# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3001 | 0 | 0.8770 | IS26 and the IS26 family: versatile resistance gene movers and genome reorganizers. SUMMARYIn Gram-negative bacteria, the insertion sequence IS26 is highly active in disseminating antibiotic resistance genes. IS26 can recruit a gene or group of genes into the mobile gene pool and support their continued dissemination to new locations by creating pseudo-compound transposons (PCTs) that can be further mobilized by the insertion sequence (IS). IS26 can also enhance expression of adjacent potential resistance genes. IS26 encodes a DDE transposase but has unique properties. It forms cointegrates between two separate DNA molecules using two mechanisms. The well-known copy-in (replicative) route generates an additional IS copy and duplicates the target site. The recently discovered and more efficient and targeted conservative mechanism requires an IS in both participating molecules and does not generate any new sequence. The unit of movement for PCTs, known as a translocatable unit or TU, includes only one IS26. TU formed by homologous recombination between the bounding IS26s can be reincorporated via either cointegration route. However, the targeted conservative reaction is key to generation of arrays of overlapping PCTs seen in resistant pathogens. Using the copy-in route, IS26 can also act on a site in the same DNA molecule, either inverting adjacent DNA or generating an adjacent deletion plus a circular molecule carrying the DNA segment lost and an IS copy. If reincorporated, these circular molecules create a new PCT. IS26 is the best characterized IS in the IS26 family, which includes IS257/IS431, ISSau10, IS1216, IS1006, and IS1008 that are also implicated in spreading resistance genes in Gram-positive and Gram-negative pathogens. | 2024 | 38436262 |
| 203 | 1 | 0.8638 | Evolution of insect innate immunity through domestication of bacterial toxins. Toxin cargo genes are often horizontally transferred by phages between bacterial species and are known to play an important role in the evolution of bacterial pathogenesis. Here, we show how these same genes have been horizontally transferred from phage or bacteria to animals and have resulted in novel adaptations. We discovered that two widespread bacterial genes encoding toxins of animal cells, cytolethal distending toxin subunit B (cdtB) and apoptosis-inducing protein of 56 kDa (aip56), were captured by insect genomes through horizontal gene transfer from bacteria or phages. To study the function of these genes in insects, we focused on Drosophila ananassae as a model. In the D. ananassae subgroup species, cdtB and aip56 are present as singular (cdtB) or fused copies (cdtB::aip56) on the second chromosome. We found that cdtB and aip56 genes and encoded proteins were expressed by immune cells, some proteins were localized to the wasp embryo's serosa, and their expression increased following parasitoid wasp infection. Species of the ananassae subgroup are highly resistant to parasitoid wasps, and we observed that D. ananassae lines carrying null mutations in cdtB and aip56 toxin genes were more susceptible to parasitoids than the wild type. We conclude that toxin cargo genes were captured by these insects millions of years ago and integrated as novel modules into their innate immune system. These modules now represent components of a heretofore undescribed defense response and are important for resistance to parasitoid wasps. Phage or bacterially derived eukaryotic toxin genes serve as macromutations that can spur the instantaneous evolution of novelty in animals. | 2023 | 37036995 |
| 3004 | 2 | 0.8635 | IS26-Mediated Precise Excision of the IS26-aphA1a Translocatable Unit. We recently showed that, in the absence of RecA-dependent homologous recombination, the Tnp26 transposase catalyzes cointegrate formation via a conservative reaction between two preexisting IS26, and this is strongly preferred over replicative transposition to a new site. Here, the reverse reaction was investigated by assaying for precise excision of the central region together with a single IS26 from a compound transposon bounded by IS26. In a recA mutant strain, Tn4352, a kanamycin resistance transposon carrying the aphA1a gene, was stable. However, loss of kanamycin resistance due to precise excision of the translocatable unit (TU) from the closely related Tn4352B, leaving behind the second IS26, occurred at high frequency. Excision occurred when Tn4352B was in either a high- or low-copy-number plasmid. The excised circular segment, known as a TU, was detected by PCR. Excision required the IS26 transposase Tnp26. However, the Tnp26 of only one IS26 in Tn4352B was required, specifically the IS26 downstream of the aphA1a gene, and the excised TU included the active IS26. The frequency of Tn4352B TU loss was influenced by the context of the transposon, but the critical determinant of high-frequency excision was the presence of three G residues in Tn4352B replacing a single G in Tn4352. These G residues are located immediately adjacent to the two G residues at the left end of the IS26 that is upstream of the aphA1a gene. Transcription of tnp26 was not affected by the additional G residues, which appear to enhance Tnp26 cleavage at this end. IMPORTANCE: Resistance to antibiotics limits treatment options. In Gram-negative bacteria, IS26 plays a major role in the acquisition and dissemination of antibiotic resistance. IS257 (IS431) and IS1216, which belong to the same insertion sequence (IS) family, mobilize resistance genes in staphylococci and enterococci, respectively. Many different resistance genes are found in compound transposons bounded by IS26, and multiply and extensively antibiotic-resistant Gram-negative bacteria often include regions containing several antibiotic resistance genes and multiple copies of IS26. We recently showed that in addition to replicative transposition, IS26 can use a conservative movement mechanism in which an incoming IS26 targets a preexisting one, and this reaction can create these regions. This mechanism differs from that of all the ISs examined in detail thus far. Here, we have continued to extend understanding of the reactions carried out by IS26 by examining whether the reverse precise excision reaction is also catalyzed by the IS26 transposase. | 2015 | 26646012 |
| 8421 | 3 | 0.8634 | Dynamic stepwise opening of integron attC DNA hairpins by SSB prevents toxicity and ensures functionality. Biologically functional DNA hairpins are found in archaea, prokaryotes and eukaryotes, playing essential roles in various DNA transactions. However, during DNA replication, hairpin formation can stall the polymerase and is therefore prevented by the single-stranded DNA binding protein (SSB). Here, we address the question how hairpins maintain their functional secondary structure despite SSB's presence. As a model hairpin, we used the recombinogenic form of the attC site, essential for capturing antibiotic-resistance genes in the integrons of bacteria. We found that attC hairpins have a conserved high GC-content near their apical loop that creates a dynamic equilibrium between attC fully opened by SSB and a partially structured attC-6-SSB complex. This complex is recognized by the recombinase IntI, which extrudes the hairpin upon binding while displacing SSB. We anticipate that this intriguing regulation mechanism using a base pair distribution to balance hairpin structure formation and genetic stability is key to the dissemination of antibiotic resistance genes among bacteria and might be conserved among other functional hairpins. | 2017 | 28985409 |
| 3003 | 4 | 0.8630 | IS26-Mediated Formation of Transposons Carrying Antibiotic Resistance Genes. The IS26 transposase, Tnp26, catalyzes IS26 movement to a new site and deletion or inversion of adjacent DNA via a replicative route. The intramolecular deletion reaction produces a circular molecule consisting of a DNA segment and a single IS26, which we call a translocatable unit or TU. Recently, Tnp26 was shown to catalyze an additional intermolecular, conservative reaction between two preexisting copies of IS26 in different plasmids. Here, we have investigated the relative contributions of homologous recombination and Tnp26-catalyzed reactions to the generation of a transposon from a TU. Circular TUs containing the aphA1a kanamycin and neomycin resistance gene or the tet(D) tetracycline resistance determinant were generated in vitro and transformed into Escherichia coli recA cells carrying R388::IS26. The TU incorporated next to the IS26 in R388::IS26 forms a transposon with the insertion sequence (IS) in direct orientation. Introduction of a second TU produced regions containing both the aphA1a gene and the tet(D) determinant in either order but with only three copies of IS26. The integration reaction, which required a preexisting IS26, was precise and conservative and was 50-fold more efficient when both IS26 copies could produce an active Tnp26. When both ISs were inactivated by a frameshift in tnp26, TU incorporation was not detected in E. coli recA cells, but it did occur in E. coli recA (+) cells. However, the Tnp-catalyzed reaction was 100-fold more efficient than RecA-dependent homologous recombination. The ability of Tnp26 to function in either a replicative or conservative mode is likely to explain the prominence of IS26-bounded transposons in the resistance regions found in Gram-negative bacteria. IMPORTANCE In Gram-negative bacteria, IS26 recruits antibiotic resistance genes into the mobile gene pool by forming transposons carrying many different resistance genes. In addition to replicative transposition, IS26 was recently shown to use a novel conservative movement mechanism in which an incoming IS26 targets a preexisting one. Here, we have demonstrated how IS26-bounded class I transposons can be produced from translocatable units (TUs) containing only an IS26 and a resistance gene via the conservative reaction. TUs were incorporated next to an existing IS26, creating a class I transposon, and if the targeted IS26 is in a transposon, the product resembles two transposons sharing a central IS26, a configuration observed in some resistance regions and when a transposon is tandemly duplicated. Though homologous recombination could also incorporate a TU, Tnp26 is far more efficient. This provides insight into how IS26 builds transposons and brings additional transposons into resistance regions. | 2016 | 27303727 |
| 8 | 5 | 0.8626 | The hawthorn CpLRR-RLK1 gene targeted by ACLSV-derived vsiRNA positively regulate resistance to bacteria disease. Virus-derived small interfering RNAs (vsiRNAs) can target not only viruses but also plant genes. Apple chlorotic leaf spot virus (ACLSV) is an RNA virus that infects Rosaceae plants extensively, including apple, pear and hawthorn. Here, we report an ACLSV-derived vsiRNA [vsiR1360(-)] that targets and down-regulates the leucine-rich repeat receptor-like kinase 1 (LRR-RLK1) gene of hawthorn (Crataegus pinnatifida). The targeting and cleavage of the CpLRR-RLK1 gene by vsiR1360(-) were validated by RNA ligase-mediated 5' rapid amplification of cDNA ends and tobacco transient transformation assays. And the CpLRR-RLK1 protein fused to green fluorescent protein localized to the cell membrane. Conserved domain and phylogenetic tree analyses showed that CpLRR-RLK1 is closely related to the proteins of the LRRII-RLK subfamily. The biological function of CpLRR-RLK1 was explored by heterologous overexpression of CpLRR-RLK1 gene in Arabidopsis. The results of inoculation of Pst DC3000 in Arabidopsis leaves showed that the symptoms of CpLRR-RLK1 overexpression plants infected with Pst DC3000 were significantly reduced compared with the wild type. In addition, the detection of reactive oxygen species and callose deposition and the expression analysis of defense-related genes showed that the CpLRR-RLK1 gene can indeed enhance the resistance of Arabidopsis to bacteria disease. | 2020 | 33180701 |
| 3022 | 6 | 0.8623 | Sequencing and characterization of pBM400 from Bacillus megaterium QM B1551. Bacillus megaterium QM B1551 plasmid pBM400, one of seven indigenous plasmids, has been labeled with a selectable marker, isolated, completely sequenced, and partially characterized. A sequence of 53,903 bp was generated, revealing a total of 50 predicted open reading frames (ORFs); 33 were carried on one strand and 17 were carried on the other. These ORFs comprised 57% of the pBM400 sequence. Besides the replicon region and a complete rRNA operon that have previously been described, several interesting genes were found, including genes for predicted proteins for cell division (FtsZ and FtsK), DNA-RNA interaction (FtsK, Int/Rec, and reverse transcriptase), germination (CwlJ), styrene degradation (StyA), and heavy metal resistance (Cu-Cd export and ATPase). Three of the ORF products had high similarities to proteins from the Bacillus anthracis virulence plasmid pXO1. An insertion element with similarity to the IS256 family and several hypothetical proteins similar to those from the chromosomes of other Bacillus and Lactococcus species were present. This study provides a basis for isolation and sequencing of other high-molecular-weight plasmids from QM B1551 and for understanding the role of megaplasmids in gram-positive bacteria. The genes carried by pBM400 suggest a possible role of this plasmid in the survival of B. megaterium in hostile environments with heavy metals or styrene and also suggest that there has been an exchange of genes within the gram-positive bacteria, including pathogens. | 2003 | 14602653 |
| 9977 | 7 | 0.8620 | IncC conjugative plasmids and SXT/R391 elements repair double-strand breaks caused by CRISPR-Cas during conjugation. Bacteria have evolved defence mechanisms against bacteriophages. Restriction-modification systems provide innate immunity by degrading invading DNAs that lack proper methylation. CRISPR-Cas systems provide adaptive immunity by sampling the genome of past invaders and cutting the DNA of closely related DNA molecules. These barriers also restrict horizontal gene transfer mediated by conjugative plasmids. IncC conjugative plasmids are important contributors to the global dissemination of multidrug resistance among pathogenic bacteria infecting animals and humans. Here, we show that IncC conjugative plasmids are highly resilient to host defence systems during entry into a new host by conjugation. Using a TnSeq strategy, we uncover a conserved operon containing five genes (vcrx089-vcrx093) that confer a novel host defence evasion (hde) phenotype. We show that vcrx089-vcrx090 promote resistance against type I restriction-modification, whereas vcrx091-vcxr093 promote CRISPR-Cas evasion by repairing double-strand DNA breaks via recombination between short sequence repeats. vcrx091, vcrx092 and vcrx093 encode a single-strand binding protein, and a single-strand annealing recombinase and double-strand exonuclease related to Redβ and λExo of bacteriophage λ, respectively. Homologous genes of the integrative and conjugative element R391 also provide CRISPR-Cas evasion. Hence, the conserved hde operon considerably broadens the host range of large families of mobile elements spreading multidrug resistance. | 2020 | 32556263 |
| 760 | 8 | 0.8618 | The underling mechanism of bacterial TetR/AcrR family transcriptional repressors. Bacteria transcriptional regulators are classified by their functional and sequence similarities. Member of the TetR/AcrR family is two-domain proteins including an N-terminal HTH DNA-binding motif and a C-terminal ligand recognition domain. The C-terminal ligand recognition domain can recognize the very same compounds as their target transporters transferred. TetRs act as chemical sensors to monitor both the cellular environmental dynamics and their regulated genes underlying many events, such as antibiotics production, osmotic stress, efflux pumps, multidrug resistance, metabolic modulation, and pathogenesis. Compounds targeting Mycobacterium tuberculosis ethR represent promising novel antibiotic potentiater. TetR-mediated multidrug efflux pumps regulation might be good target candidate for the discovery of better new antibiotics against drug resistance. | 2013 | 23602932 |
| 8394 | 9 | 0.8618 | Expanding Diversity of Firmicutes Single-Strand Annealing Proteins: A Putative Role of Bacteriophage-Host Arms Race. Bacteriophage-encoded single strand annealing proteins (SSAPs) are recombinases which can substitute the classical, bacterial RecA and manage the DNA metabolism at different steps of phage propagation. SSAPs have been shown to efficiently promote recombination between short and rather divergent DNA sequences and were exploited for in vivo genetic engineering mainly in Gram-negative bacteria. In opposition to the conserved and almost universal bacterial RecA protein, SSAPs display great sequence diversity. The importance for SSAPs in phage biology and phage-bacteria evolution is underlined by their role as key players in events of horizontal gene transfer (HGT). All of the above provoke a constant interest for the identification and study of new phage recombinase proteins in vivo, in vitro as well as in silico. Despite this, a huge body of putative ssap genes escapes conventional classification, as they are not properly annotated. In this work, we performed a wide-scale identification, classification and analysis of SSAPs encoded by the Firmicutes bacteria and their phages. By using sequence similarity network and gene context analyses, we created a new high quality dataset of phage-related SSAPs, substantially increasing the number of annotated SSAPs. We classified the identified SSAPs into seven distinct families, namely RecA, Gp2.5, RecT/Redβ, Erf, Rad52/22, Sak3, and Sak4, organized into three superfamilies. Analysis of the relationships between the revealed protein clusters led us to recognize Sak3-like proteins as a new distinct SSAP family. Our analysis showed an irregular phylogenetic distribution of ssap genes among different bacterial phyla and specific phages, which can be explained by the high rates of ssap HGT. We propose that the evolution of phage recombinases could be tightly linked to the dissemination of bacterial phage-resistance mechanisms (e.g., abortive infection and CRISPR/Cas systems) targeting ssap genes and be a part of the constant phage-bacteria arms race. | 2021 | 33959107 |
| 9818 | 10 | 0.8616 | ISCR elements: novel gene-capturing systems of the 21st century? "Common regions" (CRs), such as Orf513, are being increasingly linked to mega-antibiotic-resistant regions. While their overall nucleotide sequences show little identity to other mobile elements, amino acid alignments indicate that they possess the key motifs of IS91-like elements, which have been linked to the mobility ent plasmids in pathogenic Escherichia coli. Further inspection reveals that they possess an IS91-like origin of replication and termination sites (terIS), and therefore CRs probably transpose via a rolling-circle replication mechanism. Accordingly, in this review we have renamed CRs as ISCRs to give a more accurate reflection of their functional properties. The genetic context surrounding ISCRs indicates that they can procure 5' sequences via misreading of the cognate terIS, i.e., "unchecked transposition." Clinically, the most worrying aspect of ISCRs is that they are increasingly being linked with more potent examples of resistance, i.e., metallo-beta-lactamases in Pseudomonas aeruginosa and co-trimoxazole resistance in Stenotrophomonas maltophilia. Furthermore, if ISCR elements do move via "unchecked RC transposition," as has been speculated for ISCR1, then this mechanism provides antibiotic resistance genes with a highly mobile genetic vehicle that could greatly exceed the effects of previously reported mobile genetic mechanisms. It has been hypothesized that bacteria will surprise us by extending their "genetic construction kit" to procure and evince additional DNA and, therefore, antibiotic resistance genes. It appears that ISCR elements have now firmly established themselves within that regimen. | 2006 | 16760305 |
| 2999 | 11 | 0.8616 | Integrative and conjugative elements in streptococci can act as vectors for plasmids and translocatable units integrated via IS1216E. Mobile genetic elements (MGEs), such as integrative and conjugative elements (ICEs), plasmids and translocatable units (TUs), are important drivers for the spread of antibiotic resistance. Although ICEs have been reported to support the spread of plasmids among different bacteria, their role in mobilizing resistance plasmids and TUs has not yet been fully explored. In this study, a novel TU bearing optrA, a novel non-conjugative plasmid p5303-cfrD carrying cfr(D) and a new member of the ICESa2603 family, ICESg5301 were identified in streptococci. Polymerase chain reaction (PCR) assays revealed that three different types of cointegrates can be formed by IS1216E-mediated cointegration between the three different MGEs, including ICESg5301::p5303-cfrD::TU, ICESg5301::p5303-cfrD, and ICESg5301::TU. Conjugation assays showed that ICEs carrying p5303-cfrD and/or TU successfully transferred into recipient strains, thereby confirming that ICEs can serve as vectors for other non-conjugative MGEs, such as TUs and p5303-cfrD. As neither the TU nor plasmid p5303-cfrD can spread on their own between different bacteria, their integration into an ICE via IS1216E-mediated cointegrate formation not only increases the plasticity of ICEs, but also furthers the dissemination of plasmids and TUs carrying oxazolidinone resistance genes. | 2023 | 36933870 |
| 618 | 12 | 0.8615 | A novel chemical inducer of Streptococcus quorum sensing acts by inhibiting the pheromone-degrading endopeptidase PepO. Bacteria produce chemical signals (pheromones) to coordinate behaviors across a population in a process termed quorum sensing (QS). QS systems comprising peptide pheromones and their corresponding Rgg receptors are widespread among Firmicutes and may be useful targets for manipulating microbial behaviors, like suppressing virulence. The Rgg2/3 QS circuit of the human pathogen Streptococcus pyogenes controls genes affecting resistance to host lysozyme in response to short hydrophobic pheromones (SHPs). Considering that artificial activation of a QS pathway may be as useful in the objective of manipulating bacteria as inhibiting it, we sought to identify small-molecule inducers of the Rgg2/3 QS system. We report the identification of a small molecule, P516-0475, that specifically induced expression of Rgg2/3-regulated genes in the presence of SHP pheromones at concentrations lower than typically required for QS induction. In searching for the mode of action of P516-0475, we discovered that an S. pyogenes mutant deficient in pepO, a neprilysin-like metalloendopeptidase that degrades SHP pheromones, was unresponsive to the compound. P516-0475 directly inhibited recombinant PepO in vitro as an uncompetitive inhibitor. We conclude that this compound induces QS by stabilizing SHP pheromones in culture. Our study indicates the usefulness of cell-based screens that modulate pathway activities to identify unanticipated therapeutic targets contributing to QS signaling. | 2018 | 29203527 |
| 9062 | 13 | 0.8613 | Biological cost of pyocin production during the SOS response in Pseudomonas aeruginosa. LexA and two structurally related regulators, PrtR and PA0906, coordinate the Pseudomonas aeruginosa SOS response. RecA-mediated autocleavage of LexA induces the expression of a protective set of genes that increase DNA damage repair and tolerance. In contrast, RecA-mediated autocleavage of PrtR induces antimicrobial pyocin production and a program that lyses cells to release the newly synthesized pyocin. Recently, PrtR-regulated genes were shown to sensitize P. aeruginosa to quinolones, antibiotics that elicit a strong SOS response. Here, we investigated the mechanisms by which PrtR-regulated genes determine antimicrobial resistance and genotoxic stress survival. We found that induction of PrtR-regulated genes lowers resistance to clinically important antibiotics and impairs the survival of bacteria exposed to one of several genotoxic agents. Two distinct mechanisms mediated these effects. Cell lysis genes that are induced following PrtR autocleavage reduced resistance to bactericidal levels of ciprofloxacin, and production of extracellular R2 pyocin was lethal to cells that initially survived UV light treatment. Although typically resistant to R2 pyocin, P. aeruginosa becomes transiently sensitive to R2 pyocin following UV light treatment, likely because of the strong downregulation of lipopolysaccharide synthesis genes that are required for resistance to R2 pyocin. Our results demonstrate that pyocin production during the P. aeruginosa SOS response carries both expected and unexpected costs. | 2014 | 25022851 |
| 9817 | 14 | 0.8612 | Common regions e.g. orf513 and antibiotic resistance: IS91-like elements evolving complex class 1 integrons. The ability of bacteria to procure, sometimes rearrange, and evince acquired DNA continues to impress us-even more so if this genetic plasticity involves the sequestering of antibiotic resistance genes. The acquisition of genes in bacteria is often facilitated by transposons, integrons and archetype insertion elements. Recently however, a new element, 'orf513', has been increasingly associated with class 1 integrons. Moreover, these 'complex' class 1 integrons can potentially mediate resistance to chloramphenicol, trimethoprim, aminoglycosides and tetracycline and may carry a range of beta-lactamase genes as well as the qnrA gene. Elements such as 'orf513' demonstrate IS91-like characteristics and will mobilize adjacent DNA via a process called rolling circle replication, and thus we have renamed them 'insertion sequence CRs' (ISCRs) to appropriately reflect their structure-function properties. In this article, we provide a brief description of these new and clinically important mobile elements, and how they are able to mobilize antibiotic resistance genes. | 2006 | 16751201 |
| 9876 | 15 | 0.8610 | The Facts and Family Secrets of Plasmids That Replicate via the Rolling-Circle Mechanism. Plasmids are self-replicative DNA elements that are transferred between bacteria. Plasmids encode not only antibiotic resistance genes but also adaptive genes that allow their hosts to colonize new niches. Plasmid transfer is achieved by conjugation (or mobilization), phage-mediated transduction, and natural transformation. Thousands of plasmids use the rolling-circle mechanism for their propagation (RCR plasmids). They are ubiquitous, have a high copy number, exhibit a broad host range, and often can be mobilized among bacterial species. Based upon the replicon, RCR plasmids have been grouped into several families, the best known of them being pC194 and pUB110 (Rep_1 family), pMV158 and pE194 (Rep_2 family), and pT181 and pC221 (Rep_trans family). Genetic traits of RCR plasmids are analyzed concerning (i) replication mediated by a DNA-relaxing initiator protein and its interactions with the cognate DNA origin, (ii) lagging-strand origins of replication, (iii) antibiotic resistance genes, (iv) mobilization functions, (v) replication control, performed by proteins and/or antisense RNAs, and (vi) the participating host-encoded functions. The mobilization functions include a relaxase initiator of transfer (Mob), an origin of transfer, and one or two small auxiliary proteins. There is a family of relaxases, the MOB(V) family represented by plasmid pMV158, which has been revisited and updated. Family secrets, like a putative open reading frame of unknown function, are reported. We conclude that basic research on RCR plasmids is of importance, and our perspectives contemplate the concept of One Earth because we should incorporate bacteria into our daily life by diminishing their virulence and, at the same time, respecting their genetic diversity. | 2022 | 34878299 |
| 656 | 16 | 0.8609 | HflXr, a homolog of a ribosome-splitting factor, mediates antibiotic resistance. To overcome the action of antibiotics, bacteria have evolved a variety of different strategies, such as drug modification, target mutation, and efflux pumps. Recently, we performed a genome-wide analysis of Listeria monocytogenes gene expression after growth in the presence of antibiotics, identifying genes that are up-regulated upon antibiotic treatment. One of them, lmo0762, is a homolog of hflX, which encodes a heat shock protein that rescues stalled ribosomes by separating their two subunits. To our knowledge, ribosome splitting has never been described as an antibiotic resistance mechanism. We thus investigated the role of lmo0762 in antibiotic resistance. First, we demonstrated that lmo0762 is an antibiotic resistance gene that confers protection against lincomycin and erythromycin, and that we renamed hflXr (hflX resistance). We show that hflXr expression is regulated by a transcription attenuation mechanism relying on the presence of alternative RNA structures and a small ORF encoding a 14 amino acid peptide containing the RLR motif, characteristic of macrolide resistance genes. We also provide evidence that HflXr is involved in ribosome recycling in presence of antibiotics. Interestingly, L. monocytogenes possesses another copy of hflX, lmo1296, that is not involved in antibiotic resistance. Phylogenetic analysis shows several events of hflXr duplication in prokaryotes and widespread presence of hflXr in Firmicutes. Overall, this study reveals the Listeria hflXr as the founding member of a family of antibiotic resistance genes. The resistance conferred by this gene is probably of importance in the environment and within microbial communities. | 2018 | 30545912 |
| 3002 | 17 | 0.8609 | An IS26 variant with enhanced activity. The insertion sequence IS26 plays a major role in the mobilization, expression and dissemination of antibiotic resistance genes in Gram-negative bacteria. Though IS26 is abundant in sequenced genomes and in plasmids that harbour antibiotic resistance genes, only a few minor variations in the IS26 sequence have been recorded. The most common variant, IS26* (also known as IS15Δ1), encodes a Tnp26 transposase with a single amino acid substitution, G184N in the catalytic domain. Using computational modelling, this substitution was predicted to increase the length of the helix that includes the E173 residue of the catalytic DDE triad, and its effect on activity was tested. An IS26 mutant generated in vitro producing Tnp26-G184N formed cointegrates in a standard untargeted reaction at 5-fold higher frequency than IS26 producing Tnp26. When the target included a single copy of IS26, the G184N substitution increased the cointegration frequency 10-fold and the reaction was targeted and conservative. Hence, the substitution increased Tnp26 activity. The longer helix may stabilise the position of the E173 of the DDE for the catalysis reaction and the specific G184N substitution may also enhance activity by increasing binding to the terminal inverted repeats. | 2019 | 30753435 |
| 3006 | 18 | 0.8609 | IS26 Family Members IS257 and IS1216 Also Form Cointegrates by Copy-In and Targeted Conservative Routes. IS26 has been shown to form cointegrates both by a copy-in mechanism involving one insertion sequence (IS) and a target and by a targeted conservative mechanism involving two ISs. IS26 is the flagship of a group of 65 bacterial ISs in the recently redefined IS6/IS26 family. Here, whether other family members can also use two mechanisms was examined using members of the IS257/IS431 and IS1216 isoform groups, which are associated with antibiotic resistance genes in staphylococci and enterococci, respectively. Transposases Tnp257 and Tnp1216 have 39% and 47% amino acid identities, respectively, with Tnp26 and are 62% identical to one another. Using a novel transposition assay, pUC-based plasmids carrying these ISs integrated into the chromosome of a temperature-sensitive polAEscherichia coli strain grown at the restrictive temperature. In the cointegrates, the plasmid carrying IS257 was flanked by various 8-bp target site duplications, consistent with random target selection. However, in a mating-out assay, only the targeted conservative reaction was detectable at a low frequency in a recA-negative E. coli strain, indicating that IS257 is at least 100-fold less active than IS26 For IS1216, in mating-out assays, both copy-in and targeted conservative cointegrate formation were detectable at frequencies similar to those observed for IS26 Duplication of various 8-bp target sites was detected for the copy-in route. For both IS257 and IS1216, when both of the plasmids carried an IS, the targeted conservative route occurred at a significantly higher frequency than the copy-in route, and only cointegrates formed by the conservative route were detected.IMPORTANCE IS26 differs from other studied ISs in the reactions that it can undertake. The differences make IS26 uniquely suited to its key role in the recruitment and spread of antibiotic resistance genes in Gram-negative bacteria. However, whether other ISs in the IS6/IS26 family can perform the same reactions is not known. IS257/IS431 and IS1216 isoforms found associated with antibiotic resistance genes in the Gram-positive bacteria staphylococci, enterococci, streptococci, and clostridia are related to IS26 However, the way that they move had not been investigated, limiting interpretation of their role in resistance gene dissemination and in the formation of cointegrates and complex resistance regions in staphylococci and enterococci. Here, they are shown to share the broad catalytic capabilities of IS26, demonstrating that it is likely that all members of the redefined IS6/IS26 family of bacterial ISs likewise are able to use both the copy-in and conservative routes. | 2020 | 31915227 |
| 8420 | 19 | 0.8607 | Horizontal Gene Transfer of Phytochelatin Synthases from Bacteria to Extremophilic Green Algae. Transcriptomic sequencing together with bioinformatic analyses and an automated annotation process led us to identify novel phytochelatin synthase (PCS) genes from two extremophilic green algae (Chlamydomonas acidophila and Dunaliella acidophila). These genes are of intermediate length compared to known PCS genes from eukaryotes and PCS-like genes from prokaryotes. A detailed phylogenetic analysis gives new insight into the complicated evolutionary history of PCS genes and provides evidence for multiple horizontal gene transfer events from bacteria to eukaryotes within the gene family. A separate subgroup containing PCS-like genes within the PCS gene family is not supported since the PCS genes are monophyletic only when the PCS-like genes are included. The presence and functionality of the novel genes in the organisms were verified by genomic sequencing and qRT-PCR. Furthermore, the novel PCS gene in Chlamydomonas acidophila showed very strong induction by cadmium. Cloning and expression of the gene in Escherichia coli clearly improves its cadmium resistance. The gene in Dunaliella was not induced, most likely due to gene duplication. | 2017 | 27592346 |