# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8759 | 0 | 0.9971 | Genetic and transcriptomic dissection of host defense to Goss's bacterial wilt and leaf blight of maize. Goss's wilt, caused by the Gram-positive actinobacterium Clavibacter nebraskensis, is an important bacterial disease of maize. The molecular and genetic mechanisms of resistance to the bacterium, or, in general, Gram-positive bacteria causing plant diseases, remain poorly understood. Here, we examined the genetic basis of Goss's wilt through differential gene expression, standard genome-wide association mapping (GWAS), extreme phenotype (XP) GWAS using highly resistant (R) and highly susceptible (S) lines, and quantitative trait locus (QTL) mapping using 3 bi-parental populations, identifying 11 disease association loci. Three loci were validated using near-isogenic lines or recombinant inbred lines. Our analysis indicates that Goss's wilt resistance is highly complex and major resistance genes are not commonly present. RNA sequencing of samples separately pooled from R and S lines with or without bacterial inoculation was performed, enabling identification of common and differential gene responses in R and S lines. Based on expression, in both R and S lines, the photosynthesis pathway was silenced upon infection, while stress-responsive pathways and phytohormone pathways, namely, abscisic acid, auxin, ethylene, jasmonate, and gibberellin, were markedly activated. In addition, 65 genes showed differential responses (up- or down-regulated) to infection in R and S lines. Combining genetic mapping and transcriptional data, individual candidate genes conferring Goss's wilt resistance were identified. Collectively, aspects of the genetic architecture of Goss's wilt resistance were revealed, providing foundational data for mechanistic studies. | 2023 | 37652038 |
| 86 | 1 | 0.9970 | Decreased abundance of type III secretion system-inducing signals in Arabidopsis mkp1 enhances resistance against Pseudomonas syringae. Genes encoding the virulence-promoting type III secretion system (T3SS) in phytopathogenic bacteria are induced at the start of infection, indicating that recognition of signals from the host plant initiates this response. However, the precise nature of these signals and whether their concentrations can be altered to affect the biological outcome of host-pathogen interactions remain speculative. Here we use a metabolomic comparison of resistant and susceptible genotypes to identify plant-derived metabolites that induce T3SS genes in Pseudomonas syringae pv tomato DC3000 and report that mapk phosphatase 1 (mkp1), an Arabidopsis mutant that is more resistant to bacterial infection, produces decreased levels of these bioactive compounds. Consistent with these observations, T3SS effector expression and delivery by DC3000 was impaired when infecting the mkp1 mutant. The addition of bioactive metabolites fully restored T3SS effector delivery and suppressed the enhanced resistance in the mkp1 mutant. Pretreatment of plants with pathogen-associated molecular patterns (PAMPs) to induce PAMP-triggered immunity (PTI) also restricts T3SS effector delivery and enhances resistance by unknown mechanisms, and the addition of the bioactive metabolites similarly suppressed both aspects of PTI. Together, these results demonstrate that DC3000 perceives multiple signals derived from plants to initiate its T3SS and that the level of these host-derived signals impacts bacterial pathogenesis. | 2014 | 24753604 |
| 745 | 2 | 0.9969 | TLR signaling is required for Salmonella typhimurium virulence. Toll-like receptors (TLRs) contribute to host resistance to microbial pathogens and can drive the evolution of virulence mechanisms. We have examined the relationship between host resistance and pathogen virulence using mice with a functional allele of the nramp-1 gene and lacking combinations of TLRs. Mice deficient in both TLR2 and TLR4 were highly susceptible to the intracellular bacterial pathogen Salmonella typhimurium, consistent with reduced innate immune function. However, mice lacking additional TLRs involved in S. typhimurium recognition were less susceptible to infection. In these TLR-deficient cells, bacteria failed to upregulate Salmonella pathogenicity island 2 (SPI-2) genes and did not form a replicative compartment. We demonstrate that TLR signaling enhances the rate of acidification of the Salmonella-containing phagosome, and inhibition of this acidification prevents SPI-2 induction. Our results indicate that S. typhimurium requires cues from the innate immune system to regulate virulence genes necessary for intracellular survival, growth, and systemic infection. | 2011 | 21376231 |
| 8402 | 3 | 0.9969 | Exploring phage-host interactions in Burkholderia cepacia complex bacterium to reveal host factors and phage resistance genes using CRISPRi functional genomics and transcriptomics. Complex interactions of bacteriophages with their bacterial hosts determine phage host range and infectivity. While phage defense systems and host factors have been identified in model bacteria, they remain challenging to predict in non-model bacteria. In this paper, we integrate functional genomics and transcriptomics to investigate phage-host interactions, revealing active phage resistance and host factor genes in Burkholderia cenocepacia K56-2. Burkholderia cepacia complex species are commonly found in soil and are opportunistic pathogens in immunocompromised patients. We studied infection of B. cenocepacia K56-2 with Bcep176, a temperate phage isolated from Burkholderia multivorans. A genome-wide dCas9 knockdown library targeting B. cenocepacia K56-2 was constructed, and a pooled infection experiment identified 63 novel genes or operons coding for candidate host factors or phage resistance genes. The activities of a subset of candidate host factor and resistance genes were validated via single-gene knockdowns. Transcriptomics of B. cenocepacia K56-2 during Bcep176 infection revealed that expression of genes coding for host factor and resistance candidates identified in this screen was significantly altered during infection by 4 h post-infection. Identifying which bacterial genes are involved in phage infection is important to understand the ecological niches of B. cenocepacia and its phages, and for designing phage therapies.IMPORTANCEBurkholderia cepacia complex bacteria are opportunistic pathogens inherently resistant to antibiotics, and phage therapy is a promising alternative treatment for chronically infected patients. Burkholderia bacteria are also ubiquitous in soil microbiomes. To develop improved phage therapies for pathogenic Burkholderia bacteria, or engineer phages for applications, such as microbiome editing, it's essential to know the bacterial host factors required by the phage to kill bacteria, as well as how the bacteria prevent phage infection. This work identified 65 genes involved in phage-host interactions in Burkholderia cenocepacia K56-2 and tracked their expression during infection. These findings establish a knowledge base to select and engineer phages infecting or transducing Burkholderia bacteria. | 2025 | 41036840 |
| 30 | 4 | 0.9969 | RNA-Seq analysis of Citrus reticulata in the early stages of Xylella fastidiosa infection reveals auxin-related genes as a defense response. BACKGROUND: Citrus variegated chlorosis (CVC), caused by Xylella fastidiosa, is one the most important citrus diseases, and affects all varieties of sweet orange (Citrus sinensis L. Osb). On the other hand, among the Citrus genus there are different sources of resistance against X. fastidiosa. For these species identifying these defense genes could be an important step towards obtaining sweet orange resistant varieties through breeding or genetic engineering. To assess these genes we made use of mandarin (C. reticulata Blanco) that is known to be resistant to CVC and shares agronomical characteristics with sweet orange. Thus, we investigated the gene expression in Ponkan mandarin at one day after infection with X. fastidiosa, using RNA-seq. A set of genes considered key elements in the resistance was used to confirm its regulation in mandarin compared with the susceptible sweet orange. RESULTS: Gene expression analysis of mock inoculated and infected tissues of Ponkan mandarin identified 667 transcripts repressed and 724 significantly induced in the later. Among the induced transcripts, we identified genes encoding proteins similar to Pattern Recognition Receptors. Furthermore, many genes involved in secondary metabolism, biosynthesis and cell wall modification were upregulated as well as in synthesis of abscisic acid, jasmonic acid and auxin. CONCLUSIONS: This work demonstrated that the defense response to the perception of bacteria involves cell wall modification and activation of hormone pathways, which probably lead to the induction of other defense-related genes. We also hypothesized the induction of auxin-related genes indicates that resistant plants initially recognize X. fastidiosa as a necrotrophic pathogen. | 2013 | 24090429 |
| 8403 | 5 | 0.9969 | Uncovering virulence factors in Cronobacter sakazakii: insights from genetic screening and proteomic profiling. The increasing problem of antibiotic resistance has driven the search for virulence factors in pathogenic bacteria, which can serve as targets for the development of new antibiotics. Although whole-genome Tn5 transposon mutagenesis combined with phenotypic assays has been a widely used approach, its efficiency remains low due to labor-intensive processes. In this study, we aimed to identify specific genes and proteins associated with the virulence of Cronobacter sakazakii, a pathogenic bacterium known for causing severe infections, particularly in infants and immunocompromised individuals. By employing a combination of genetic screening, comparative proteomics, and in vivo validation using zebrafish and rat models, we rapidly screened highly virulent strains and identified two genes, rcsA and treR, as potential regulators of C. sakazakii toxicity toward zebrafish and rats. Proteomic profiling revealed upregulated proteins upon knockout of rcsA and treR, including FabH, GshA, GppA, GcvH, IhfB, RfaC, MsyB, and three unknown proteins. Knockout of their genes significantly weakened bacterial virulence, confirming their role as potential virulence factors. Our findings contribute to understanding the pathogenicity of C. sakazakii and provide insights into the development of targeted interventions and therapies against this bacterium.IMPORTANCEThe emergence of antibiotic resistance in pathogenic bacteria has become a critical global health concern, necessitating the identification of virulence factors as potential targets for the development of new antibiotics. This study addresses the limitations of conventional approaches by employing a combination of genetic screening, comparative proteomics, and in vivo validation to rapidly identify specific genes and proteins associated with the virulence of Cronobacter sakazakii, a highly pathogenic bacterium responsible for severe infections in vulnerable populations. The identification of two genes, rcsA and treR, as potential regulators of C. sakazakii toxicity toward zebrafish and rats and the proteomic profiling upon knockout of rcsA and treR provides novel insights into the mechanisms underlying bacterial virulence. The findings contribute to our understanding of C. sakazakii's pathogenicity, shed light on the regulatory pathways involved in bacterial virulence, and offer potential targets for the development of novel interventions against this highly virulent bacterium. | 2023 | 37750707 |
| 96 | 6 | 0.9968 | Genome-wide Identification, Classification, and Expression Analysis of the Receptor-Like Protein Family in Tomato. Receptor-like proteins (RLPs) are involved in plant development and disease resistance. Only some of the RLPs in tomato (Solanum lycopersicum L.) have been functionally characterized though 176 genes encoding RLPs, which have been identified in the tomato genome. To further understand the role of RLPs in tomato, we performed genome-guided classification and transcriptome analysis of these genes. Phylogenic comparisons revealed that the tomato RLP members could be divided into eight subgroups and that the genes evolved independently compared to similar genes in Arabidopsis. Based on location and physical clustering analyses, we conclude that tomato RLPs likely expanded primarily through tandem duplication events. According to tissue specific RNA-seq data, 71 RLPs were expressed in at least one of the following tissues: root, leaf, bud, flower, or fruit. Several genes had expression patterns that were tissue specific. In addition, tomato RLP expression profiles after infection with different pathogens showed distinguish gene regulations according to disease induction and resistance response as well as infection by bacteria and virus. Notably, Some RLPs were highly and/or unique expressed in susceptible tomato to pathogen, suggesting that the RLP could be involved in disease response, possibly as a host-susceptibility factor. Our study could provide an important clues for further investigations into the function of tomato RLPs involved in developmental and response to pathogens. | 2018 | 30369853 |
| 739 | 7 | 0.9968 | Multiple toxins and a protease contribute to the aphid-killing ability of Pseudomonas fluorescens PpR24. Aphids are globally important pests causing damage to a broad range of crops. Due to insecticide resistance, there is an urgent need to develop alternative control strategies. In our previous work, we found Pseudomonas fluorescens PpR24 can orally infect and kill the insecticide-resistant green-peach aphid (Myzus persicae). However, the genetic basis of the insecticidal capability of PpR24 remains unclear. Genome sequencing of PpR24 confirmed the presence of various insecticidal toxins such as Tc (toxin complexes), Rhs (rearrangement hotspot) elements, and other insect-killing proteases. Upon aphids infection with PpR24, RNA-Seq analysis revealed 193 aphid genes were differentially expressed with down-regulation of 16 detoxification genes. In addition, 1325 PpR24 genes (542 were upregulated and 783 downregulated) were subject to differential expression, including genes responsible for secondary metabolite biosynthesis, the iron-restriction response, oxidative stress resistance, and virulence factors. Single and double deletion of candidate virulence genes encoding a secreted protease (AprX) and four toxin components (two TcA-like; one TcB-like; one TcC-like insecticidal toxins) showed that all five genes contribute significantly to aphid killing, particularly AprX. This comprehensive host-pathogen transcriptomic analysis provides novel insight into the molecular basis of bacteria-mediated aphid mortality and the potential of PpR24 as an effective biocontrol agent. | 2024 | 38561900 |
| 737 | 8 | 0.9968 | Possible mechanisms of Pseudomonas aeruginosa-associated lung disease. Pseudomonas aeruginosa is an opportunistic bacterium causing lung injury in immunocompromised patients correlated with high morbidity and mortality. Many bacteria, including P. aeruginosa, use extracellular signals to synchronize group behaviors, a process known as quorum sensing (QS). In the P. aeruginosa complex QS system controls expression of over 300 genes, including many involved in host colonization and disease. P. aeruginosa infection elicits a complex immune response due to a large number of immunogenic factors present in the bacteria or released during infection. Here, we focused on the mechanisms by which P. aeruginosa triggers lung injury and inflammation, debating the possible ways that P. aeruginosa evades the host immune system, which leads to immune suppression and resistance. | 2016 | 26652129 |
| 8412 | 9 | 0.9967 | Transcriptomic profiling analysis of tilapia (Oreochromis niloticus) following Streptococcus agalactiae challenge. Innate immune system is the primary defense mechanism against pathogen infection in teleost, which are living in pathogen-rich aquatic environment. It has been long hypothesized that the disease resistance in teleost are strongly correlated to the activities of innate immune genes. Tilapia is an important economical fish around the world, especially in China, where the production accounts for nearly half of the global production. Recently, S. agalactiae has become one of the most serious bacterial diseases in southern China, resulted in high cumulative mortality and economic loss to tilapia industry. Therefore, we sought here to characterize the expression profiles of tilapia against S. agalactiae infection at whole transcriptome level by RNA-seq technology. A total of 2822 genes were revealed significantly expressed in tilapia spleen with a general trend of induction. Notably, most of the genes were rapidly the most induced at the early timepoint. The significantly changed genes highlighted the function of pathogen attachment and recognition, antioxidant/apoptosis, cytoskeletal rearrangement, and immune activation. Collectively, the induced expression patterns suggested the strong ability of tilapia to rapidly recognize the invasive bacteria, and activation of downstream immune signaling pathways to clear the bacteria and prevent the tissue damage and bacteria triggered cell apoptosis. Our results heighted important roles of novel candidate genes which were often missed in previous tilapia studies. Further studies are needed to characterize the molecular relationships between key immune genes and disease resistance, and to identify the candidate genes for molecular-assistant selection of disease-resistant broodstock and evaluation of disease prevention and treatment measures. | 2017 | 28111359 |
| 8209 | 10 | 0.9967 | Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. Defensins, antimicrobial peptides of the innate immune system, protect human mucosal epithelia and skin against microbial infections and are produced in large amounts by neutrophils. The bacterial pathogen Staphylococcus aureus is insensitive to defensins by virtue of an unknown resistance mechanism. We describe a novel staphylococcal gene, mprF, which determines resistance to several host defense peptides such as defensins and protegrins. An mprF mutant strain was killed considerably faster by human neutrophils and exhibited attenuated virulence in mice, indicating a key role for defensin resistance in the pathogenicity of S. aureus. Analysis of membrane lipids demonstrated that the mprF mutant no longer modifies phosphatidylglycerol with l-lysine. As this unusual modification leads to a reduced negative charge of the membrane surface, MprF-mediated peptide resistance is most likely based on repulsion of the cationic peptides. Accordingly, inactivation of mprF led to increased binding of antimicrobial peptides by the bacteria. MprF has no similarity with genes of known function, but related genes were identified in the genomes of several pathogens including Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Enterococcus faecalis. MprF thus constitutes a novel virulence factor, which may be of general relevance for bacterial pathogens and represents a new target for attacking multidrug resistant bacteria. | 2001 | 11342591 |
| 85 | 11 | 0.9967 | Bacterial disease resistance in Arabidopsis through flagellin perception. Plants and animals recognize microbial invaders by detecting pathogen-associated molecular patterns (PAMPs) such as flagellin. However, the importance of flagellin perception for disease resistance has, until now, not been demonstrated. Here we show that treatment of plants with flg22, a peptide representing the elicitor-active epitope of flagellin, induces the expression of numerous defence-related genes and triggers resistance to pathogenic bacteria in wild-type plants, but not in plants carrying mutations in the flagellin receptor gene FLS2. This induced resistance seems to be independent of salicylic acid, jasmonic acid and ethylene signalling. Wild-type and fls2 mutants both display enhanced resistance when treated with crude bacterial extracts, even devoid of elicitor-active flagellin, indicating the existence of functional perception systems for PAMPs other than flagellin. Although fls2 mutant plants are as susceptible as the wild type when bacteria are infiltrated into leaves, they are more susceptible to the pathogen Pseudomonas syringae pv. tomato DC3000 when it is sprayed on the leaf surface. Thus, flagellin perception restricts bacterial invasion, probably at an early step, and contributes to the plant's disease resistance. | 2004 | 15085136 |
| 27 | 12 | 0.9966 | In silico comparison of transcript abundances during Arabidopsis thaliana and Glycine max resistance to Fusarium virguliforme. BACKGROUND: Sudden death syndrome (SDS) of soybean (Glycine max L. Merr.) is an economically important disease, caused by the semi-biotrophic fungus Fusarium solani f. sp. glycines, recently renamed Fusarium virguliforme (Fv). Due to the complexity and length of the soybean-Fusarium interaction, the molecular mechanisms underlying plant resistance and susceptibility to the pathogen are not fully understood. F. virguliforme has a very wide host range for the ability to cause root rot and a very narrow host range for the ability to cause a leaf scorch. Arabidopsis thaliana is a host for many types of phytopathogens including bacteria, fungi, viruses and nematodes. Deciphering the variations among transcript abundances (TAs) of functional orthologous genes of soybean and A. thaliana involved in the interaction will provide insights into plant resistance to F. viguliforme. RESULTS: In this study, we reported the analyses of microarrays measuring TA in whole plants after A. thaliana cv 'Columbia' was challenged with fungal pathogen F. virguliforme. Infection caused significant variations in TAs. The total number of increased transcripts was nearly four times more than that of decreased transcripts in abundance. A putative resistance pathway involved in responding to the pathogen infection in A. thaliana was identified and compared to that reported in soybean. CONCLUSION: Microarray experiments allow the interrogation of tens of thousands of transcripts simultaneously and thus, the identification of plant pathways is likely to be involved in plant resistance to Fusarial pathogens. Dissection of the set functional orthologous genes between soybean and A. thaliana enabled a broad view of the functional relationships and molecular interactions among plant genes involved in F. virguliforme resistance. | 2008 | 18831797 |
| 8404 | 13 | 0.9966 | Prospects of toll-like receptors in dairy cattle breeding. Toll-like receptors (TLRs) play an important role in mediating the immune response against various microbes, such as bacteria, viruses, parasites, and fungi, in innate and adaptive immunity. Ten functional TLRs (TLR1 to TLR10) have been identified and mapped in cattle, with each TLR recognising specific pathogen-associated molecular patterns. The variation in genes controlling the immune response contributes to susceptibility or resistance to various infectious diseases such as mastitis, bovine tuberculosis, and paratuberculosis. Identifying TLR SNPs shows promising results for future marker-assisted breeding strategies, screening for disease risks, and improving the genetic resistance of dairy cattle. This article aims not only to review the research into susceptibility or resistance to infectious diseases and milk production traits in dairy cattle but also to discuss the limitations in current studies and the prospects in dairy cattle breeding. | 2023 | 37051618 |
| 8786 | 14 | 0.9966 | Pattern triggered immunity (PTI) in tobacco: isolation of activated genes suggests role of the phenylpropanoid pathway in inhibition of bacterial pathogens. BACKGROUND: Pattern Triggered Immunity (PTI) or Basal Resistance (BR) is a potent, symptomless form of plant resistance. Upon inoculation of a plant with non-pathogens or pathogenicity-mutant bacteria, the induced PTI will prevent bacterial proliferation. Developed PTI is also able to protect the plant from disease or HR (Hypersensitive Response) after a challenging infection with pathogenic bacteria. Our aim was to reveal those PTI-related genes of tobacco (Nicotiana tabacum) that could possibly play a role in the protection of the plant from disease. METHODOLOGY/PRINCIPAL FINDINGS: Leaves were infiltrated with Pseudomonas syringae pv. syringae hrcC- mutant bacteria to induce PTI, and samples were taken 6 and 48 hours later. Subtraction Suppressive Hybridization (SSH) resulted in 156 PTI-activated genes. A cDNA microarray was generated from the SSH clone library. Analysis of hybridization data showed that in the early (6 hpi) phase of PTI, among others, genes of peroxidases, signalling elements, heat shock proteins and secondary metabolites were upregulated, while at the late phase (48 hpi) the group of proteolysis genes was newly activated. Microarray data were verified by real time RT-PCR analysis. Almost all members of the phenyl-propanoid pathway (PPP) possibly leading to lignin biosynthesis were activated. Specific inhibition of cinnamic-acid-4-hydroxylase (C4H), rate limiting enzyme of the PPP, decreased the strength of PTI--as shown by the HR-inhibition and electrolyte leakage tests. Quantification of cinnamate and p-coumarate by thin-layer chromatography (TLC)-densitometry supported specific changes in the levels of these metabolites upon elicitation of PTI. CONCLUSIONS/SIGNIFICANCE: We believe to provide first report on PTI-related changes in the levels of these PPP metabolites. Results implicated an actual role of the upregulation of the phenylpropanoid pathway in the inhibition of bacterial pathogenic activity during PTI. | 2014 | 25101956 |
| 6213 | 15 | 0.9966 | Use of a Dictyostelium model for isolation of genetic loci associated with phagocytosis and virulence in Klebsiella pneumoniae. Phagocytosis resistance is an important virulence factor in Klebsiella pneumoniae. Dictyostelium has been used to study the interaction between phagocytes and bacteria because of its similarity to mammalian macrophages. In this study, we used a Dictyostelium model to investigate genes for resistance to phagocytosis in NTUH-K2044, a strain of K. pneumoniae causing pyogenic liver abscess that is highly resistant to phagocytosis. A total of 2,500 transposon mutants were screened by plaque assay, and 29 of them permitted phagocytosis by Dictyostelium. In the 29 mutants, six loci were identified; three were capsular synthesis genes. Of the other three, one was related to carnitine metabolism, one encoded a subunit of protease (clpX), and one encoded a lipopolysaccharide O-antigen transporter (wzm). Deletion and complementation of these genes showed that only ΔclpX and Δwzm mutants became susceptible to Dictyostelium phagocytosis, and their complementation restored the phagocytosis resistance phenotype. These two mutants were also susceptible to phagocytosis by human neutrophils and revealed attenuated virulence in a mouse model, implying that they play important roles in the pathogenesis of K. pneumoniae. Furthermore, we demonstrated that clpP, which exists in an operon with clpX, was also involved in resistance to phagocytosis. The transcriptional profile of ΔclpX was examined by microarray analysis and revealed a 3-fold lower level of expression of capsular synthesis genes. Therefore, we have identified genes involved in resistance to phagocytosis in K. pneumoniae using Dictyostelium, and this model is useful to explore genes associated with resistance to phagocytosis in heavily encapsulated bacteria. | 2011 | 21173313 |
| 70 | 16 | 0.9966 | A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens. | 2016 | 27472897 |
| 8253 | 17 | 0.9966 | Strategies used by bacterial pathogens to suppress plant defenses. Plant immune systems effectively prevent infections caused by the majority of microbial pathogens that are encountered by plants. However, successful pathogens have evolved specialized strategies to suppress plant defense responses and induce disease susceptibility in otherwise resistant hosts. Recent advances reveal that phytopathogenic bacteria use type III effector proteins, toxins, and other factors to inhibit host defenses. Host processes that are targeted by bacteria include programmed cell death, cell wall-based defense, hormone signaling, the expression of defense genes, and other basal defenses. The discovery of plant defenses that are vulnerable to pathogen attack has provided new insights into mechanisms that are essential for both bacterial pathogenesis and plant disease resistance. | 2004 | 15231256 |
| 8252 | 18 | 0.9966 | Hrp mutant bacteria as biocontrol agents: toward a sustainable approach in the fight against plant pathogenic bacteria. Sustainable agriculture necessitates development of environmentally safe methods to protect plants against pathogens. Among these methods, application of biocontrol agents has been efficiently used to minimize disease development. Here we review current understanding of mechanisms involved in biocontrol of the main Gram-phytopathogenic bacteria-induced diseases by plant inoculation with strains mutated in hrp (hypersensitive response and pathogenicity) genes. These mutants are able to penetrate plant tissues and to stimulate basal resistance of plants. Novel protection mechanisms involving the phytohormone abscisic acid appear to play key roles in the biocontrol of wilt disease induced by Ralstonia solanacearum in Arabidopsis thaliana. Fully understanding these mechanisms and extending the studies to other pathosystems are still required to evaluate their importance in disease protection. | 2013 | 23887499 |
| 633 | 19 | 0.9966 | The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium that is also a major opportunistic human pathogen in nosocomial infections and cystic fibrosis chronic lung infections. PhoP-PhoQ is a two-component regulatory system that has been identified as essential for virulence and cationic antimicrobial peptide resistance in several other Gram-negative bacteria. This study demonstrated that mutation of phoQ caused reduced twitching motility, biofilm formation and rapid attachment to surfaces, 2.2-fold reduced cytotoxicity to human lung epithelial cells, substantially reduced lettuce leaf virulence, and a major, 10 000-fold reduction in competitiveness in chronic rat lung infections. Microarray analysis revealed that PhoQ controlled the expression of many genes consistent with these phenotypes and with its known role in polymyxin B resistance. It was also demonstrated that PhoQ controls the expression of many genes outside the known PhoP regulon. | 2009 | 19246741 |