PB10 - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
50300.9604Interaction of the chromosomal Tn 551 with two thermosensitive derivatives, pS1 and p delta D, of the plasmid pI9789 in Staphylococcus aureus. The plasmid pI9789::Tn552 carries genes conferring resistance to penicillins and to cadmium, mercury and arsenate ions. The presence of Tn551 at one location in the chromosome of Staphylococcus aureus enhances the frequency of suppression of thermosensitivity of replication of the plasmids pS1 and p delta D which are derivatives of pI9789::Tn552. Bacteriophage propagated on the bacteria in which thermosensitivity of replication had been suppressed was used to transduce cadmium resistance to S. aureus PS80N. The cadmium-resistant transductants obtained carried plasmid pS1 or p delta D with a copy of Tn551 inserted into a specific site on pS1 but into several different sites on p delta D. The possible mechanisms of the suppression are discussed.19957758929
843110.9603A quaternary ammonium salt grafted tannin-based flocculant boosts the conjugative transfer of plasmid-born antibiotic resistance genes: The nonnegligible side of their flocculation-sterilization properties. This study developed dual-function tannin-based flocculants, namely tannin-graft-acrylamide-diallyl dimethyl ammonium chloride (TGCC-A/TGCC-C), endowed with enhanced flocculation-sterilization properties. The impacts of these flocculants on proliferation and transformation of antibiotic resistance genes (ARGs) among bacteria during the flocculation-deposition process were examined. TGCC-A/TGCC-C exhibited remarkable flocculation capacities towards both Escherichia coli and Staphylococcus aureus, encompassing a logarithmic range of initial cell density (10(8)-10(9) CFU/mL) and a broad pH spectrum (pH 2-11). The grafted quaternary ammonium salt groups played pivotal parts in flocculation through charge neutralization and bridging mechanisms, concurrently contributing to sterilization by disrupting cellular membranes. The correlation between flocculation and sterilization entails a sequential progression, where an excess of TGCC, initially employed for flocculation, is subsequently consumed for sterilization purposes. The frequencies of ARGs conjugative transfer were enhanced in bacterial flocs across all TGCC treatments, stemming from augmented bacterial aggregation and cell membrane permeability, elicited stress response, and up-regulated genes encoding plasmid transfer. These findings underscore the indispensable role of flocculation-sterilization effects in mediating the propagation of ARGs, consequently providing substantial support for the scientific evaluation of the environmental risks associated with flocculants in the context of ARGs dissemination during the treatment of raw water featuring high bacterial density.202337619725
744020.9593Persistence and dissemination of the multiple-antibiotic-resistance plasmid pB10 in the microbial communities of wastewater sludge microcosms. Plasmid-mediated dissemination of antibiotic resistance genes is widely recognized to take place in many environmental compartments but remains difficult to study in a global perspective because of the complexity of the environmental matrices considered and the lack of exhaustive tools. In this report, we used a molecular approach based on quantitative PCR to monitor the fate of the antibiotic resistance plasmid pB10 and its donor host in microbial communities collected from various wastewater treatment plant (WWTP) sludges and maintained in microcosms under different conditions. In aerated activated sludge microcosms, pB10 did not persist because of an apparent loss of the donor bacteria. The persistence of the donor bacteria noticeably increased in non-aerated activated sludge microcosms or after amending antibiotics (sulfamethoxazole or amoxicillin) at sub-inhibitory concentrations, but the persistence of the donor bacteria did not stimulate the dissemination of pB10. The dissemination of the plasmid appeared as an increasing plasmid to donor ratio in microcosm setups with microbial communities collected in anaerobic digesters or the spatially organized communities from fixed biofilm reactors. As a whole, the data collected suggest that some WWTP processes, more than others, may sustain microbial communities that efficiently support the dissemination of the multiple-antibiotic-resistance plasmid pB10.201121440282
849330.9589Effects and mechanisms of plant growth regulators on horizontal transfer of antibiotic resistance genes through plasmid-mediated conjugation. A vast number of bacteria occur in both soil and plants, with some of them harboring antibiotic resistance genes (ARGs). When bacteria congregate on the interface of soil particles or on plant root surfaces, these ARGs can be transferred between bacteria via conjugation, leading to the formation of antibiotic-resistant pathogens that threaten human health. Plant growth regulators (PGRs) are widely used in agricultural production, promoting plant growth and increasing crop yields. However, until now, little information has been known about the effects of PGRs on the horizontal gene transfer (HGT) of ARGs. In this study, with Escherichia coli DH5α (carrying RP4 plasmid with Tet(R), Amp(R), Kan(R)) as the donor and E. coli HB101 as the recipient, a series of diparental conjugation experiments were conducted to investigate the effects of indoleacetic acid (IAA), ethel (ETH) and gibberellin (GA(3)) on HGT of ARGs via plasmid-mediated conjugation. Furthermore, the mechanisms involved were also clarified. The results showed that all three PGRs affected the ARG transfer frequency by inducing the intracellular reactive oxygen species (ROS) formation, changing the cell membrane permeability, and regulating the gene transcription of traA, traL, trfAp, trbBp, kilA, and korA in plasmid RP4. In detail, 50-100 mg⋅L(-1) IAA, 20-50 mg⋅L(-1) ETH and 1500-2500 mg⋅L(-1) GA(3) all significantly promoted the ARG conjugation. This study indicated that widespread use of PGRs in agricultural production could affect the HGT of ARGs via plasmid-mediated conjugation, and the application of reasonable concentrations of PGRs could reduce the ARG transmission in both soil environments and plants.202336720410
373340.9585Residual concentrations of antimicrobial growth promoters in poultry litter favour plasmid conjugation among Escherichia coli. Considering that plasmid conjugation is a major driver for the dissemination of antimicrobial resistance in bacteria, this study aimed to investigate the effects of residual concentrations of antimicrobial growth promoters (AGPs) in poultry litter on the frequencies of IncFII-FIB plasmid conjugation among Escherichia coli organisms. A 2 × 5 factorial trial was performed in vitro, using two types of litter materials (sugarcane bagasse and wood shavings) and five treatments of litter: non-treated (CON), herbal alkaloid sanguinarine (SANG), AGPs monensin (MON), lincomycin (LCM) and virginiamycin (VIR). E. coli H2332 and E. coli J62 were used as donor and recipient strains, respectively. The presence of residues of monensin, lincomycin and virginiamycin increased the frequency of plasmid conjugation among E. coli in both types of litter materials. On the contrary, sanguinarine significantly reduced the frequency of conjugation among E. coli in sugarcane bagasse litter. The conjugation frequencies were significantly higher in wood shavings compared with sugarcane bagasse only in the presence of AGPs. Considering that the presence of AGPs in the litter can increase the conjugation of IncFII-FIB plasmids carrying antimicrobial resistance genes, the real impact of this phenomenon on the dissemination of antimicrobial resistant bacteria in the poultry production chain must be investigated.202235138674
852650.9583Size-dependent enhancement on conjugative transfer of antibiotic resistance genes by micro/nanoplastics. Recently micro/nanoplastics (MNPs) have raised intensive concerns due to their possible enhancement effect on the dissemination of antibiotic genes. Unfortunately, data is still lacking to verify the effect. In the study, the influence of polystyrene MNPs on the conjugative gene transfer was studied by using E. coli DH5ɑ with RP4 plasmid as the donor bacteria and E. coli K12 MG1655 as the recipient bacteria. We found that influence of MNPs on gene transfer was size-dependent. Small MNPs (10 nm in radius) caused an increase and then a decrease in gene transfer efficiency with their concentration increasing. Moderate-sized MNPs (50 nm in radius) caused an increase in gene transfer efficiency. Large MNPs (500 nm in radius) had almost no influence on gene transfer. The gene transfer could be further enhanced by optimizing mating time and mating ratio. Scavenging reactive oxygen species (ROS) production did not affect the cell membrane permeability, indicating that the increase in cell membrane permeability was not related to ROS production. The mechanism of the enhanced gene transfer efficiency was attributed to a combined effect of the increased ROS production and the increased cell membrane permeability, which ultimately regulated the expression of corresponding genes.202235278945
849560.9581Effects of voltage and tetracycline on horizontal transfer of ARGs in microbial electrolysis cells. The abuse of antibiotics leads to the production of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Microbial electrolysis cells (MECs) have been widely applicated in the field of degrading antibiotics. ARGs were increased via horizontal transfer in single and two-chamber MECs. As one of the critical parameters in MECs, voltage has a particular impact on the ARGs transfer via horizontal transfer. However, there have been few studies of ARGs transfer under the exposure of antibiotics and voltage in MECs. In this study, five concentrations of tetracycline (0, 1, 5, 10, 20 mg/L) were selected to explore the conjugative transfer frequency of plasmid-encoded the ARGs from the donor (E. coli RP4) to receptor (E. coli HB101) in MECs, two voltages (1.5 and 2.0 V) were used to explore the conjugative transfer frequency of ARGs in MECs, then, the transfer of ARGs in MECs under the co-effect of tetracycline and voltage was explored. The results showed that the conjugative transfer frequency of ARGs was significantly increased with the increase of tetracycline concentration and voltage, respectively (p < 0.05). Under the pressure of tetracycline and voltage, the conjugative transfer frequency of ARGs is significantly enhanced with the co-effect of tetracycline and voltage (p < 0.05). The oxidative response induced by electrical stimulation promotes the overproduction of reactive oxygen species and the enhancement of cell membrane permeability of donor and recipient bacteria in MECs. These findings provide insights for studying the spread of ARGs in MECs.202435980276
782970.9580Insights into capture-inactivation/oxidation of antibiotic resistance bacteria and cell-free antibiotic resistance genes from waters using flexibly-functionalized microbubbles. The spread of antibiotic resistance in the aquatic environment severely threatens the public health and ecological security. This study investigated simultaneously capturing and inactivating/oxidizing the antibiotic resistant bacteria (ARB) and cell-free antibiotic resistance genes (ARGs) in waters by flexibly-functionalized microbubbles. The microbubbles were obtained by surface-modifying the bubbles with coagulant (named as coagulative colloidal gas aphrons, CCGAs) and further encapsulating ozone in the gas core (named as coagulative colloidal ozone aphrons, CCOAs). CCGAs removed 92.4-97.5% of the sulfamethoxazole-resistant bacteria in the presence of dissolved organic matter (DOM), and the log reduction of cell-free ARGs (particularly, those encoded in plasmid) reached 1.86-3.30. The ozone release from CCOAs led to efficient in-situ oxidation: 91.2% of ARB were membrane-damaged and inactivated. In the municipal wastewater matrix, the removal of ARB increased whilst that of cell-free ARGs decreased by CCGAs with the DOM content increasing. The ozone encapsulation into CCGAs reinforced the bubble performance. The predominant capture mechanism should be electrostatic attraction between bubbles and ARB (or cell-free ARGs), and DOM enhanced the sweeping and bridging effect. The functionalized microbubble technology can be a promising and effective barrier for ARB and cell-free ARGs with shortened retention time, lessened chemical doses and simplified treatment unit.202235063836
852380.9580Tebuconazole promotes spread of a multidrug-resistant plasmid into soil bacteria to form new resistant bacterial strains. The development of antibiotic resistance threatens human and environmental health. Non-antibiotic stressors, including fungicides, may contribute to the spread of antibiotic resistance genes (ARGs). We determined the promoting effects of tebuconazole on ARG dissemination using a donor, Escherichia coli MG1655, containing a multidrug-resistant fluorescent plasmid (RP4) and a recipient (E. coli HB101). The donor was then incorporated into the soil to test whether tebuconazole could accelerate the spread of RP4 into indigenous bacteria. Tebuconazole promoted the transfer of the RP4 plasmid from the donor into the recipient via overproduction of reactive oxygen species (ROS), enhancement of cell membrane permeability and regulation of related genes. The dissemination of the RP4 plasmid from the donor to soil bacteria was significantly enhanced by tebuconazole. RP4 plasmid could be propagated into more genera of bacteria in tebuconazole-contaminated soil as the exposure time increased. These findings demonstrate that the fungicide tebuconazole promotes the spread of the RP4 plasmid into indigenous soil bacteria, revealing the potential risk of tebuconazole residues enhancing the dissemination of ARGs in soil environments.202438615769
35590.9579Evolution of multiple-antibiotic-resistance plasmids mediated by transposable plasmid deoxyribonucleic acid sequences. Two plasmid deoxyribonucleic acid sequences mediating multiple antibiotic resistance transposed in vivo between coexisting plasmids in clinical isolates of Serratia marcescens. This event resulted in the evolution of a transferable multiresistance plasmid. Both sequences, designated in Tn1699 and Tn1700, were flanked by inverted deoxyribonucleic acid repetitions and could transpose between replicons independently of the Excherichia coli recA gene function. Tn1699 and Tn1700 mediated ampicillin, carbenicillin, kanamycin, and gentamicin resistance but differed in the type of gentamicin-acetyltransferase enzymes that they encoded. The structural genes for these enzymes share a great deal of polynucleotide sequence similarity despite their phenotypic differences. The transposition of Tn1699 and Tn1700 to coresident transferable plasmids has contributed to the dissemination of antibiotic resistance among other gram-negative bacteria. These organisms have recently caused nosocomial infections in epidemic proportions.1979387747
7894100.9579The fate and behavior mechanism of antibiotic resistance genes and microbial communities in flocs, aerobic granular and biofilm sludge under chloroxylenol pressure. Chloroxylenol (PCMX), an antibacterial agent, has been widely detected in water environment and has toxic effects on biology and ecology. During 270 d, the influence of PCMX on the performance of three nitrification systems was investigated, including floc-based sequencing batch reactor (FSBR), aerobic granule-based SBR (AGSBR) and biofilm SBR (BSBR). The nitrification capability of three systems was inhibited by PCMX, but recovered after domestication, and PCMX made three systems realize partial nitrification for 10, 100 and 35 days, respectively. The extracellular polymeric substances of three systems increased first and then decreased with the increment of PCMX. The granular structure of AGSBR may be conducive to the enrichment of antibiotic resistance genes (ARGs), and almost all ARGs of BSBR were reduced during the addition of 5.0 mg/L PCMX. The microbial community results showed that Rhodococcus as potential degrading bacteria was continuously enriched in three systems. Piscinibacter was regarded as the potential antibiotic resistant bacteria, which was positively associated with multiple ARGs in three systems. Additionally, quaternary ammonium compounds resistance genes had a variety of positive correlations with bacteria in three systems. This study provided a new perspective for the usage and treatment of PCMX.202235785744
8525110.9579Low-intensity ultrasound promotes the horizontal transfer of resistance genes mediated by plasmids in E. coli. Widespread of pathogenic bacteria resistant to antibiotics has become a worldwide public health concern. Conjugative transfer between bacteria is an important mechanism for the horizontal transfer of antibiotic resistance genes. Ultrasound has been widely applied in many fields, but the effect of ultrasound on horizontal transfer of antibiotic-resistant genes is still not clear. We discovered that low-intensity (≤ 0.05 W/cm(2)) ultrasound had no effect on bacterial growth and survival rates, but increased the permeability of cell membrane, and consequentially elevated the transfer rates of plasmid. Low-intensity  ultrasound enhanced conjugation between bacteria, induced expression of conjugation genes TrpBp and TrfAp, and inhibited expression of global regulatory genes KorA, KorB, TrbA, and TrbK. In conclusion, low-intensity ultrasound promoted horizontal transfer of antibiotic-resistant genes by enhancing conjugation and regulating expression of horizontal transfer-related genes.201829692961
7607120.9579Inactivation of Antibiotic Resistant Bacteria and Resistance Genes by Ozone: From Laboratory Experiments to Full-Scale Wastewater Treatment. Ozone, a strong oxidant and disinfectant, seems ideal to cope with future challenges of water treatment, such as micropollutants, multiresistant bacteria (MRB) and even intracellular antibiotic resistance genes (ARG), but information on the latter is scarce. In ozonation experiments we simultaneously determined kinetics and dose-dependent inactivation of Escherichia coli and its plasmid-encoded sulfonamide resistance gene sul1 in different water matrixes. Effects in E. coli were compared to an autochthonous wastewater community. Furthermore, resistance elimination by ozonation and post-treatment were studied in full-scale at a wastewater treatment plant (WWTP). Bacterial inactivation (cultivability, membrane damage) and degradation of sul1 were investigated using plate counts, flow cytometry and quantitative real-time PCR. In experiments with E. coli and the more ozone tolerant wastewater community disruption of intracellular genes was observed at specific ozone doses feasible for full-scale application, but flocs seemed to interfere with this effect. At the WWTP, regrowth during postozonation treatment partly compensated inactivation of MRB, and intracellular sul1 seemed unaffected by ozonation. Our findings indicate that ozone doses relevant for micropollutant abatement from wastewater do not eliminate intracellular ARG.201627775322
3564130.9578Conjugation-Mediated Transfer of Antibiotic-Resistance Plasmids Between Enterobacteriaceae in the Digestive Tract of Blaberus craniifer (Blattodea: Blaberidae). Cockroaches, insects of the order Blattodea, seem to play a crucial role in the possible conjugation-mediated genetic exchanges that occur among bacteria that harbor in the cockroach intestinal tract. The gut of these insects can be thought of as an effective in vivo model for the natural transfer of antimicrobial resistance plasmids among bacteria. In our study, we evaluated the conjugation-mediated horizontal transfer of resistance genes between Escherichia coli and other microorganisms of the same Enterobacteriaceae family within the intestinal tract of Blaberus craniifer Burmeister, 1838 (Blattodea: Blaberidae). Different in vivo mating experiments were performed using E. coli RP4 harboring the RP4 plasmid carrying ampicillin, kanamycin, and tetracycline resistance genes as the donor and E. coli K12 resistant to nalidixic acid or Salmonella enterica serovar Enteritidis IMM39 resistant to streptomycin as the recipients. The RP4 plasmid was successfully transferred to both recipients, producing E. coli K12-RP4 and S. Enteritidis IMM39-RP4 transconjugants. Conjugation frequencies in vivo were similar to those previously observed in vitro. The transfer of the RP4 plasmid in all transconjugants was confirmed by small-scale plasmid isolation and agar gel electrophoresis, suggesting that the intestinal tract of cockroaches is an effective in vivo model for natural gene transfer. Our results confirm that cockroaches allow for the exchange of antimicrobial resistance plasmids among bacteria and may represent a potential reservoir for the dissemination of antibiotic-resistant bacteria in different environments. These findings are particularly significant to human health in the context of health care settings such as hospitals.201626875189
8607140.9577Different paths, same destination: Bisphenol A and its substitute induce the conjugative transfer of antibiotic resistance genes. Antibiotic resistance genes are primarily spread through horizontal gene transfer in aquatic environments. Bisphenols, which are widely used in industry, are pervasive contaminants in such environments. This study investigated how environmentally relevant concentrations of bisphenol A and its substitute (bisphenol S, Bisphenol AP and Bisphenol AF) affect the spread of antibiotic resistance genes among Escherichia coli. As a result, bisphenol A and its three substitutes were found to promote the RP4 plasmid-mediated conjugative transfer of antibiotic resistance genes with different promotive efficiency. Particularly, bisphenol A and bisphenol S were found to induce more than double the incidence of conjugation at 0.1 nmol/L concentration. They therefore were selected as model compounds to investigate the involved mechanisms. Surprisingly, both slightly inhibited bacterial activity, but there was no significant increase in cell death. Bisphenols exposure changed the polymeric substances excreted by the bacteria, increased the permeability of their cell membranes, induced the secretion of antioxidant enzymes and generated reactive oxygen species. They also affected the expression of genes related to conjugative transfer by upregulating replication and DNA transfer genes and downregulating global regulatory genes. It should be noted that gene expression levels were higher in the BPS-exposed group than in the BPA-exposed group. The synthesis of bacterial metabolites and functional components was also significantly affected by bisphenols exposure. This research has helped to clarify the potential health risks of bisphenol contamination of aquatic environments.202439510271
6733150.9576Bioavailability of tetracycline to antibiotic resistant Escherichia coli in water-clay systems. Tetracyclines are a class of antimicrobials frequently found in the environment, and have promoted the proliferation of antibiotic resistance. An unanswered research question is whether tetracycline sorbed to soils is still bioavailable to bacteria and exerts selective pressure on the bacterial community for the development of antibiotic resistance. In this study, bioreporter E. coli MC4100/pTGM strain was used to probe the bioavailability of tetracycline sorbed by smectite clay, a class of common soil minerals. Batch sorption experiments were conducted to prepare clay samples with a wide range of sorbed tetracycline concentration. The bioreporter was incubated with tetracycline-sorbed clay at different clay/solution ratios and water contents, as well as using dialysis tubings to prevent the direct contact between bacterial cells and clay particles. The expression of antibiotic resistance genes from the bioreporter was measured using a flow cytometer as a measurement of bioavailability/selective pressure. The direct contact of bioreporter cells to clay surfaces represented an important pathway facilitating bacterial access to clay-sorbed tetracycline. In clay-water suspensions, reducing solution volume rendered more bacteria to attach to clay surfaces enhancing the bioavailability of clay-sorbed tetracycline. The strong fluorescence emission from bioreporter cells on clay surfaces indicated that clay-sorbed tetracycline was still bioavailable to bacteria. The formation of biofilms on clay surfaces could increase bacterial access to clay-sorbed tetracycline. In addition, desorption of loosely sorbed tetracycline into bulk solution contributed to bacterial exposure and activation of the antibiotic resistance genes. Tetracycline sorbed by soil geosorbents could exert selective pressure on the surrounding microbial communities via bacterial exposure to tetracycline in solution from desorption and to the geosorbent-sorbed tetracycline as well.201830253298
3366160.9576Strain-specific transfer of antibiotic resistance from an environmental plasmid to foodborne pathogens. Pathogens resistant to multiple antibiotics are rapidly emerging, entailing important consequences for human health. This study investigated if the broad-host-range multiresistance plasmid pB10, isolated from a wastewater treatment plant, harbouring amoxicillin, streptomycin, sulfonamide, and tetracycline resistance genes, was transferable to the foodborne pathogens Salmonella spp. or E. coli O157:H7 and how this transfer alters the phenotype of the recipients. The transfer ratio was determined by both plating and flow cytometry. Antibiotic resistance profiles were determined for both recipients and transconjugants using the disk diffusion method. For 14 of the 15 recipient strains, transconjugants were detected. Based on plating, transfer ratios were between 6.8 × 10⁻⁹ and 3.0 × 10⁻² while using flow cytometry, transfer ratios were between <1.0 × 10⁻⁵ and 1.9 × 10⁻². With a few exceptions, the transconjugants showed phenotypically increased resistance, indicating that most of the transferred resistance genes were expressed. In summary, we showed that an environmental plasmid can be transferred into foodborne pathogenic bacteria at high transfer ratios. However, the transfer ratio seemed to be recipient strain dependent. Moreover, the newly acquired resistance genes could turn antibiotic susceptible strains into resistant ones, paving the way to compromise human health.201222791963
7608170.9576Evaluation of a constructed wetland for wastewater treatment: Addressing emerging organic contaminants and antibiotic resistant bacteria. The occurrence of emerging organic contaminants (EOCs) in wastewaters and the inability of the conventional wastewater treatments plants to deal with them have been pointed out several times over the last few years. As a result, remnants of those compounds released into the aquatic environment present a potential risk for public health. Constructed wetlands (CWs) have been proposed as environmentally friendly, low-cost alternative systems with satisfactory results for different types of contaminants. This study aimed to evaluate the efficiency of a CW system, planted with the halophyte Juncus acutus, to eliminate bisphenol A (BPA) and two antibiotics, namely ciprofloxacin (CIP) and sulfamethoxazole (SMX) under different operating conditions. The behavior of Escherichia coli and enterococcal populations in terms of changes in their resistance profile for the selected antibiotics and the abundance of two resistance genes (qnrA and sul1) were also examined. BPA and CIP were significantly removed by the CW, with an overall removal of 76.2% and 93.9% respectively and with the plants playing a vital role. In contrast, SMX was not significantly eliminated. Moreover, fluctuations in the antibiotic resistance profile of bacteria were observed. Treatment processes affected the response of the two selected bacterial indicators, depending on the conditions employed in each case. Furthermore, increased levels of resistance genes were monitored in the system effluent. This study indicates that CWs, as tertiary wastewater treatment systems, may demonstrate high removal rates for some but not all EOCs. This implies that each EOC identified in the feed stream should be tested assiduously by analyzing the final effluents before their reuse or discharge into water bodies.201931146037
7932180.9574How multi-walled carbon nanotubes in wastewater influence the fate of coexisting antibiotic resistant genes in the subsequent disinfection process. Wastewater treatment plants (WWTPs) are important hubs for the spread of antibiotic resistance genes (ARGs). Engineered nanoparticles, which was inevitably released to WWTPs, could change environmentally sensitive of antibiotic resistant bacteria (ARB). This would influence the fate of ARGs in subsequent disinfection process and consequent health risk. In this study, the ARGs fate of the effluent in conventional sodium hypochlorite (NaClO) disinfection process was investigated as multi-walled carbon nanotubes (MWCNTs) existed in sequencing batch reactor (SBR). The results showed the existence of MWCNTs in SBR could enhance the removal efficiency of intracellular 16S rRNA gene and intI1, extracellular intI1, sul2 and tetX in the effluent by NaClO. This is mainly due to the variation of bacterial physiological status, bacterial population structure and the activation of NaClO under the role of MWCNTs. MWCNTs in SBR could increase in membrane permeability of bacterial cells, which would be conducive to the penetration of chlorination to cytoplasm. MWCNTs in SBR also could change the bacterial population structure and induce the chlorine-sensitive bacteria; thus the potential hosts of ARGs in the effluent would be more easily inactivated by NaClO. Moreover, the residual MWCNTs in the effluent could activate NaClO to generate various free radical, which would enhance the oxidizing capacity of chlorination.202235500623
7926190.9574Microplastics Exacerbated Conjugative Transfer of Antibiotic Resistance Genes during Ultraviolet Disinfection: Highlighting Difference between Conventional and Biodegradable Ones. Microplastics (MPs) have been confirmed as a hotspot for antibiotic resistance genes (ARGs) in wastewater. However, the impact of MPs on the transfer of ARGs in wastewater treatment remains unclear. This study investigated the roles and mechanisms of conventional (polystyrene, PS) and biodegradable (polylactic acid, PLA) MPs in the conjugative transfer of ARGs during ultraviolet disinfection. The results showed that MPs significantly facilitated the conjugative transfer of ARGs compared with individual ultraviolet disinfection, and PSMPs exhibited higher facilitation than PLAMPs. The facilitation effects were attributed to light shielding and the production of reactive oxygen species (ROS) and nanoplastics from ultraviolet irradiation of MPs. The light shielding of MPs protected the bacteria and ARGs from ultraviolet inactivation. More importantly, ROS and nanoplastics generated from irradiated MPs induced intracellular oxidative stress on bacteria and further increased the cell membrane permeability and intercellular contact, ultimately enhancing the ARG exchange. The greater fragmentation of PSMPs than PLAMPs resulted in a higher intracellular oxidative stress and a stronger enhancement. This study highlights the concerns of conventional and biodegradable MPs associated with the transfer of ARGs during wastewater treatment, which provides new insights into the combined risks of MPs and ARGs in the environment.202539723446