Phytophthora capsica. Overall, our study revealed that GH30 protein BpXynC can induce plant immunity response as MAMP, which can be further applied as a biopesticide to control plant diseases.202438286384
874790.8942An endolysin gene from Candidatus Liberibacter asiaticus confers dual resistance to huanglongbing and citrus canker. The most damaging citrus diseases are Huanglongbing (HLB) and citrus canker, which are caused by Candidatus Liberibacter asiaticus (CaLas) and Xanthomonas citri pv. citri (Xcc), respectively. Endolysins from bacteriophages are a possible option for disease resistance in plant breeding. Here, we report improvement of citrus resistance to HLB and citrus canker using the LasLYS1 and LasLYS2 endolysins from CaLas. LasLYS2 demonstrated bactericidal efficacy against several Rhizobiaceae bacteria and Xcc, according to inhibition zone analyses. The two genes, driven by a strong promoter from Cauliflower mosaic virus, 35S, were integrated into Carrizo citrange via Agrobacterium-mediated transformation. More than 2 years of greenhouse testing indicated that LasLYS2 provided substantial and long-lasting resistance to HLB, allowing transgenic plants to retain low CaLas titers and no obvious symptoms while also clearing CaLas from infected plants in the long term. LasLYS2 transgenic plants with improved HLB resistance also showed resistance to Xcc, indicating that LasLYS2 had dual resistance to HLB and citrus canker. A microbiome study of transgenic plants revealed that the endolysins repressed Xanthomonadaceae and Rhizobiaceae populations in roots while increasing Burkholderiaceae and Rhodanobacteraceae populations, which might boost the citrus defense response, according to transcriptome analysis. We also found that Lyz domain 2 is the key bactericidal motif of LasLYS1 and LasLYS2. Four endolysins with potential resistance to HLB and citrus canker were found based on the structures of LasLYS1 and LasLYS2. Overall, the work shed light on the mechanisms of resistance of CaLas-derived endolysins, providing insights for designing endolysins to develop broad-spectrum disease resistance in citrus.202337719271
626100.8941Enterococcus faecalis Adapts to Antimicrobial Conjugated Oligoelectrolytes by Lipid Rearrangement and Differential Expression of Membrane Stress Response Genes. Conjugated oligoelectrolytes (COEs) are emerging antimicrobials with broad spectrum activity against Gram positive and Gram negative bacteria as well as fungi. Our previous in vitro evolution studies using Enterococcus faecalis grown in the presence of two related COEs (COE1-3C and COE1-3Py) led to the emergence of mutants (changes in liaF and liaR) with a moderate 4- to16-fold increased resistance to COEs. The contribution of liaF and liaR mutations to COE resistance was confirmed by complementation of the mutants, which restored sensitivity to COEs. To better understand the cellular target of COEs, and the mechanism of resistance to COEs, transcriptional changes associated with resistance in the evolved mutants were investigated in this study. The differentially transcribed genes encoded membrane transporters, in addition to proteins associated with cell envelope synthesis and stress responses. Genes encoding membrane transport proteins from the ATP binding cassette superfamily were the most significantly induced or repressed in COE tolerant mutants compared to the wild type when exposed to COEs. Additionally, differences in the membrane localization of a lipophilic dye in E. faecalis exposed to COEs suggested that resistance was associated with lipid rearrangement in the cell membrane. The membrane adaptation to COEs in EFC3C and EFC3Py resulted in an improved tolerance to bile salt and sodium chloride stress. Overall, this study showed that bacterial cell membranes are the primary target of COEs and that E. faecalis adapts to membrane interacting COE molecules by both lipid rearrangement and changes in membrane transporter activity. The level of resistance to COEs suggests that E. faecalis does not have a specific response pathway to elicit resistance against these molecules and this is supported by the rather broad and diverse suite of genes that are induced upon COE exposure as well as cross-resistance to membrane perturbing stressors.202032117172
331110.8940MmpS4 promotes glycopeptidolipids biosynthesis and export in Mycobacterium smegmatis. The MmpS family (mycobacterial membrane protein small) includes over 100 small membrane proteins specific to the genus Mycobacterium that have not yet been studied experimentally. The genes encoding MmpS proteins are often associated with mmpL genes, which are homologous to the RND (resistance nodulation cell division) genes of Gram-negative bacteria that encode proteins functioning as multidrug efflux system. We showed by molecular genetics and biochemical analysis that MmpS4 in Mycobacterium smegmatis is required for the production and export of large amounts of cell surface glycolipids, but is dispensable for biosynthesis per se. A new specific and sensitive method utilizing single-chain antibodies against the surface-exposed glycolipids was developed to confirm that MmpS4 was dispensable for transport to the surface. Orthologous complementation demonstrated that the MmpS4 proteins are exchangeable, thus not specific to a defined lipid species. MmpS4 function requires the formation of a protein complex at the pole of the bacillus, which requires the extracytosolic C-terminal domain of MmpS4. We suggest that MmpS proteins facilitate lipid biosynthesis by acting as a scaffold for coupled biosynthesis and transport machinery.201021062372
509120.8938A novel toxoflavin-quenching regulation in bacteria and its application to resistance cultivars. The toxoflavin (Txn), broad host range phytotoxin produced by a variety of bacteria, including Burkholderia glumae, is a key pathogenicity factor of B. glumae in rice and field crops. Two bacteria exhibiting Txn-degrading activity were isolated from healthy rice seeds and identified as Sphingomonas adhaesiva and Agrobacterium sp. respectively. The genes stdR and stdA, encoding proteins responsible for Txn degradation of both bacterial isolates, were identical, indicating that horizontal gene transfer occurred between microbial communities in the same ecosystem. We identified a novel Txn-quenching regulation of bacteria, demonstrating that the LysR-type transcriptional regulator (LTTR) StdR induces the expression of the stdA, which encodes a Txn-degrading enzyme, in the presence of Txn as a coinducer. Here we show that the bacterial StdR(Txn) -quenching regulatory system mimics the ToxR(Txn) -mediated biosynthetic regulation of B. glumae. Substrate specificity investigations revealed that Txn is the only coinducer of StdR and that StdA has a high degree of specificity for Txn. Rice plants expressing StdA showed Txn resistance. Collectively, bacteria mimic the mechanism of Txn biosynthesis regulation, employ it in the development of a Txn-quenching regulatory system and share it with neighbouring bacteria for survival in rice environments full of Txn.202134009736
333130.8938Mutants of Escherichia coli altered in both genes coding for the elongation factor Tu. Genetic analysis of a mutant of Escherichia coli resistant to the antibiotic mocimycin is presented. This resistance is due to alterations in both tuf genes coding for the elongation factor Tu. Mocimycin resistance is recessive. Bacteria carryong only one tuf gene from the resistant mutant are still mocimycin sensitive. If the mutant gene is the tufA gene, the seisitive cells can be made resistant through inactivation of the tufB gene by insertion of the bacteriophage milliunits genome. Conditional mocimycin-resistant mutants ban also be isolated when the tufB gene is altered by an amber or a temperature-sensitive mutation. When only the tufB allele from the original mocimycin-resistant mutant is present, inactivation of the wild-type tufA gene fails to give viable mocimycin-resistant progeny. We conclude that the tufA mutant allele codes for a functional mocimycin-resistant EF-Tu, whereas the mutant tufB gene does not code for a functional product.1978360222
549140.8937Extracytoplasmic function sigma factor σ(D) confers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures in Corynebacterium glutamicum. Mycolates are α-branched, β-hydroxylated, long-chain fatty acid specifically synthesized in bacteria in the suborder Corynebacterineae of the phylum Actinobacteria. They form an outer membrane, which functions as a permeability barrier and confers pathogenic mycobacteria to resistance to antibiotics. Although the mycolate biosynthetic pathway has been intensively studied, knowledge of transcriptional regulation of genes involved in this pathway is limited. Here, we report that the extracytoplasmic function sigma factor σ(D) is a key regulator of the mycolate synthetic genes in Corynebacterium glutamicum in the suborder. Chromatin immunoprecipitation with microarray analysis detected σ(D) -binding regions in the genome, establishing a consensus promoter sequence for σ(D) recognition. The σ(D) regulon comprised acyl-CoA carboxylase subunits, acyl-AMP ligase, polyketide synthase and mycolyltransferases; they were involved in mycolate synthesis. Indeed, deletion or overexpression of sigD encoding σ(D) modified the extractable mycolate amount. Immediately downstream of sigD, rsdA encoded anti-σ(D) and was under the control of a σ(D) -dependent promoter. Another σ(D) regulon member, l,d-transpeptidase, conferred lysozyme resistance. Thus, σ(D) modifies peptidoglycan cross-linking and enhances mycolate synthesis to provide resistance to environmental stress.201829148103
8774150.8936Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Agriculturally important grasses contain numerous diazotrophic bacteria, the interactions of which are speculated to have some other benefits to the host plants. In this study, we analyzed the effects of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in host rice plants. Rice plants (Oryza sativa cv. Nipponbare) were inoculated with B510 exhibited enhanced resistance against diseases caused by the virulent rice blast fungus Magnaporthe oryzae and by the virulent bacterial pathogen Xanthomonas oryzae. In the rice plants, neither salicylic acid (SA) accumulation nor expression of pathogenesis-related (PR) genes was induced by interaction with this bacterium, except for slight induction of PBZ1. These results indicate the possibility that strain B510 is able to induce disease resistance in rice by activating a novel type of resistance mechanism independent of SA-mediated defense signaling.200919966496
649160.8934The VirAB ABC Transporter Is Required for VirR Regulation of Listeria monocytogenes Virulence and Resistance to Nisin. Listeria monocytogenes is a Gram-positive intracellular pathogen that causes a severe invasive disease. Upon infecting a host cell, L. monocytogenes upregulates the transcription of numerous factors necessary for productive infection. VirR is the response regulator component of a two-component regulatory system in L. monocytogenes In this report, we have identified the putative ABC transporter encoded by genes lmo1746-lmo1747 as necessary for VirR function. We have designated lmo1746-lmo1747 virAB We constructed an in-frame deletion of virAB and determined that the ΔvirAB mutant exhibited reduced transcription of VirR-regulated genes. The ΔvirAB mutant also showed defects in in vitro plaque formation and in vivo virulence that were similar to those of a ΔvirR deletion mutant. Since VirR is important for innate resistance to antimicrobial agents, we determined the MICs of nisin and bacitracin for ΔvirAB bacteria. We found that VirAB expression was necessary for nisin resistance but was dispensable for resistance to bacitracin. This result suggested a VirAB-independent mechanism of VirR regulation in response to bacitracin. Lastly, we found that the ΔvirR and ΔvirAB mutants had no deficiency in growth in broth culture, intracellular replication, or production of the ActA surface protein, which facilitates actin-based motility and cell-to-cell spread. However, the ΔvirR and ΔvirAB mutants produced shorter actin tails during intracellular infection, which suggested that these mutants have a reduced ability to move and spread via actin-based motility. These findings have demonstrated that L. monocytogenes VirAB functions in a pathway with VirR to regulate the expression of genes necessary for virulence and resistance to antimicrobial agents.201829263107
8743170.8934Functional analysis of the Nep1-like proteins from Plasmopara viticola. Necrosis and ethylene-inducing peptide 1 (Nep1) -like proteins (NLP) are secreted by multiple taxonomically unrelated plant pathogens (bacteria, fungi, and oomycete) and are best known for inducing cell death and immune responses in dicotyledonous plants. A group of putative NLP genes from obligate biotrophic oomycete Plasmopara viticola were predicted by RNA-Seq in our previous study, but their activity has not been established. Therefore, we analyzed the P. viticola NLP (PvNLP) family and identified seven PvNLP genes. They all belong to type 1 NLP genes and form a P. viticola-specific cluster when compared with other pathogen NLP genes. The expression of PvNLPs was induced during early infection process and the expression patterns could be categorized into two groups. Agrobacterium tumefaciens-mediated transient expression assays revealed that only PvNLP7 was cytotoxic and could induce Phytophthora capsici resistance in Nicotiana benthamiana. Functional analysis showed that PvNLP4, PvNLP5, PvNLP7, and PvNLP10 significantly improved disease resistance of Arabidopsis thaliana to Hyaloperonospora arabidopsidis. Moreover, the four genes caused an inhibition of plant growth which is typically associated with enhanced immunity when over-expressed in Arabidopsis. Further research found that PvNLP7 could activate the expression of defense-related genes and its conserved NPP1 domain was critical for cell death- and immunity-inducing activity. This record of NLP genes from P. viticola showed a functional diversification, laying a foundation for further study on pathogenic mechanism of the devastating pathogen.202235152834
616180.8934Identification of lipoteichoic acid as a ligand for draper in the phagocytosis of Staphylococcus aureus by Drosophila hemocytes. Phagocytosis is central to cellular immunity against bacterial infections. As in mammals, both opsonin-dependent and -independent mechanisms of phagocytosis seemingly exist in Drosophila. Although candidate Drosophila receptors for phagocytosis have been reported, how they recognize bacteria, either directly or indirectly, remains to be elucidated. We searched for the Staphylococcus aureus genes required for phagocytosis by Drosophila hemocytes in a screening of mutant strains with defects in the structure of the cell wall. The genes identified included ltaS, which encodes an enzyme responsible for the synthesis of lipoteichoic acid. ltaS-dependent phagocytosis of S. aureus required the receptor Draper but not Eater or Nimrod C1, and Draper-lacking flies showed reduced resistance to a septic infection of S. aureus without a change in a humoral immune response. Finally, lipoteichoic acid bound to the extracellular region of Draper. We propose that lipoteichoic acid serves as a ligand for Draper in the phagocytosis of S. aureus by Drosophila hemocytes and that the phagocytic elimination of invading bacteria is required for flies to survive the infection.200919890048
6357190.8932Cloning and expression of the pediocin operon in Streptococcus thermophilus and other lactic fermentation bacteria. Production of pediocin in Pediococcus acidilactici is associated with pMBR1.0, which encodes prepediocin, a pediocin immunity protein, and two proteins involved in secretion and precursor processing. These four genes are organized as an operon under control of a single promoter. We have constructed shuttle vectors that contain all four structural genes, the chromosomal promoter ST(P2201) from Streptococcus thermophilus, and repA from the 2-kbp S. thermophilus plasmid pER8. The recombinant plasmid, pPC318, expressed and secreted active pediocin in Escherichia coli. Streptococcus thermophilus, Lactococcus lactis subsp. lactis, and Enterococcus faecalis were electrotransformed with pPC418, a modified vector fitted with an erythromycin resistance tracking gene. Pediocin was produced and secreted in each of the lactic acid bacteria, and production was stable for up to ten passages. The expression of pediocin in dairy fermentation microbes has important implications for bacteriocins as food preservatives in dairy products.199910489440