# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 839 | 0 | 0.9895 | Molecular characterization of carbapenemase-producing Enterobacterales in a tertiary hospital in Lima, Peru. Carbapenemase-producing Enterobacterales (CPE) are a growing threat to global health and the economy. Understanding the interactions between resistance and virulence mechanisms of CPE is crucial for managing difficult-to-treat infections and informing outbreak prevention and control programs. Here, we report the characterization of 21 consecutive, unique clinical isolates of CPE collected in 2018 at a tertiary hospital in Lima, Peru. Isolates were characterized by phenotypic antimicrobial susceptibility testing and whole-genome sequencing to identify resistance determinants and virulence factors. Seven Klebsiella pneumoniae isolates were classified as extensively drug-resistant. The remaining Klebsiella, Enterobacter hormaechei, and Escherichia coli isolates were multidrug-resistant. Eighteen strains carried the metallo-β-lactamase NDM-1, two the serine-carbapenemase KPC-2, and one isolate had both carbapenemases. The bla(NDM-1) gene was located in the truncated ΔISAba125 element, and the bla(KPC-2) gene was in the Tn4401a transposon. ST147 was the most frequent sequence type among K. pneumoniae isolates. Our findings highlight the urgent need to address the emergence of CPE and strengthen control measures and antibiotic stewardship programs in low- and middle-income settings.IMPORTANCEGenomic surveillance of antimicrobial resistance contributes to monitoring the spread of resistance and informs treatment and prevention strategies. We characterized 21 carbapenemase-producing Enterobacterales collected at a Peruvian tertiary hospital in 2018, which exhibited very high levels of resistance and carried numerous resistance genes. We detected the coexistence of carbapenemase-encoding genes (bla(NDM-1) and bla(KPC-2)) in a Klebsiella pneumoniae isolate that also had the PmrB(R256G) mutation associated with colistin resistance. The bla(KPC-2) genes were located in Tn4401a transposons, while the bla(NDM-1) genes were in the genetic structure Tn125 (ΔISAba125). The presence of high-risk clones among Klebsiella pneumoniae (ST11 and ST147) and Escherichia coli (ST410) isolates is also reported. The study reveals the emergence of highly resistant bacteria in a Peruvian hospital, which could compromise the effectiveness of current treatments and control. | 2024 | 38193666 |
| 2500 | 1 | 0.9894 | The crisis of carbapenemase-mediated carbapenem resistance across the human-animal-environmental interface in India. Carbapenems are the decision-making antimicrobials used to combat severe Gram-negative bacterial infections in humans. Carbapenem resistance poses a potential public health emergency, especially in developing countries such as India, accounting for high morbidity, mortality, and healthcare cost. Emergence and transmission of plasmid-mediated "big five" carbapenemase genes including KPC, NDM, IMP, VIM and OXA-48-type among Gram-negative bacteria is spiralling the issue. Carbapenemase-producing carbapenem-resistant organisms (CP-CRO) cause multi- or pan-drug resistance by co-harboring several antibiotic resistance determinants. In addition of human origin, animals and even environmental sites are also the reservoir of CROs. Spillage in food-chains compromises food safety and security and increases the chance of cross-border transmission of these superbugs. Metallo-β-lactamases, mainly NDM-1 producing CROs, are commonly shared between human, animal and environmental interfaces worldwide, including in India. Antimicrobial resistance (AMR) surveillance using the One Health approach has been implemented in Europe, the United-Kingdom and the United-States to mitigate the crisis. This concept is still not implemented in most developing countries, including India, where the burden of antibiotic-resistant bacteria is high. Lack of AMR surveillance in animal and environmental sectors underestimates the cumulative burden of carbapenem resistance resulting in the silent spread of these superbugs. In-depth indiscriminate AMR surveillance focusing on carbapenem resistance is urgently required to develop and deploy effective national policies for preserving the efficacy of carbapenems as last-resort antibiotics in India. Tracking and mapping of international high-risk clones are pivotal for containing the global spread of CP-CRO. | 2023 | 36241158 |
| 2590 | 2 | 0.9894 | Combining stool and stories: exploring antimicrobial resistance among a longitudinal cohort of international health students. BACKGROUND: Antimicrobial resistance (AMR) is a global public health concern that requires transdisciplinary and bio-social approaches. Despite the continuous calls for a transdisciplinary understanding of this problem, there is still a lack of such studies. While microbiology generates knowledge about the biomedical nature of bacteria, social science explores various social practices related to the acquisition and spread of these bacteria. However, the two fields remain disconnected in both methodological and conceptual levels. Focusing on the acquisition of multidrug resistance genes, encoding extended-spectrum betalactamases (CTX-M) and carbapenemases (NDM-1) among a travelling population of health students, this article proposes a methodology of 'stool and stories' that combines methods of microbiology and sociology, thus proposing a way forward to a collaborative understanding of AMR. METHODS: A longitudinal study with 64 health students travelling to India was conducted in 2017. The study included multiple-choice questionnaires (n = 64); a collection of faecal swabs before travel (T0, n = 45), in the first week in India (T1, n = 44), the second week in India (T2, n = 41); and semi-structured interviews (n = 11). Stool samples were analysed by a targeted metagenomic approach. Data from semi-structured interviews were analysed using the method of thematic analysis. RESULTS: The incidence of ESBL- and carbapenemase resistance genes significantly increased during travel indicating it as a potential risk; for CTX-M from 11% before travel to 78% during travel and for NDM-1 from 2% before travel to 11% during travel. The data from semi-structured interviews showed that participants considered AMR mainly in relation to individual antibiotic use or its presence in a clinical environment but not to travelling. CONCLUSION: The microbiological analysis confirmed previous research showing that international human mobility is a risk factor for AMR acquisition. However, sociological methods demonstrated that travellers understand AMR primarily as a clinical problem and do not connect it to travelling. These findings indicate an important gap in understanding AMR as a bio-social problem raising a question about the potential effectiveness of biologically driven AMR stewardship programs among travellers. Further development of the 'stool and stories' approach is important for a transdisciplinary basis of AMR stewardship. | 2021 | 34579656 |
| 1821 | 3 | 0.9894 | Emergence and dissemination of bla(KPC-31) and bla(PAC-2) among different species of Enterobacterales in Colombia: a new challenge for the microbiological laboratories. Ceftazidime/avibactam (CZA) is a promising treatment option for infections caused by carbapenem-resistant Enterobacterales (CRE). However, CZA resistance is increasingly reported worldwide, largely due to the emergence of KPC variants and increase of metallo-β-lactamases (MBL). This study describes the mechanisms associated with CZA resistance in circulating Enterobacterales isolates from Colombia, highlighting the challenge this represents for microbiological identification. Between 2021 and 2024, 68 CZA-resistant Enterobacterales isolates were identified by automated methods in seven Colombian cities. Resistance to CZA was subsequently confirmed by broth microdilution and E-test. Carbapenemase production was evaluated using phenotypic tests, such as the mCIM test, Carba NP, lateral flow assay, and qPCR (bla(KPC), bla(NDM), bla(VIM), bla(IMP), and bla(OXA-48)). Whole-genome sequencing was performed on 15 isolates that tested negative for MBL genes. Whole-genome sequencing of these 15 isolates revealed a variety of resistance determinants: six isolates harbored bla(KPC-31), one bla(KPC-33), one bla(KPC-8), five harbored bla(PAC-2), and two co-harbored bla(PAC-2) and bla(KPC-2). Notably, bla(PAC-2) was located on an IncQ plasmid. However, some of these variants were not detected by phenotypic assays, likely due to their low or undetectable carbapenemase activity. CZA resistance in non-MBL producing Enterobacterales in Colombia is primarily mediated by the presence of bla(KPC-31) and emergence of bla(PAC-2). These resistance mechanisms pose significant diagnostic, therapeutic, and epidemiological challenges, as they frequently go undetected by conventional microbiological methods. In this context, enhanced molecular surveillance and improved diagnostic strategies are urgently needed to enable early detection, guide antimicrobial therapy, and support infection control and stewardship efforts.IMPORTANCEAntibiotic resistance is a serious global health threat. Ceftazidime/avibactam (CZA) is a key treatment option for multidrug-resistant (MDR) Enterobacterales often used when other antibiotics fail. However, bacteria are now developing resistance to this drug as well, making infections increasingly difficult to treat. In this study, we examined CZA-resistant bacteria from multiple cities in Colombia and found uncommon resistance genes across several bacterial species. These genes are frequently missed, as they often do not test positive due to the limitations of most routinely used laboratory tests. Importantly, some of these genes can be transferred between bacteria, increasing the likelihood of indiscriminate dissemination in the hospital setting. Therefore, our findings highlight the urgent need for improved diagnostic tools and molecular surveillance. Early detection will help physicians select effective treatments quickly and prevent the wider dissemination of these MDR-resistant bacteria. | 2025 | 41070989 |
| 1832 | 4 | 0.9892 | Long-read sequencing reveals genomic diversity and associated plasmid movement of carbapenemase-producing bacteria in a UK hospital over 6 years. Healthcare-associated infections (HCAIs) affect the most vulnerable people in society and are increasingly difficult to treat in the face of mounting antimicrobial resistance (AMR). Routine surveillance represents an effective way of understanding the circulation and burden of bacterial resistance and transmission in hospital settings. Here, we used whole-genome sequencing (WGS) to retrospectively analyse carbapenemase-producing Gram-negative bacteria from a single hospital in the UK over 6 years (n=165). We found that the vast majority of isolates were either hospital-onset (HAI) or HCAI. Most carbapenemase-producing organisms were carriage isolates, with 71 % isolated from screening (rectal) swabs. Using WGS, we identified 15 species, the most common being Escherichia coli and Klebsiella pneumoniae. Only one significant clonal outbreak occurred during the study period and involved a sequence type (ST)78 K. pneumoniae carrying bla (NDM-1) on an IncFIB/IncHI1B plasmid. Contextualization with public data revealed little evidence of this ST outside of the study hospital, warranting ongoing surveillance. Carbapenemase genes were found on plasmids in 86 % of isolates, the most common types being bla (NDM)- and bla (OXA)-type alleles. Using long-read sequencing, we determined that approximately 30 % of isolates with carbapenemase genes on plasmids had acquired them via horizontal transmission. Overall, a national framework to collate more contextual genomic data, particularly for plasmids and resistant bacteria in the community, is needed to better understand how carbapenemase genes are transmitted in the UK. | 2023 | 37405394 |
| 1882 | 5 | 0.9892 | Genomic Characterization of Multidrug-Resistant Pathogenic Enteric Bacteria from Healthy Children in Osun State, Nigeria. Antimicrobial resistance (AMR) is responsible for the spread and persistence of bacterial infections. Surveillance of AMR in healthy individuals is usually not considered, though these individuals serve as reservoirs for continuous disease transmission. Therefore, it is essential to conduct epidemiological surveillance of AMR in healthy individuals to fully understand the dynamics of AMR transmission in Nigeria. Thirteen multidrug-resistant Citrobacter spp., Enterobacter spp., Klebsiella pneumoniae, and Escherichia coli isolated from stool samples of healthy children were subjected to whole genome sequencing (WGS) using Illumina and Oxford nanopore sequencing platforms. A bioinformatics analysis revealed antimicrobial resistance genes such as the pmrB_Y358N gene responsible for colistin resistance detected in E. coli ST219, virulence genes such as senB, and ybtP&Q, and plasmids in the isolates sequenced. All isolates harbored more than three plasmid replicons of either the Col and/or Inc type. Plasmid reconstruction revealed an integrated tetA gene, a toxin production caa gene in two E. coli isolates, and a cusC gene in K. quasivariicola ST3879, which induces neonatal meningitis. The global spread of AMR pathogenic enteric bacteria is of concern, and surveillance should be extended to healthy individuals, especially children. WGS for epidemiological surveillance will improve the detection of AMR pathogens for management and control. | 2024 | 38543556 |
| 2632 | 6 | 0.9892 | Environmental Spread of Extended Spectrum Beta-Lactamase (ESBL) Producing Escherichia coli and ESBL Genes among Children and Domestic Animals in Ecuador. BACKGROUND: There is a significant gap in our understanding of the sources of multidrug-resistant bacteria and resistance genes in community settings where human-animal interfaces exist. OBJECTIVES: This study characterized the relationship of third-generation cephalosporin-resistant Escherichia coli (3GCR-EC) isolated from animal feces in the environment and child feces based on phenotypic antimicrobial resistance (AMR) and whole genome sequencing (WGS). METHODS: We examined 3GCR-EC isolated from environmental fecal samples of domestic animals and child fecal samples in Ecuador. We analyzed phenotypic and genotypic AMR, as well as clonal relationships (CRs) based on pairwise single-nucleotide polymorphisms (SNPs) analysis of 3GCR-EC core genomes. CRs were defined as isolates with fewer than 100 different SNPs. RESULTS: A total of 264 3GCR-EC isolates from children (n = 21), dogs (n = 20), and chickens (n = 18) living in the same region of Quito, Ecuador, were identified. We detected 16 CRs total, which were found between 7 children and 5 domestic animals (5 CRs) and between 19 domestic animals (11 CRs). We observed that several clonally related 3GCR-EC isolates had acquired different plasmids and AMR genes. Most CRs were observed in different homes (n = 14) at relatively large distances. Isolates from children and domestic animals shared the same blaCTX-M allelic variants, and the most prevalent were blaCTX-M-55 and blaCTX-M-65, which were found in isolates from children, dogs, and chickens. DISCUSSION: This study provides evidence of highly dynamic horizontal transfer of AMR genes and mobile genetic elements (MGEs) in the E. coli community and shows that some 3GCR-EC and (extended-spectrum β-lactamase) ESBL genes may have moved relatively large distances among domestic animals and children in semirural communities near Quito, Ecuador. Child-animal contact and the presence of domestic animal feces in the environment potentially serve as important sources of drug-resistant bacteria and ESBL genes. https://doi.org/10.1289/EHP7729. | 2021 | 33617318 |
| 1853 | 7 | 0.9892 | Dissemination dynamics of colistin resistance genes mcr-9 and mcr-10 across diverse Inc plasmid backbones. BACKGROUND: The polymyxin antibiotic colistin is used as a final line of treatment for life threatening infections caused by multidrug resistant and carbapenem-resistant Gram-negative bacteria. Mobile colistin resistance genes mcr-9 and mcr-10 are increasingly detected in Enterobacteriaceae but their epidemiology is poorly understood. METHODS: The genetic characteristics of mcr-9 and mcr-10, being the only mobile colistin resistance genes detected in a local population of Enterobacter species isolated from bloodstream infections in Dartmouth Hitchcock Medical Center, USA, were elucidated and contextualized against a global dataset of mcr-9/10-bearing plasmids using genomic and phylogenetic tools. RESULTS: Seven out of 59 Enterobacter isolates carry either an mcr-9 or mcr-10 on a plasmid with distinct single and multiple replicon configurations, including IncFIB(pECLA), IncFIB(K), IncFIA(HI1)-IncFIB(K), IncFIB(pECLA)--IncFII(pECLA) and IncFIB(K)--IncFII(pECLA), whereas two genomes harbor mcr-9 on their chromosome. Global contextualization reveals that allelic variants of mcr-9 and mcr-10 are widely disseminated across diverse Inc-type plasmids, transcending geographic and taxonomic boundaries. Plasmid-borne genes conferring resistance to other antimicrobial agents, such as aminoglycoside, tetracycline and trimethoprim, tend to co-occur with mcr-9.1 and mcr-9.2 alleles. CONCLUSIONS: Findings from this study enhance our understanding of the plasmid backgrounds of mcr-9 and mcr-10, their associated antimicrobial resistance gene carriage and co-occurrence. This knowledge may be critical to inform scalable and effective public health interventions aimed at preserving the efficacy of colistin. | 2025 | 40999001 |
| 1881 | 8 | 0.9892 | Genomic Characterisation of Multidrug-Resistant Pathogenic Enteric Bacteria from healthy children in Osun State, Nigeria. Antimicrobial resistance (AMR) has been established to be a significant driver for the persistence and spread of bacterial infections. It is, therefore, essential to conduct epidemiological surveillance of AMR in healthy individuals to understand the actual dynamics of AMR in Nigeria. Multi-drug resistant Klebsiella quasivariicola (n=1), Enterobacter hormaechei (n=1), and Escherichia coli (n=3) from stool samples of healthy children were subjected to whole genome sequencing using Illumina Nextseq1000/2000 and Oxford nanopore. Bioinformatics analysis reveals antimicrobial resistance, virulence genes, and plasmids. This pathogenic enteric bacteria harbored more than three plasmid replicons of either Col and/or Inc type associated with outbreaks and AMR resistant gene pmrB responsible for colistin resistance. Plasmid reconstruction revealed an integrated tetA gene responsible for tetracycline resistance, and caa gene responsible for toxin production in two of the E.coli isolates, and a cusC gene known to induce neonatal meningitis in the K. quasivariicola ST3879. The global spread of MDR pathogenic enteric bacteria is a worrying phenomenon, and close surveillance of healthy individuals, especially children, is strongly recommended to prevent the continuous spread and achieve the elimination and eradication of these infections. Molecular epidemiological surveillance using whole genome sequencing (WGS) will improve the detection of MDR pathogens in Nigeria. | 2023 | 37503211 |
| 842 | 9 | 0.9891 | Molecular characterization of antimicrobial resistance genes and plasmid profiles in enterobacterales isolated from urinary tract infections in rural outpatient women in Otavalo, Ecuador. BACKGROUND: The rise of antibiotic-resistant bacteria poses a significant public health threat, particularly in the context of urinary tract infections (UTIs), which rank as the second most common ambulatory illness. UTIs are often caused by Enterobacterales species, such as Escherichia coli and Klebsiella pneumoniae, with increasing resistance to critical antibiotics complicating treatment. Indigenous rural populations, like those in Ecuador, face unique challenges due to cultural, social, and economic barriers that hinder access to healthcare, exacerbating the issue of antibiotic resistance. METHODS: This study analyzed 154 Enterobacterales strains isolated from ambulatory UTI cases in outpatiens from Otavalo, Ecuador, between October 2021 and February 2022. DNA was extracted, and the presence of antibiotic resistance genes (ARGs) was screened using PCR for extended-spectrum beta-lactamases and carbapenemases. Plasmid incompatibility groups were identified through replicon typing, and multi-locus sequence typing (MLST) was performed to characterize strains. RESULTS: The analysis revealed four prevalent ARGs, with bla(TEM) being the most common (87.01% of isolates), followed by bla(CTX-M-1) (44.16%), bla(SHV) (18.83%), and bla(CTX-M-9) (13.64%). No carbapenemases or mcr-1 genes were detected. Among the incompatibility groups, IncFIB, IncF, and IncY were the most prevalent. A diverse array of ARG combinations was observed, indicating significant plasmid-mediated genetic plasticity. MLST identified 33 distinct sequence types among E. coli isolates, with ST10 and ST3944 being the most frequent. For K. pneumoniae, ST15 and ST25 were predominant. CONCLUSIONS: This study reveals significant antibiotic resistance among Enterobacterales from urinary tract infections in rural outpatients in Ecuador. The bla(TEM) gene was found in 87.01% of isolates, with notable clones like E. coli ST10 and ST3944 linked to extraintestinal infections. K. pneumoniae ST15 and ST25 were prevalent, indicating multidrug resistance. The findings highlight the need for ongoing surveillance and targeted public health strategies to combat resistance in these vulnerable communities. | 2025 | 41131447 |
| 1875 | 10 | 0.9891 | Mobile Colistin Resistance (mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. For more than six decades, COL has been used largely unregulated in the poultry sector in low- and middle-income countries (LMICs), and this has led to the development/spread of mcr gene-containing bacteria (MGCB). The prevalence rates of mcr-positive organisms from the poultry sector in LMICs between January 1970 and May 2023 range between 0.51% and 58.8%. Through horizontal gene transfer, conjugative plasmids possessing insertion sequences (ISs) (especially ISApl1), transposons (predominantly Tn6330), and integrons have enhanced the spread of mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8, mcr-9, and mcr-10 in the poultry sector in LMICs. These genes are harboured by Escherichia, Klebsiella, Proteus, Salmonella, Cronobacter, Citrobacter, Enterobacter, Shigella, Providencia, Aeromonas, Raoultella, Pseudomonas, and Acinetobacter species, belonging to diverse clones. The mcr-1, mcr-3, and mcr-10 genes have also been integrated into the chromosomes of these bacteria and are mobilizable by ISs and integrative conjugative elements. These bacteria often coexpress mcr with virulence genes and other genes conferring resistance to HP-CIAs, such as extended-spectrum cephalosporins, carbapenems, fosfomycin, fluoroquinolone, and tigecycline. The transmission routes and dynamics of MGCB from the poultry sector in LMICs within the One Health triad include contact with poultry birds, feed/drinking water, manure, poultry farmers and their farm workwear, farming equipment, the consumption and sale of contaminated poultry meat/egg and associated products, etc. The use of pre/probiotics and other non-antimicrobial alternatives in the raising of birds, the judicious use of non-critically important antibiotics for therapy, the banning of nontherapeutic COL use, improved vaccination, biosecurity, hand hygiene and sanitization, the development of rapid diagnostic test kits, and the intensified surveillance of mcr genes, among others, could effectively control the spread of MGCB from the poultry sector in LMICs. | 2023 | 37508213 |
| 2527 | 11 | 0.9891 | A Systematic Review and Comprehensive Analysis of mcr Gene Prevalence in Bacterial Isolates in Arab Countries. BACKGROUND: The resurgence of colistin has become critical in combating multidrug-resistant Gram-negative bacteria. However, the emergence of mobilized colistin resistance (mcr) genes presents a crucial global challenge, particularly in the Arab world, which includes regions with unique conditions and ongoing conflicts in some parts. METHODS: To address this issue, a systematic review was conducted using multiple databases, including Cochrane, PubMed, Scopus, Web of Science, and Arab World Research Source. RESULTS: A total of 153 studies were included, revealing substantial heterogeneity in the prevalence of mcr genes across 15 Arab countries, with notable findings indicating that Egypt and Lebanon reported the highest number of cases. The analysis indicated that the most prevalent sequence types were ST10, ST101, and ST1011, all of which are Escherichia coli strains linked to significant levels of colistin resistance and multiple antimicrobial resistance profiles. CONCLUSIONS: By analyzing the diverse findings from different Arab countries, this review lays a critical foundation for future research and highlights the necessity for enhanced surveillance and targeted interventions to address the looming threat of colistin resistance in the region. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42024584379. | 2024 | 39452224 |
| 849 | 12 | 0.9890 | Bacterial Genomics for National Antimicrobial Resistance Surveillance in Cambodia. BACKGROUND: Antimicrobial resistance (AMR) surveillance in low- and middle-income countries (LMICs) often relies on poorly resourced laboratory processes. Centralized sequencing was combined with cloud-based, open-source bioinformatics solutions for national AMR surveillance in Cambodia. METHODS: Blood cultures growing gram-negative bacteria were collected at 6 Cambodian hospitals (January 2021 to October 2022). Isolates were obtained from pure plate growth and shotgun DNA sequencing performed in country. Using public nucleotide and protein databases, reads were aligned for pathogen identification and AMR gene characterization. Multilocus sequence typing was performed on whole-genome assemblies and haplotype clusters compared against published genomes. RESULTS: Genes associated with acquired resistance to fluoroquinolones were identified in 59%, trimethoprim/sulfamethoxazole in 45%, and aminoglycosides in 52% of 715 isolates. Extended-spectrum β-lactamase encoding genes were identified in 34% isolates, most commonly blaCTX-M-15, blaCTX-M-27, and blaCTX-M-55 in Escherichia coli sequence types 131 and 1193. Carbapenemase genes were identified in 12% isolates, most commonly blaOXA-23, blaNDM-1, blaOXA-58, and blaOXA-66 in Acinetobacter species. Phylogenetic analysis revealed clonal strains of Acinetobacter baumannii, representing suspected nosocomial outbreaks, and genetic clusters of quinolone-resistant typhoidal Salmonella and extended-spectrum β-lactamase E. coli cases suggesting community transmission. CONCLUSIONS: With accessible sequencing platforms and bioinformatics solutions, bacterial genomics can supplement AMR surveillance in LMICs. | 2025 | 39163245 |
| 1553 | 13 | 0.9890 | Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. The worldwide spread of extended-spectrum β-lactamase (ESBL)-producing bacteria, particularly Escherichia coli and Klebsiella pneumoniae, is a critical concern for the development of therapies against multidrug-resistant bacteria. Since the 2000s, detection rates of CTX-M types ESBL-producing E. coli in the community have been high, possibly contributing to their nosocomial detection. Various factors, such as environmental sources, food animals, and international travel, accelerate the global ESBL spread in the community. The dramatic dissemination of ESBLs in the community is associated with the relatively recent emergence of CTX-M-15-producing ST131 E. coli clones, which often carry many other antibiotic resistance genes (including quinolone). The usefulness of β-lactam/β-lactamase inhibitor, particularly, piperacillin/tazobactam, has been considered as a carbapenem-sparing regimen for ESBL infections, although the global trend of AmpC β-lactamase-producing bacteria should be monitored carefully. Careful therapeutic selection and continued surveillance for the detection of multidrug-resistant bacteria are required. | 2018 | 29626676 |
| 1862 | 14 | 0.9890 | Global Distribution of Extended Spectrum Cephalosporin and Carbapenem Resistance and Associated Resistance Markers in Escherichia coli of Swine Origin - A Systematic Review and Meta-Analysis. Third generation cephalosporins and carbapenems are considered critically important antimicrobials in human medicine. Food animals such as swine can act as reservoirs of antimicrobial resistance (AMR) genes/bacteria resistant to these antimicrobial classes, and potential dissemination of AMR genes or resistant bacteria from pigs to humans is an ongoing public health threat. The objectives of this systematic review and meta-analysis were to: (1) estimate global proportion and animal-level prevalence of swine E. coli phenotypically resistant to third generation cephalosporins (3GCs) and carbapenems at a country level; and (2) measure abundances and global distribution of the genetic mechanisms that confer resistance to these antimicrobial classes in these E. coli isolates. Articles from four databases (CAB Abstracts, PubMed/MEDLINE, PubAg, and Web of Science) were screened to extract relevant data. Overall, proportion of E. coli resistant to 3GCs was lower in Australia, Europe, and North America compared to Asian countries. Globally, <5% of all E. coli were carbapenem-resistant. Fecal carriage rates (animal-level prevalence) were consistently manifold higher as compared to pooled proportion of resistance in E. coli isolates. bla (CTX-M) were the most common 3GC resistance genes globally, with the exception of North America where bla (CMY) were the predominant 3GC resistance genes. There was not a single dominant bla (CTX-M) gene subtype globally and several bla (CTX-M) subtypes were dominant depending on the continent. A wide variety of carbapenem-resistance genes (bla (NDM-, VIM-, IMP-, OXA-48), (and) (KPC-)) were identified to be circulating in pig populations globally, albeit at very-low frequencies. However, great statistical heterogeneity and a critical lack of metadata hinders the true estimation of prevalence of phenotypic and genotypic resistance to these antimicrobials. Comparatively frequent occurrence of 3GC resistance and emergence of carbapenem resistance in certain countries underline the urgent need for improved AMR surveillance in swine production systems in these countries. | 2022 | 35620091 |
| 1854 | 15 | 0.9889 | Whole genome analysis reveals the distribution and diversity of plasmid reservoirs of NDM and MCR in commercial chicken farms in China. The increase in multidrug-resistant (MDR) Enterobacteriaceae presents a significant challenge to clinical treatment, particularly in infections where carbapenems and colistin serve as the last-resort antimicrobial agents. In this study, we isolated 119 non-repetitive gram-negative bacteria from MacConkey medium supplemented with imipenem and colistin. The isolates were dominated by Klebsiella pneumoniae (58.0%, n = 69) and Escherichia coli (31.1%, n = 37). The predominant sequence types (STs) of E. coli were ST226, ST1286, and ST11738, whereas K. pneumoniae displayed ST152, ST395, and ST709 as major types. Genomic analysis identified mcr-1/3/8/9 in 44 strains and bla(NDM) in 63 strains across various species. IncX3 (n = 57) and IncFII (n = 5) were the most common bla(NDM-5)-carrying plasmid types. Several plasmid replicons were associated with mcr genes, including IncI2, IncX4, and novel plasmids. Remarkably, we discovered four combinations of bla(NDM) and mcr co-occurrence in 28 isolates, including bla(NDM-5)/mcr-1, bla(NDM-5)/mcr-3, bla(NDM-5)/mcr-8, and bla(NDM-5)/mcr-9. Our findings reveal that chicken farms are significant reservoirs for both bla(NDM) and mcr genes, with frequent co-occurrence of these resistance determinants. The presence of these genes alongside other resistance factors, such as blaESBL, highlights a critical public health risk. This study underscores the need for enhanced surveillance and intervention strategies to mitigate the spread of MDR pathogens from agricultural environments to clinical settings.IMPORTANCEThis study reveals that commercial poultry farms in China serve as critical reservoirs for MDR gram-negative bacteria harboring carbapenemase (bla(NDM)) and mobilized colistin resistance (mcr) genes. By analyzing 119 isolates, we uncovered extensive genetic diversity and plasmid-mediated co-occurrence of these resistance determinants, enabling bacteria to evade nearly all available treatments. Alarmingly, the horizontal transfer of resistance genes via highly mobile plasmids facilitates their spread across microbial communities and potentially into clinical settings. These findings underscore the urgent need to address antibiotic overuse in agriculture and strengthen surveillance under the One Health framework. The persistence of MDR pathogens in poultry environments highlights a significant risk for zoonotic transmission, emphasizing the necessity of coordinated interventions to curb the global antimicrobial resistance crisis. | 2025 | 40488461 |
| 1742 | 16 | 0.9889 | Shelter dogs as reservoirs of international clones of Escherichia coli carrying mcr-1.1 and bla(CTX-M) resistance genes in Lima, Peru. Antimicrobial resistance (AMR) poses a critical public health threat worldwide, particularly at the human-animal interface where cross-transmission of critical priority Enterobacterales, such as Escherichia coli, have become increasingly reported. Worryingly, E. coli encoding extended-spectrum β-lactamases (ESBLs) has been documented in companion animals worldwide. Conversely, the presence of mcr genes, which confer resistance to polymyxins, in bacteria from pets remains more infrequent. In this study, we sequenced and reported on the first genomic data of E. coli strains carrying mcr-1 and/or bla(CTX-M) genes isolated from rectal swabs of stray dogs in a shelter in the city of Lima, Peru. Antimicrobial susceptibility revealed that E. coli strains exhibited a multidrug resistance profile. In addition to mcr-1 and bla(CTX-M) genes, other clinically relevant resistance determinants were identified, with notably presence of bla(TEM-176) and the novel bla(SCO-2) variant. The association of mcr-1.1 and IncI2 plasmid was confirmed. Several virulence genes were detected, classifying strains as putative extraintestinal pathogenic E. coli. Multilocus sequence typing prediction recognized diverse sequence types (ST), including ST155, ST189, ST657, ST746, ST1140, ST3014, and ST7188. This study represents the first report of mcr-positive E. coli in dogs from Peru, emphasizing the need for continuous surveillance and genomic characterization to better understand the transmission dynamics of these critical resistance genes at the human-animal interface. Furthermore, our results provide evidence that stray, and shelter dogs could be a reservoir for the spread of WHO priority pathogens, and/or polymyxin and β-lactam resistance genes, which is a public health and One Health concern that requires appropriate management strategies. | 2025 | 40339258 |
| 1842 | 17 | 0.9889 | Emergence of mcr-9.1 in Extended-Spectrum-β-Lactamase-Producing Clinical Enterobacteriaceae in Pretoria, South Africa: Global Evolutionary Phylogenomics, Resistome, and Mobilome. Extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae are critical-priority pathogens that cause substantial fatalities. With the emergence of mobile mcr genes mediating resistance to colistin in Enterobacteriaceae, clinicians are now left with few therapeutic options. Eleven clinical Enterobacteriaceae strains with resistance to cephems and/or colistin were genomically analyzed to determine their resistomes, mobilomes, and evolutionary relationships to global strains. The global phylogenomics of mcr genes and mcr-9.1-bearing genomes were further analyzed. Ten isolates were ESBL positive. The isolates were multidrug resistant and phylogenetically related to global clones but distant from local strains. Multiple resistance genes, including bla (CTX-M-15) bla (TEM-1), and mcr-9.1, were found in single isolates; ISEc9, IS19, and Tn3 transposons bracketed bla (CTX-M-15) and bla (TEM-1) Common plasmid types included IncF, IncH, and ColRNAI. mcr-9 was of close sequence identity to mcr-3, mcr-5, mcr-7, mcr-8, and mcr-10. Genomes bearing mcr-9.1 clustered into six main phyletic groups (A to F), with those of this study belonging to clade B. Enterobacter species and Salmonella species are the main hosts of mcr-9.1 globally, although diverse promiscuous plasmids disseminate mcr-9.1 across different bacterial species. Emergence of mcr-9.1 in ESBL-producing Enterobacteriaceae in South Africa is worrying, due to the restricted therapeutic options. Intensive One Health molecular surveillance might discover other mcr alleles and inform infection management and antibiotic choices.IMPORTANCE Colistin is currently the last-resort antibiotic for difficult-to-treat bacterial infections. However, colistin resistance genes that can move from bacteria to bacteria have emerged, threatening the safe treatment of many bacterial infections. One of these genes, mcr-9.1, has emerged in South Africa in bacteria that are multidrug resistant, further limiting treatment options for clinicians. In this work, we show that this new gene is disseminating worldwide through Enterobacter and Salmonella species through multiple plasmids. This worrying observation requires urgent action to prevent further escalation of this gene in South Africa and Africa. | 2020 | 32430406 |
| 1863 | 18 | 0.9889 | Genomic surveillance of extended-spectrum cephalosporin-resistant Escherichia coli isolated from poultry in the UK from 2016 to 2020. INTRODUCTION: Surveillance is vital for monitoring the increasing risk of antimicrobial resistance (AMR) in bacteria leading to failures in humans and animals to treat infections. In a One Health context, AMR bacteria from livestock and food can transfer through the food chain to humans, and vice versa, which can be characterized in detail through genomics. We investigated the critical aspects of AMR and the dynamics of AMR in poultry in the UK. METHODS: In this study, we performed whole genome sequencing for genomic characterization of 761 extended-spectrum cephalosporinases (ESCs) harboring Escherichia coli isolated from poultry caeca and meat through EU harmonized monitoring of AMR in zoonotic and commensal bacteria from 2016 and 2018 and UK national monitoring in 2020. RESULTS: The most common ESC in 2016 and 2018 was blaCTX-M-1; however, 2020 had a greater diversity of ESCs with blaCTX-M-55 dominant in chickens and blaCTX-M-15 more prevalent in turkeys. Co-resistance to sulphonamides, tetracycline, and trimethoprim was widespread, and there were several positive correlations between the sequence types (STs) and ESC genes. We identified certain AMR genotypes and STs that were frequent each year but not as successful in subsequent years, e.g., ST350 harboring blaCTX-M-1, sul2, and tetA-v4.Phylogenetic comparison of isolates prevalent in our panel with global ones from the same STs available in public databases showed that isolates from the UK generally clustered together, suggesting greater within-country than between-country transmission. DISCUSSION: We conclude that future genomic surveillance of indicator organisms will be invaluable as it will enable detailed comparisons of AMR between and within neighboring countries, potentially identifying the most successful sequence types, plasmids, or emerging threats. | 2023 | 38352060 |
| 1738 | 19 | 0.9889 | Role of Institut Hospitalo-Universitaire Méditerranée Infection in the surveillance of resistance to antibiotics and training of students in the Mediterranean basin and in African countries. Surveillance of antibiotic resistance has become a public global concern after the rapid worldwide dissemination of several antibiotic resistance genes. Here we report the role of the Institut Hospitalo-Universitaire Méditerranée Infection created in 2011 in the identification and description of multidrug-resistant bacteria thanks to collaborations and training of students from the Mediterranean basin and from African countries. Since the creation of the institute, 95 students and researchers have come from 19 different countries from these areas to characterize 6359 bacterial isolates from 7280 samples from humans (64%), animals (28%) and the environment (8%). Most bacterial isolates studied were Gram-negative bacteria (n = 5588; 87.9%), mostly from Algeria (n = 4190), Lebanon (n = 946), Greece (n = 610), Saudi Arabia (n = 299) and Senegal (n = 278). Antibiotic resistance was diversified with the detection and characterization of extended-spectrum β-lactamases, carbapenemases and resistance to colistin, vancomycin and methicillin. All those studies led to 97 indexed international scientific papers. Over the last 6 years, our institute has created a huge network of collaborations by training students that plays a major role in the surveillance of resistance to antibiotics in these countries. | 2018 | 30402244 |