PCOA - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
805400.9809Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste. The effects of nanoscale zero-valent iron (nZVI) on the performance of food waste anaerobic digestion and the fate of antibiotic resistance genes (ARGs) were investigated in thermophilic (TR) and mesophilic (MR) reactors. Results showed that nZVI enhanced biogas production and facilitated ARGs reduction. The maximum CH(4) production was 212.00 ± 4.77 ml/gVS with 5 g/L of nZVI in MR. The highest ARGs removal ratio was 86.64 ± 0.72% obtained in TR at nZVI of 2 g/L. nZVI corrosion products and their contribution on AD performance were analyzed. The abundance of tetracycline genes reduced significantly in nZVI amended digesters. Firmicutes, Chloroflexi, Proteobacteria and Spirochaetes showed significant positive correlations with various ARGs (p < 0.05) in MR and TR. Redundancy analysis indicated that microbial community was the main factor that influenced the fate of ARGs. nZVI changed microbial communities, with decreasing the abundance bacteria belonging to Firmicutes and resulting in the reduction of ARGs.201931505392
774710.9807Hydrothermal pre-treatment followed by anaerobic digestion for the removal of tylosin and antibiotic resistance agents from poultry litter. Hydrothermal pretreatment (HPT) followed by anaerobic digestion (AD) is an alternative for harvesting energy and removing organic contaminants from sewage sludge and animal manure. This study investigated the use, in an energetically sustainable way, of HPT and AD, alone or combined, to produce methane and remove tylosin and antimicrobial resistance genes (ARG) from poultry litter (PL). The results showed that HPT at 80 °C (HPT80), followed by single-stage AD (AD-1S), led to the production of 517.9 ± 4.7 NL CH(4) kg VS(-1), resulting in 0.11 kWh kg PL(-1) of electrical energy and 0.75 MJ kg PL(-1) of thermal energy, thus supplying 33.6% of the energy spent on burning firewood at a typical farm. In this best-case scenario, the use of HPT alone reduced tylosin concentration from PL by 23.6%, while the process involving HPT followed by AD-1S led to the removal of 91.6% of such antibiotic. The combined process (HPT80 + AD-1S), in addition to contributing to reduce the absolute and relative abundances of ARG ermB (2.13 logs), intI1 (0.39 logs), sul1 (0.63 logs), and tetA (0.74 logs), led to a significant removal in the relative abundance of tylosin-resistant bacteria present in the poultry litter.202336648713
349720.9806Biomarkers of antibiotic resistance genes during seasonal changes in wastewater treatment systems. To evaluate the seasonal distribution of antibiotic resistance genes (ARGs) and explore the reason for their patterns in different seasons and different systems, two wastewater treatment systems were selected and analyzed using high-throughput qPCR. Linear discriminant analysis (LDA) effect size (LEfSe) was used to discover the differential ARGs (biomarkers) and estimate the biomarkers' effect size. We found that the total absolute abundances of ARGs in inflows and excess sludge samples had no obvious seasonal fluctuations, while those in winter outflow samples decreased in comparison with the inflow samples. Eleven differentially abundant ARGs (biomarker genes, BmGs) (aadA5-02, aac-6-II, cmlA1-01, cmlA1-02, blaOXA10-02, aadA-02, tetX, aadA1, ereA, qacEΔ1-01, and blaTEM) in summer samples and 10 BmGs (tet-32, tetA-02, aacC2, vanC-03, aac-6-I1, tetE, ermB, mefA, tnpA - 07, and sul2) in winter samples were validated. According to 16S rRNA gene sequencing, the relative abundance of bacteria at the phylum level exhibited significant seasonal changes in outflow water (OW), and biomarker bacteria (BmB) were discovered at the family (or genus) level. Synechococcus and vadinCA02 are BmB in summer, and Trichococcus, Lactococcus, Pelosinus, Janthinobacterium, Nitrosomonadaceae and Sterolibacterium are BmB in winter. In addition, BmB have good correlations with BmGs in the same season, which indicates that bacterial community changes drive different distributions of ARGs during seasonal changes and that LEfSe is an acute and effective method for finding significantly different ARGs and bacteria between two or more classes. In conclusion, this study demonstrated the seasonal changes of BmGs and BmB at two wastewater treatment systems.201829169020
801730.9806Dose-Dependent Effect of Tilmicosin Residues on ermA Rebound Mediated by IntI1 in Pig Manure Compost. The impact of varying antibiotic residue levels on antibiotic resistance gene (ARG) removal during composting is still unclear. This study investigated the impact of different residue levels of tilmicosin (TIM), a common veterinary macrolide antibiotic, on ARG removal during pig manure composting. Three groups were used: the CK group (no TIM), the L group (246.49 ± 22.83 mg/kg TIM), and the H group (529.99 ± 16.15 mg/kg TIM). Composting removed most targeted macrolide resistance genes (MRGs) like ereA, ermC, and ermF (>90% removal), and reduced ermB, ermX, ermQ, acrA, acrB, and mefA (30-70% removal). However, ermA increased in abundance. TIM altered compost community structure, driving succession through a deterministic process. At low doses, TIM reduced MRG-bacteria co-occurrence, with horizontal gene transfer via intI1 being the main cause of ermA rebound. In conclusion, composting reduces many MRG levels in pig manure, but the persistence and rebound of genes like ermA reveal the complex interactions between composting conditions and microbial gene transfer.202541011454
801540.9804Distribution, horizontal transfer and influencing factors of antibiotic resistance genes and antimicrobial mechanism of compost tea. Compost tea was alternatives of chemical pesticide for green agriculture, but there were no reports about antibiotic resistance genes (ARGs) in compost tea. This study investigated the effect of livestock manures, sewage sludge, their composting products and liquid fermentation on ARGs, mobile genetic elements (MGEs), metal resistance genes (MRGs) and antimicrobial properties of various compost tea. The results showed aerobic liquid fermentation reduced ARGs by 65.93 % and 45.20 % in the compost tea of chicken manure and sludge, enriched ARGs by 8.57 % and 37.41 % in the compost tea of pig manure and bovine manure, and increased MGEs and MRGs by 1.25 × 10(-5)-5.53 × 10(-3) and 2.03 × 10(-5)-2.03 × 10(-3) in the four compost tea. The correlation coefficient of tetracycline and sulfonamide resistance genes between compost product and compost tea were 0.98 and 0.91. aadA2-02, sul2 and tetX abundant in the compost tea were positively correlated with MGEs and MRGs. Furthermore, liquid fermentation enriched the potential host of tetracycline and vancomycin resistance genes. Tetracycline resistance genes occupied 62.7 % of total ARGs in the compost tea. Alcaligenes and Bacillus enriched by 0.78-39.31 % in the four compost tea, which metabolites had high antimicrobial activity. The potential host of ARGs accounted for 42.1 % bacteria abundance in the four compost tea.202235803190
721450.9803Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China. The aim of this study was to compare the occurrence, abundance, and diversity of tetracycline resistance genes (tet) in agricultural soils after 6 years' application of fresh or composted swine manure. Soil samples were collected from fresh or composted manure-treated farmland at three depths (0-5 cm, 5-10 cm, and 10-20 cm). Nine classes of tet genes [tetW, tetB(P), tetO, tetS, tetC, tetG, tetZ, tetL, and tetX] were detected; tetG, tetZ, tetL, and tetB(P) were predominant in the manure-treated soil. The abundances of tetB(P), tetW, tetC, and tetO were reduced, while tetG and tetL were increased by fertilizing with composted versus fresh manure; thus, the total abundance of tet genes was not significantly reduced by compost manuring. tetG was the most abundant gene in manure-treated soil; the predominant tetG genotypes shared high homology with pathogenic bacteria. The tetG isolates were more diverse in soils treated with fresh versus composted manure, although the residual tet genes in composted manure remain a pollutant and produce a different influence on the tet gene resistome in field soil.201525460961
810960.9801The fate of antibiotic resistance genes and their influential factors in swine manure composting with sepiolite as additive. Manures are storages for antibiotic resistance genes (ARGs) entering the environment. This study investigated the effects of adding sepiolite at 0%, 2.5%, 5%, and 7.5% (CK, T1, T2, and T3, respectively) on the fates of ARGs during composting. The relative abundances (RAs) of the total ARGs in CK and T3 decreased by 0.23 and 0.46 logs, respectively, after composting. The RAs of 10/11 ARGs decreased in CK, whereas they all decreased in T3. The reduction in the RA of the total mobile genetic elements (MGEs) was 1.26 times higher in T3 compared with CK after composting. The bacterial community accounted for 47.93% of the variation in the abundances of ARGs. Network analysis indicated that ARGs and MGEs shared potential host bacteria (PHB), and T3 controlled the transmission of ARGs by reducing the abundances of PHB. Composting with 7.5% sepiolite is an effective strategy for reducing the risk of ARGs proliferating.202235063626
348170.9800Antibiotics and Antibiotic Resistance Genes in Sediment of Honghu Lake and East Dongting Lake, China. Sediment is an ideal medium for the aggregation and dissemination of antibiotics and antibiotic resistance genes (ARGs). The levels of antibiotics and ARGs in Honghu Lake and East Dongting Lake of central China were investigated in this study. The concentrations of eight antibiotics (four sulfonamides and four tetracyclines) in Honghu Lake were in the range 90.00-437.43 μg kg(-1) (dry weight (dw)) with mean value of 278.21 μg kg(-1) dw, which was significantly higher than those in East Dongting Lake (60.02-321.04 μg kg(-1) dw, mean value of 195.70 μg kg(-1) dw). Among the tested three sulfonamide resistance genes (sul) and eight tetracycline resistance genes (tet), sul1, sul2, tetA, tetC, and tetM had 100 % detection frequency in sediment samples of East Dongting Lake, while only sul1, sul2, and tetC were observed in all samples of Honghu Lake. The relative abundance of sul2 was higher than that of sul1 at p < 0.05 level in both lakes. The relative abundance of tet genes in East Dongting Lake was in the following order: tetM > tetB > tetC > tetA. The relative abundance of sul1, sul2, and tetC in East Dongting Lake was significantly higher than those in Honghu Lake. The abundance of background bacteria may play an important role in the horizontal spread of sul2 and tetC genes in Honghu Lake and sul1 in East Dongting Lake, respectively. Redundancy analysis indicated that tetracyclines may play a more important role than sulfonamides in the abundance of sul1, sul2, and tetC gens in Honghu Lake and East Dongting Lake.201627418176
799680.9799A sludge bulking wastewater treatment plant with an oxidation ditch-denitrification filter in a cold region: bacterial community composition and antibiotic resistance genes. Bacterial community structure of activated sludge directly affects the stable operation of WWTPS, and these bacterial communities may carry a variety of antibiotic resistance genes (ARGs), which is a threat to the public health. This study employed 16S rRNA gene sequencing and metagenomic sequencing to investigate the bacterial community composition and the ARGs in a sludge bulking oxidation ditch-denitrification filter WWTP in a cold region. The results showed that Trichococcus (20.34%), Blautia (7.72%), and Faecalibacterium (3.64%) were the main bacterial genera in the influent. The relative abundances of norank_f_Saprospiraceae and Candidatus_Microthrix reached 10.24% and 8.40%, respectively, in bulking sludge, and those of norank_f_Saprospiraceae and Candidatus_Microthrix decreased to 6.56 and 7.10% after the anaerobic tank, indicating that the anaerobic tank had an inhibitory effect on filamentous bacteria. After 20 mJ/cm(2) UV disinfection, about 540 bacterial genera, such as Romboutsia (7.99%), Rhodoferax (7.98%), and Thermomonas (4.13%), could still be detected in the effluent. The ARGs were 345.11 ppm in the influent and 11.20 ppm in the effluent; 17 subtypes, such as sul1, msrE, aadA5, ErmF, and tet(A), could be detected throughout the entire process. These ARG subtypes were persistent ARGs with a high health risk. Network analysis indicated that the changes in filamentous bacteria norank_f_Saprospiraceae abundance mainly contributed to the abundance shift of MexB, and Acinetobacter mainly increased the abundance of drfA1. These results above will provide theoretical support for the sludge bulking and ARGs controls of WWTPs in cold regions.202336495431
775590.9799Anthropogenic impacts on sulfonamide residues and sulfonamide resistant bacteria and genes in Larut and Sangga Besar River, Perak. The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMX(r)) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L(-1) with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMX(r)-bacteria (10(7) CFU mL(-1)) and SRGs (10(-1)/16S copies mL(-1)). Pearson correlation showed only positive correlation between the PO(4) and SMX(r)-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMX(r)-bacteria and SRGs in the river.201931726563
7998100.9799Seasonal variation and removal efficiency of antibiotic resistance genes during wastewater treatment of swine farms. The seasonal variation and removal efficiency of antibiotic resistance genes (ARGs), including tetracycline resistance genes (tetG, tetM, and tetX) and macrolide (ermB, ermF, ereA, and mefA), were investigated in two typical swine wastewater treatment systems in both winter and summer. ARGs, class 1 integron gene, and 16S rRNA gene were quantified using real-time polymerase chain reaction assays. There was a 0.31-3.52 log variation in ARGs in raw swine wastewater, and the abundance of ARGs in winter was higher than in summer. tetM, tetX, ermB, ermF, and mefA were highly abundant. The abundance of ARGs was effectively reduced by most individual treatment process and the removal efficiencies of ARGs were higher in winter than in summer. However, when examining relative abundance, the fate of ARGs was quite variable. Anaerobic digestion reduced the relative abundance of tetX, ermB, ermF, and mefA, while lagoon treatment decreased tetM, ermB, ermF, and mefA. Sequencing batch reactor (SBR) decreased tetM, ermB, and ermF, but biofilters and wetlands did not display consistent removal efficiency on ARGs in two sampling seasons. As far as the entire treatment system is concerned, ermB and mefA were effectively reduced in both winter and summer in both total and relative abundance. The relative abundances of tetG and ereA were significantly correlated with intI1 (p < 0.01), and both tetG and ereA increased after wastewater treatment. This may pose a great threat to public health.201726715413
8011110.9799Co-selective Pressure of Cadmium and Doxycycline on the Antibiotic and Heavy Metal Resistance Genes in Ditch Wetlands. Abuse of heavy metals and antibiotics results in the dissemination of metal resistance genes (MRGs) and antibiotic resistance genes (ARGs). Ditch wetlands are important sinks for heavy metals and antibiotics. The relationships between bacterial communities and MRG/ARG dissemination under dual stresses of heavy metals and antibiotics remain unclear. The responses of MRGs and ARGs to the co-selective pressure of cadmium (Cd) and doxycycline (DC) in ditch wetlands were investigated after 7-day and 84-day exposures. In ecological ditches, residual rates of Cd and DC varied from 0.4 to -5.73% and 0 to -0.61%, respectively. The greatest total relative abundance of ARGs was observed in the Cd 5 mg L(-1) + DC 50 mg L(-1) group. A significant level of DC (50 mg L(-1)) significantly reduced the total relative abundances of MRGs at a concentration of 5 mg L(-1) Cd stress. Redundancy analysis indicated that Cd and DC had strong positive effects on most ARGs and MRGs after a 7-day exposure. Meanwhile, the class 1 integron gene (intI1) exhibited strong positive correlations with most ARGs and cadmium resistance genes (czcA) after an 84-day exposure. Network analysis showed that Acinetobacter and Pseudomonas were the potential dominant host genera for ARGs and MRGs, and tetracycline resistance genes (tetA), czcA, and intI1 shared the same potential host bacteria Trichococcus after an 84-day exposure.202235250936
7746120.9798Phosphate-modified calamus-based biochar filler enhanced constructed wetland mitigating antibiotic resistance risks: insight from metagenomics. In this study, an innovative phosphate-modified calamus-biochar (PBC) filler with high antibiotic adsorption capacity was developed to enhance constructed wetlands (CWs) wastewater treatment. Results showed that the erythromycin (ERY) and sulfamethoxazole (SMX) removal efficiency of PBC-CW was 86.5 % and 84.0 %, which was 2-fold higher than those of the blank group. Metagenomic analysis found that the ERY and SMX would significantly promote the increase in abundance of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and virulence factor genes (VFGs). Compared to blank group, the abundances of ARGs, MGEs and VFGs were reduced by 67.2 %, 33.3 % and 11.1 % in PBC-CW. Among them, the abundance of sulfonamide and MLS, which were key genes to resistance to SMX and ERY, respectively, were reduced by 71.8 % and 63.1 % in PBC-CW. Moreover, these persistent ARG subtypes, detected simultaneously in all the samples, reduced the total abundance by 44.8 %. In addition, microbial community analysis found that the sum abundance of Arenimonas, Chryseobacterium and Hydrogenophaga, which were suggested as potential antibiotic-resistant bacteria (ARB) via correlation analysis, were significantly decreased from 1.54 % in blank group to 0.23 % in PBC group. Moreover, Chryseobacterium and Hydrogenophaga were positively correlated with VFGs, they could be pathogens with resistance genes. Therefore, PBC-CW could effectively reduce the abundance of ARGs and pathogenic microorganisms, thereby improving water security.202540845656
7213130.9798Distribution characteristics of antibiotic resistant bacteria and genes in fresh and composted manures of livestock farms. Livestock manure is a major reservoir of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study investigated the distribution characteristics of ARB, ARGs in fresh and composted manures of traditional breading industry in rural areas in China. Samples collected were naturally piled without professional composting, and will be applied to farmland. The real-time quantitative polymerase chain reaction (qPCR) results showed the presence of ten target ARGs and two mobile genetic elements (MGEs) in the tested manure samples. The relative abundance of tetracycline and sulfonamide resistance genes (TRGs and SRGs) was generally higher than that of macrolide resistance genes (MRGs), followed by quinolone resistance genes (QRGs). There were significant positive correlations between the abundance of sul1, sul2, tetW and MGEs (intl1, intl2). In addition, the distribution of target ARGs was associated with the residual concentrations of doxycycline (DOX), sulfamethazine (SM2), enrofloxacin (ENR) and tylosin (TYL). Overall, a total of 24 bacterial genera were identified. The resistance rates of ARB were 17.79%-83.70% for SM2, followed 0.40%-63.77% for TYL, 0.36%-43.90% for DOX and 0.00%-13.36% for ENR, which showed a significant dose-effect. This study also demonstrated that the abundance of clinically relevant ARB and ARGs in chicken, swine and cow fresh manures significantly greater than that in composted manures, and chicken and swine manures had higher proportion of ARB and higher abundance of ARGs than that in cow manures.201931756854
8069140.9797Responsive change of crop-specific soil bacterial community to cadmium in farmlands surrounding mine area of Southeast China. In arable soils co-influenced by mining and farming, soil bacteria significantly affect metal (Cadmium, Cd) bioavailability and accumulation. To reveal the soil microecology response under this co-influence, three intersection areas (cornfield, vegetable field, and paddy field) were investigated. With a similar nutrient condition, the soils showed varied Cd levels (0.31-7.70 mg/kg), which was negatively related to the distance from mining water flow. Different soils showed varied microbial community structures, which were dominated by Chloroflexi (19.64-24.82%), Actinobacteria (15.49-31.96%), Acidobacteriota (9.46-20.31%), and Proteobacteria (11.88-14.57%) phyla. A strong correlation was observed between functional microbial taxon (e. g. Acidobacteriota), soil physicochemical properties, and Cd contents. The relative abundance of tolerant bacteria including Vicinamibacteraceae, Knoellia, Ardenticatenales, Lysobacter, etc. elevated with the increase of Cd, which contributed to the enrichment of heavy metal resistance genes (HRGs) and integration genes (intlI), thus enhancing the resistance to heavy metal pollution. Cd content rather than crop species was identified as the dominant factor that influenced the bacterial community. Nevertheless, the peculiar agrotype of the paddy field contributed to its higher HRGs and intlI abundance. These results provided fundamental information about the crop-specific physiochemical-bacterial interaction, which was helpful to evaluate agricultural environmental risk around the intersection of farmland and pollution sources.202235750128
8108150.9797Insights into the beneficial effects of woody peat for reducing abundances of antibiotic resistance genes during composting. Antibiotic resistance genes (ARGs) in manure endangered human health, while heavy metals in manure will pose selective pressure on ARGs. This study explored the effects on ARGs of adding woody peat during composting at different ratios (0 (CK), 5% (T1), and 15% (T2)). After composting, the relative abundances of 8/11 ARGs were 6.97-38.09% and 10.73-54.31% lower in T1 and T2, respectively, than CK. The bioavailable Cu content was 1.40% and 18.40% lower in T1 and T2, respectively, than CK. Network analysis showed that ARGs, mobile genetic elements (MGEs), and metal resistance genes possessed common potential host bacteria, such as Streptococcus, Dietzia, and Corynebacterium_1. Environmental factors, especially bioavailable Cu, and MGEs accounted for 80.75% of the changes in the abundances of ARGs. In conclusion, 15% Woody peat is beneficial to decrease the bioavailable Cu content and weaken horizontal gene transfer for controlling the spread of ARGs during composting.202134534940
8019160.9797In-feed antibiotic use changed the behaviors of oxytetracycline, sulfamerazine, and ciprofloxacin and related antibiotic resistance genes during swine manure composting. The dynamics of oxytetracycline (OTC), sulfamerazine (SM1), ciprofloxacin (CIP) and related antibiotic resistance genes (ARGs) during swine manure composting were compared between manure collected from swine fed a diet containing these three antibiotics (T(D)) and manure directly spiked with these drugs (T(S)). The composting removal efficiency of OTC (94.9 %) and CIP (87.8 %) in the T(D) treatment was significantly higher than that of OTC (83.8 %, P <  0.01) and CIP (83.9 %, P <  0.05) in the T(S) treatment, while SM1 exhibited no significant difference (P >  0.05) between the two treatments. Composting effectively reduced the majority of ARGs in both T(D) and T(S) types of manure, especially tetracycline resistance genes (TRGs). Compared with the T(S) treatment, the abundance of some ARGs, such as tetG, qepA, sul1 and sul2, increased dramatically up to 309-fold in the T(D) treatment. The microbial composition of the composting system changed significantly during composting due to antibiotic feeding. Redundancy analysis suggested that the abundance of ARGs had a considerable impact on alterations in the physicochemical parameters (C/N, pH and temperature) and bacterial communities (Actinobacteria, Proteobacteria and Firmicutes) during the composting of swine manure.202133254754
8049170.9797Microalgae simultaneously promote antibiotic removal and antibiotic resistance genes/bacteria attenuation in algal-bacterial granular sludge system. This study investigated the effects of microalgae growth on antibiotic removal and the attenuation of antibiotic resistance genes (ARGs)/ARGs host bacteria in algal-bacterial granular sludge (ABGS) system. In the presence of tetracycline (TC) and sulfadiazine (SDZ) mixture (2-4 mg/L), microalgae could grow on bacterial granular sludge (BGS) to form ABGS, with a chlorophyll-a content of 7.68-8.13 mg/g-VSS being achieved. The removal efficiencies of TC and SDZ by ABGS were as high as 79.0 % and 94.0 %, which were 4.3-5.0 % higher than those by BGS. Metagenomic analysis indicated that the relative abundances of TC/SDZ- related ARGs and mobile genetic elements (MGEs) in BGS were 56.1 % and 22.1 % higher than those in ABGS. A total of 26 ARGs were detected from the granules, and they were identified to associate with 46 host bacteria. 13 out of 26 ARGs and 13 out of 46 hosts were shared ARGs and hosts, respectively. The total relative abundance of host bacteria in BGS was 30.8 % higher than that in ABGS. Scenedesmus and Chlorella were the dominant microalgae that may reduce the diversity of ARGs hosts. Overall, ABGS is a promising biotechnology for antibiotic-containing wastewater treatment.202235777142
8046180.9796Responses of aerobic granular sludge to fluoroquinolones: Microbial community variations, and antibiotic resistance genes. In this study, aerobic granular sludge (AGS) was operated under high levels of ammonium for removing three fluoroquinolones (FQs), i.e., ciprofloxacin (CFX), ofloxacin (OFX), and norfloxacin (NFX) at 3, 300, and 900 µg/L, respectively. Two key objectives were to investigate the differential distribution of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in sludge fractions and to evaluate correlations between ARGs and MGEs to nitrifying and denitrifying bacteria. AGS showed excellent stability under the exposure of FQs, with nitrite-oxidizing bacteria (NOB) more sensitive to FQs than ammonium-oxidizing bacteria (AOB). Specific oxygen utilization rates (SOUR) showed a reduction of 26.9% for NOB but only 4.0% of the reduced activity of AOB by 3 μg/L FQs. AGS performed better removal efficiencies for CFX and NFX than OFX, and the efficiencies increased with their elevated concentrations, except at 900 μg/L FQs. The elevated FQ concentrations led to a significant enrichment of intI1 and genus Thauera, while qnrD and qnrS showed no accumulation. Compared to nitrifiers, FQs relevant ARGs and the intI1 gene preferred to exist in denitrifiers, and the abundance of denitrifiers behaved a decreasing trend with the sludge size. Two quinoline-degrading bacteria were found in the AGS system, i.e., Alicycliphilus and Brevundimonas, possibly carrying qnrS and qnrD, respectively. Their relative abundance increased with the sludge size, which was 2.18% in sludge <0.5 mm and increased to 3.70% in sludge >2.0 mm, suggesting that the AGS may be a good choice in treating FQs-containing wastewater.202133676249
8107190.9796Effects of micron-scale zero valent iron on behaviors of antibiotic resistance genes and pathogens in thermophilic anaerobic digestion of waste activated sludge. This work investigated the metagenomics-based behavior and risk of antibiotic resistance genes (ARGs), and their potential hosts during thermophilic anaerobic digestion (TAD) of waste activated sludge, enhanced by micron-scale zero valent iron (mZVI). Tests were conducted with 0, 25, 100, and 250 mg mZVI/g total solids (TS). Results showed that up to 7.3% and 4.8% decrease in ARGs' abundance and diversity, respectively, were achieved with 100 mg mZVI/g TS. At these conditions, ARGs with health risk in abundance and human pathogenic bacteria (HPB) diversity were also decreased by 8.3% and 3.6%, respectively. Additionally, mZVI reduced abundance of 72 potential pathogenic supercarriers for ARGs with high health risk by 2.5%, 5.0%, and 6.1%, as its dosage increased. Overall, mZVI, especially at 100 mg/g TS, can mitigate antibiotic resistance risk in TAD. These findings are important for better understanding risks of ARGs and their pathogenic hosts in ZVI-enhanced TAD of solid wastes.202336931448