PASTEURELLACEAE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
306100.9784Tetracycline-resistance encoding plasmids from Paenibacillus larvae, the causal agent of American foulbrood disease, isolated from commercial honeys. Paenibacillus larvae, the causal agent of American foulbrood disease in honeybees, acquires tetracycline-resistance via native plasmids carrying known tetracycline-resistance determinants. From three P. larvae tetracycline-resistant strains isolated from honeys, 5-kb-circular plasmids with almost identical sequences, designated pPL373 in strain PL373, pPL374 in strain PL374, and pPL395 in strain PL395, were isolated. These plasmids were highly similar (99%) to small tetracycline-encoding plasmids (pMA67, pBHS24, pBSDMV46A, pDMV2, pSU1, pAST4, and pLS55) that replicate by the rolling circle mechanism. Nucleotide sequences comparisons showed that pPL373, pPL374, and pPL395 mainly differed from the previously reported P. larvae plasmid pMA67 in the oriT region and mob genes. These differences suggest alternative mobilization and/or conjugation capacities. Plasmids pPL373, pPL374, and pPL395 were individually transferred by electroporation and stably maintained in tetracycline-susceptible P. larvae NRRL B-14154, in which they autonomously replicated. The presence of nearly identical plasmids in five different genera of gram-positive bacteria, i.e., Bhargavaea, Bacillus, Lactobacillus, Paenibacillus, and Sporosarcina, inhabiting diverse ecological niches provides further evidence of the genetic transfer of tetracycline resistance among environmental bacteria from soils, food, and marine habitats and from pathogenic bacteria such as P. larvae.201425296446
587110.9783Plasmid-mediated florfenicol resistance in Pasteurella trehalosi. OBJECTIVES: A florfenicol-resistant Pasteurella trehalosi isolate from a calf was investigated for the presence and the location of the gene floR. METHODS: The P. trehalosi isolate 13698 was investigated for its in vitro susceptibility to antimicrobial agents and its plasmid content. A 14.9 kb plasmid, designated pCCK13698, was identified by transformation into Pasteurella multocida to mediate resistance to florfenicol, chloramphenicol and sulphonamides. The plasmid was sequenced completely and analysed for its structure and organization. RESULTS: Plasmid pCCK13698 exhibited extended similarity to plasmid pHS-Rec from Haemophilus parasuis including the region carrying the parA, repB, rec and int genes. Moreover, it revealed similarities to plasmid RSF1010 in the parts covering the mobC and repA-repC genes and to plasmid pMVSCS1 in the parts covering the sul2-catA3-strA gene cluster. Moreover, the floR gene area corresponded to that of transposon TnfloR. In addition, two complete insertion sequences were detected that were highly similar to IS1593 from Mannheimia haemolytica and IS26 from Enterobacteriaceae. Several potential recombination sites were identified that might explain the development of plasmid pCCK13698 by recombination events. CONCLUSIONS: The results of this study showed that in the bovine pathogen P. trehalosi, floR-mediated resistance to chloramphenicol and florfenicol was associated with a plasmid, which also carried functionally active genes for resistance to sulphonamides (sul2) and chloramphenicol (catA3). This is to the best of our knowledge the first report of resistance genes in P. trehalosi and only the second report of the presence of a florfenicol-resistance gene in target bacteria of the family Pasteurellaceae.200616670108
302320.9779ICEAplChn1, a novel SXT/R391 integrative conjugative element (ICE), carrying multiple antibiotic resistance genes in Actinobacillus pleuropneumoniae. SXT/R391 integrative conjugative elements (ICEs) are capable of self-transfer by conjugation and highly prevalent in various aquatic bacteria and Proteus species. In the present study, a novel SXT/R391 ICE, named ICEAplChn1, was identified in the multidrug resistant (MDR) Actinobacillus pleuropneumoniae strain app6. ICEAplChn1 was composed of the typical SXT/R391 backbone and insertion DNA at eight hotspots, including HS1, HS2, HS3, HS4, HS5, VRII, VRIII and a new variation region VRVI. Many of the insertion contents were not present in other reported SXT/R391 family members, including ICEApl2, a recently identified SXT/R391 ICE from a clinical isolate of A. pleuropneumoniae. Remarkably, the VRIII region had accumulated seven resistance genes tet(A), erm(42), floR, aphA6, strB (two copies), strA and sul2. Of them, erm(42) and aphA6 emerged for the first time not only in the SXT/R391 elements but also in A. pleuropneumoniae. Phylogenetic analysis showed considerable variation of the backbone sequence of ICEAplChn1, as compared to those of other SXT/R391 ICEs. A circular intermediate form of ICEAplChn1 was detected by nested PCR. However, the conjugation experiments using different bacteria as recipients failed. These findings demonstrated that SXT/R391 ICEs are able to adapt to a broader range of host bacterial species. The presence of the MDR gene cluster in ICEAplChn1 underlines that SXT/R391 ICE could serve as an important vector for the accumulation of antibiotic resistance genes.201829885796
303530.9778Molecular characterization of plasmids with antimicrobial resistant genes in avian isolates of Pasteurella multocida. The complete nucleotide sequences of two plasmids from avian isolates of Pasteurella multocida that caused outbreaks of fowl cholera in Taiwan were determined. The entire sequences of the two plasmids, designated as pJR1 and pJR2, were 6792 bp and 5252 bp. Sequence analysis showed that the plasmid pJR1 contained six major genes: the first gene (sulII) encoded a type II sulfonamide resistant dihydropteroate synthase, the second gene (tetG) encoded a tetracycline resistance protein, the third gene (catB2) encoded a chloramphenicol acetyltransferase, the fourth gene (rep) encoded a replication protein, and the fifth and sixth genes (mbeCy and deltambeAy) encoded proteins involved in the mobilization of plasmid. The plasmid pJR2 contained five major genes: the first gene (deltaintI1) encoded a truncated form of a type I integrase, the second gene (aadA1) encoded an aminoglycoside adenylyltransferase that confers resistance to streptomycin and spectinomycin, the third gene (blaP1) encoded a beta-lactamase that confers resistance to ampicillin and carbenicillin, and the fourth and fifth genes might encode proteins involved in the plasmid replication or segregation. Sequence comparisons showed that the antibiotic resistance genes found in pJR1 and pJR2 exhibited a high degree of sequence homology to the corresponding genes found in a great variety of gram-negative bacteria, including Escherichia coli, Salmonella enterica Typhimurium DT104, Psedomonas spp., P. multocida, Mannheimia spp., and Actinobacills pleuropneumoniae, which suggests that these resistance genes were disseminated in these bacteria. Although sulII and tetG genes were found previously in P. multocida or Mannheimia spp., this is the first report on the presence of catB2, aadA1, and blaP1 genes in bacteria of the family Pasturellaceae. Moreover, the aadA1 and blaP1 genes found in pJR2 were organized into an integron structure, which is a site-specific recombination system capable of capturing and mobilizing antibiotic resistance genes. This is also the first report on the presence of an integron in bacteria of the family Pasteurellaceae. The presence of a P. multocida integron might facilitate the spreading of antibiotic resistance genes between P. multocida and other gram-negative bacteria.200314708986
587240.9778Characterization of the plasmids harbouring the florfenicol resistance gene floR in Glaesserella parasuis and Actinobacillus indolicus. OBJECTIVES: The aim of this study was to characterize the floR-carrying plasmids originating from Glaesserella parasuis and Actinobacillus indolicus isolated from pigs with respiratory disease in China. METHODS: A total of 125 G. parasuis and 28 A. indolicus strains collected between 2009 and 2022 were screened for florfenicol resistance. Characterization of floR-positive isolates and plasmids were determined by antimicrobial susceptibility testing, serotyping, multilocus sequence typing (MLST), conjugation and transformation assays, whole-genome sequencing (WGS), and phylogenetic analysis. RESULTS: One A. indolicus and six G. parasuis were identified as positive for floR. The six G. parasuis were assigned to four different serovars, including serovars 6, 7, 9, and unknown. In addition to strain XP11, six floR genes were located on plasmids. The six floR-bearing plasmids could be transformed into Pasteurella multocida and divided into two different types, including ∼5000 bp and ∼6000 bp plasmids. The ∼5000 bp plasmids consisting of rep, lysR, mobB, and floR genes, exhibited high similarity among Pasteurellaceae bacteria. Furthermore, the ∼6000 bp plasmids, consisting of rep, lysR, mobC, mobA/L, and floR genes, showed high similarity between G. parasuis and Actinobacillus Spp. Notably, WGS results showed that the floR modules of the two types of plasmids could be transferred and integrated into the diverse Pasteurellaceae- origined plasmids. CONCLUSION: This study firstly reported the characterization of floR-carrying plasmids from A. indolicus and a non-virulent serovar of G. parasuis in pigs in China and elucidated the transmission mechanism of the floR resistance gene among the Pasteurellaceae family.202337726088
302450.9772Identification of ISVlu1-derived translocatable units containing optrA and/or fexA genes generated by homologous or illegitimate recombination in Lactococcus garvieae of porcine origin. The optrA gene encodes an ABC-F protein which confers cross-resistance to oxazolidinones and phenicols. Insertion sequence ISVlu1, a novel ISL3-family member, was recently reported to be involved in the transmission of optrA in Vagococcus lutrae. However, the role of ISVlu1 in mobilizing resistance genes has not yet fully explored. In this study, two complete and three truncated copies of ISVlu1 were found on plasmid pBN62-optrA from Lactococcus garvieae. Analysis of the genetic context showed that both optrA and the phenicols resistance gene fexA were flanked by the complete or truncated ISVlu1 copies. Moreover, three different-sized ISVlu1-based translocatable units (TUs) carrying optrA and/or fexA, were detected from pBN62-optrA. Sequence analysis revealed that the TU-optrA was generated by homologous recombination while TU-fexA and TU-optrA+fexA were the products of illegitimate recombinations. Importantly, conjugation assays confirmed that pBN62-optrA was able to successfully transfer into the recipient Enterococcus faecalis JH2-2. To our knowledge, this is the first report about an optrA-carrying plasmid in L. garvieae which could horizontally transfer into other species. More importantly, the ISVlu1-flanked genetic structures containing optrA and/or fexA were also observed in bacteria of different species, which underlines that ISVlu1 is highly active and plays a vital role in the transfer of some important resistance genes, such as optrA and fexA.202438479301
82060.9771Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. A class II Tn3-type transposable element, designated Tn5393 and located on plasmid pEa34 from streptomycin-resistant strain CA11 of Erwinia amylovora, was identified by its ability to move from pEa34 to different sites in plasmids pGEM3Zf(+) and pUCD800. Nucleotide sequence analysis reveals that Tn5393 consists of 6,705 bp with 81-bp terminal inverted repeats and generates 5-bp duplications of the target DNA following insertion. Tn5393 contains open reading frames that encode a putative transposase (tnpA) and resolvase (tnpR) of 961 and 181 amino acids, respectively. The two open reading frames are separated by a putative recombination site (res) consisting of 194 bp. Two streptomycin resistance genes, strA and strB, were identified on the basis of their DNA sequence homology to streptomycin resistance genes in plasmid RSF1010. StrA is separated from tnpR by a 1.2-kb insertion element designated IS1133. The tnpA-res-tnpR region of Tn5393 was detected in Pseudomonas syringae pv. papulans Psp36 and in many other gram-negative bacteria harboring strA and strB. Except for some strains of Erwinia herbicola, these other gram-negative bacteria lacked insertion sequence IS1133. The prevalence of strA and strB could be accounted for by transposition of Tn5393 to conjugative plasmids that are then disseminated widely among gram-negative bacteria.19938380801
303670.9770Complete nucleotide sequences of 84.5- and 3.2-kb plasmids in the multi-antibiotic resistant Salmonella enterica serovar Typhimurium U302 strain G8430. The multi-antibiotic resistant (MR) Salmonella enterica serovar Typhimurium phage type U302 strain G8430 exhibits the penta-resistant ACSSuT-phenotype (ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline), and is also resistant to carbenicillin, erythromycin, kanamycin, and gentamicin. Two plasmids, 3.2- and 84.5-kb in size, carrying antibiotic resistance genes were isolated from this strain, and the nucleotide sequences were determined and analyzed. The 3.2-kb plasmid, pU302S, belongs to the ColE1 family and carries the aph(3')-I gene (Kan(R)). The 84.5-kb plasmid, pU302L, is an F-like plasmid and contains 14 complete IS elements and multiple resistance genes including aac3, aph(3')-I, sulII, tetA/R, strA/B, bla(TEM-1), mph, and the mer operon. Sequence analyses of pU302L revealed extensive homology to various plasmids or transposons, including F, R100, pHCM1, pO157, and pCTX-M3 plasmids and TnSF1 transposon, in regions involved in plasmid replication/maintenance functions and/or in antibiotic resistance gene clusters. Though similar to the conjugative plasmids F and R100 in the plasmid replication regions, pU302L does not contain oriT and the tra genes necessary for conjugal transfer. This mosaic pattern of sequence similarities suggests that pU302L acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among the enteric bacteria.200716828159
301080.9770Identification of mcr-1 and a novel chloramphenicol resistance gene catT on an integrative and conjugative element in an Actinobacillus strain of swine origin. The aim of this study was to characterize a mcr-1-carrying integrative and conjugative element (ICE) in a novel Pasteurellaceae-like bacteria of swine origin. The mcr-1-positive GY-402 strain, recovered from a pig fecal sample, was subjected to whole genome sequencing with the combination of Illumina Hiseq and MinION platforms. Genome-based taxonomy revealed that strain GY-402 exhibited highest ANI value (84.89 %) to Actinobacillus succinogenes, which suggested that it represented a novel Actinobacillus species. Sequence analysis revealed that mcr-1 was clustered with eight other resistance genes in the MDR region of a novel ICE element, named ICEAsp1. Inverse PCR and mating assays showed that ICEAsp1 is active and transferrable. In addition, six circular forms mediated by four ISApl1 elements were detected with different inverse PCR sets, indicating that flexible composite transposons could be formed by pairwise combinations of multiple IS copies. Cloning experiment and phylogenetic analysis revealed that the novel Cat protein, designated CatT, belongs to type-A family and confers resistance to chloramphenicol. In conclusion, this is, to the best of our knowledge, the first report of mcr-1 gene on ICE structure and also in Pasteurellaceae bacteria. The diverse composite transposons mediated by multicopy IS elements may facilitate the dissemination of different resistance genes.202133486327
301790.9767The ancient small mobilizable plasmid pALWED1.8 harboring a new variant of the non-cassette streptomycin/spectinomycin resistance gene aadA27. The small mobilizable plasmid pALWED1.8 containing a novel variant of the streptomycin/spectinomycin resistance gene aadA27 was isolated from the permafrost strains of Acinetobacter lwoffii. The 4135bp plasmid carries mobА and mobC genes that mediate its mobilization by conjugative plasmids. The nucleotide sequences of mobА and mobC are similar to those of mobilization genes of the modern plasmid pRAY* and its variants, which contain aadB gene, and are widespread among the pathogenic strains of Acinetobacter baumannii. Almost identical pALWED1.8 variants were detected in modern environmental Аcinetobacter strains. A highly similar plasmid was revealed in a strain of Acinetobacter parvus isolated from mouse intestine. Furthermore, we discovered six previously unidentified variants of plasmids related to pALWED1.8 and pRAY* in public databases. In contrast to most known variants of aadA which are cassette genes associated with integrons, the aadA27 variant harbored by pALWED1.8 is a non-cassette, autonomously transcribed gene. Non-cassette aadA genes with 96% sequence identity to aadA27 were detected in the chromosomes of Acinetobacter gyllenbergii and several uncharacterized strains of Аcinetobacter sp. Moreover, we revealed that the autonomous aadA-like genes are present in the chromosomes of many gram-positive and gram-negative bacteria. The phylogenetic analysis of amino acid sequences of all identified AadA proteins showed the following: (i) cassette aadA genes form a separate monophyletic group and mainly reside on plasmids and (ii) chromosomal non-cassette aadA genes are extremely diverse and can be inherited both vertical and via horizontal gene transfer.201626896789
3018100.9766The large Bacillus plasmid pTB19 contains two integrated rolling-circle plasmids carrying mobilization functions. Plasmid pTB19 is a 27-kb plasmid originating from a thermophilic Bacillus species. It was shown previously that pTB19 contains an integrated copy of the rolling-circle type plasmid pTB913. Here we describe the analysis of a 4324-bp region of pTB19 conferring resistance to tetracycline. The nucleotide sequence of this region revealed all the characteristics of a second plasmid replicating via the rolling-circle mechanism. This sequence contained (i) the tetracycline resistance marker of pTB19, which is highly similar to other tetL-genes of gram-positive bacteria; (ii) a hybrid mob gene, which bears relatedness to both the mob-genes of pUB110 and pTB913; (iii) a palU type minus origin identical to those of pUB110 and pTB913; and (iv) a plus origin of replication similar to that of pTB913. A repB-type replication initiation gene sequence identical to that of pTB913 was present, which lacked the middle part (492 bp), thus preventing autonomous replication of this region. The hybrid mob gene was functional in conjugative mobilization of plasmids between strains of Bacillus subtilis.19911946749
3015110.9766Genetic structure and biological properties of the first ancient multiresistance plasmid pKLH80 isolated from a permafrost bacterium. A novel multidrug-resistance plasmid, pKLH80, previously isolated from Psychrobacter maritimus MR29-12 found in ancient permafrost, was completely sequenced and analysed. In our previous studies, we focused on the pKLH80 plasmid region containing streptomycin and tetracycline resistance genes, and their mobilization with an upstream-located ISPpy1 insertion sequence (IS) element. Here, we present the complete sequence of pKLH80 and analysis of its backbone genetic structure, including previously unknown features of the plasmid's accessory region, notably a novel variant of the β-lactamase gene blaRTG-6. Plasmid pKLH80 was found to be a circular 14 835 bp molecule that has an overall G+C content of 40.3 mol% and encodes 20 putative ORFs. There are two distinctive functional modules within the plasmid backbone sequence: (i) the replication module consisting of repB and the oriV region; and (ii) the mobilization module consisting of mobA, mobC and oriT. All of the aforementioned genes share sequence identities with corresponding genes of different species of Psychrobacter. The plasmid accessory region contains antibiotic resistance genes and IS elements (ISPsma1 of the IS982 family, and ISPpy1 and ISAba14 of the IS3 family) found in environmental and clinical bacterial strains of different taxa. We revealed that the sequences flanking blaRTG-6 and closely related genes from clinical bacteria are nearly identical. This fact suggests that blaRTG-6 from the environmental strain of Psychrobacter is a progenitor of blaRTG genes of clinical bacteria. We also showed that pKLH80 can replicate in different strains of Acinetobacter and Psychrobacter genera. The roles of IS elements in the horizontal transfer of antibiotic resistance genes are examined and discussed.201425063046
3007120.9760Analysis of the complete nucleotide sequence of an Actinobacillus pleuropneumoniae streptomycin-sulfonamide resistance plasmid, pMS260. pMS260 is an 8.1-kb non-conjugative but mobilizable plasmid that was isolated from Actinobacillus pleuropneumoniae and encodes streptomycin (SM) and sulfonamide (SA) resistances. The analysis of the complete nucleotide sequence of the plasmid revealed a high degree of similarity between pMS260 and the broad-host-range IncQ family plasmids. pMS260 had a single copy of an origin of vegetative replication (oriV). This sequence was identical to a functional oriV of the IncQ-like plasmid pIE1130 that had been exogenously isolated from piggery manure. However, pMS260 did not carry the second IncQ plasmid RSF1010-like oriV region present in pIE1130. A pIE1130-identical transfer origin was also found in pMS260. In addition, the deduced amino acid sequences from 10 open reading frames identified in pMS260 were entirely or nearly identical to those from genes for the replication, mobilization, and SM-SA resistance of pIE1130, indicating that pMS260 belongs to the IncQ-1 gamma subgroup. pMS260 is physically indistinguishable from pIE1130 apart from two DNA regions that contain the chloramphenicol and kanamycin resistance genes (catIII and aphI, respectively) and the second oriV-like region of pIE1130. The codon bias analysis of each gene of pIE1130 and the presence of potential recombination sites in the sulII-strA intergenic regions suggest that pIE1130 seems to have acquired the catIII and aphI genes more recently than the other genes of pIE1130. Therefore, pMS260 may be the ancestor of pIE1130. Information regarding the broad-host-range replicon of pMS260 will be useful in the development of genetic systems for a wide range of bacteria including A. pleuropneumoniae.200414711528
5866130.9756tet(L)-mediated tetracycline resistance in bovine Mannheimia and Pasteurella isolates. OBJECTIVES: Tetracycline-resistant Mannheimia and Pasteurella isolates, which were negative for the tetracycline resistance genes (tet) commonly detected among these bacteria, were investigated for other tet genes present and their location. METHODS: Mannheimia and Pasteurella isolates were investigated for their MICs of tetracycline and their plasmid content. Identification of tet genes was achieved by PCR. Plasmids mediating tetracycline resistance were identified by transformation and hybridization experiments. Plasmid pCCK3259 from Mannheimia haemolytica was sequenced completely and analysed for its structure and organization. RESULTS: All tetracycline-resistant isolates carried the gene tet(L) either on plasmids or on the chromosome. Two M. haemolytica isolates and one Mannheimia glucosida isolate harboured a common 5.3 kb tet(L) plasmid, designated pCCK3259. This plasmid was similar to the tet(B)-carrying tetracycline resistance plasmid pHS-Tet from Haemophilus parasuis and the streptomycin/spectinomycin resistance plasmid pCCK647 from Pasteurella multocida in the parts coding for mobilization functions. The tet(L) gene was closely related to that of the Geobacillus stearothermophilus plasmid pTB19. However, the translational attenuator responsible for the tetracycline-inducible expression of tet(L) was missing in plasmid pCCK3259. A recombination site was identified downstream of tet(L), which might explain the integration of the tet(L) gene region into a basic pCCK3259 replicon. CONCLUSION: A tet(L) gene was shown for the first time to be responsible for tetracycline resistance in Mannheimia and Pasteurella isolates. This report demonstrates a lateral transfer of a tetracycline efflux gene in Gram-negative bovine respiratory tract pathogens, probably originating from Gram-positive bacteria.200515972309
5873140.9755pDB2011, a 7.6 kb multidrug resistance plasmid from Listeria innocua replicating in Gram-positive and Gram-negative hosts. pDB2011, a multidrug resistance plasmid isolated from the foodborne Listeria innocua strain TTS-2011 was sequenced and characterized. Sequence analysis revealed that pDB2011 had a length of 7641 bp and contained seven coding DNA sequences of which two were annotated as replication proteins, one as a recombination/mobilization protein and one as a transposase. Furthermore, pDB2011 harbored the trimethoprim, spectinomycin and macrolide-lincosamide-streptogramin B resistance genes dfrD, spc and erm(A), respectively. However, pDB2011 was only associated with trimethoprim and spectinomycin resistance phenotypes and not with phenotypic resistance to erythromycin. A region of the plasmid encoding the resistance genes spc and erm(A) plus the transposase was highly similar to Staphylococcus aureus transposon Tn554. The dfrD gene was 100% identical to dfrD found in a number of Listeria monocytogenes isolates. Additionally, assessment of the potential host range of pDB2011 revealed that the plasmid was able to replicate in Lactococcus lactis subsp. cremoris MG1363 as well as in Escherichia coli MC1061 and DH5α. This study reports the first multidrug resistance plasmid in L. innocua. A large potential for dissemination of pDB2011 is indicated by its host range of both Gram-positive and Gram-negative bacteria.201323774482
3012150.9754Characterization of the IncA/C plasmid pSCEC2 from Escherichia coli of swine origin that harbours the multiresistance gene cfr. OBJECTIVES: To determine the complete nucleotide sequence of the multidrug resistance plasmid pSCEC2, isolated from a porcine Escherichia coli strain, and to analyse it with particular reference to the cfr gene region. METHODS: Plasmid pSCEC2 was purified from its E. coli J53 transconjugant and then sequenced using the 454 GS-FLX System. After draft assembly, predicted gaps were closed by PCR with subsequent sequencing of the amplicons. RESULTS: Plasmid pSCEC2 is 135 615 bp in size and contains 200 open reading frames for proteins of ≥100 amino acids. Analysis of the sequence of pSCEC2 revealed two resistance gene segments. The 4.4 kb cfr-containing segment is flanked by two IS256 elements in the same orientation, which are believed to be involved in the dissemination of the rRNA methylase gene cfr. The other segment harbours the resistance genes floR, tet(A)-tetR, strA/strB and sul2, which have previously been found on other IncA/C plasmids. Except for these two resistance gene regions, the pSCEC2 backbone displayed >99% nucleotide sequence identity to that of other IncA/C family plasmids isolated in France, Chile and the USA. CONCLUSIONS: The cfr gene was identified on an IncA/C plasmid, which is well known for its broad host range and transfer and maintenance properties. The location on such a plasmid will further accelerate the dissemination of cfr and co-located resistance genes among different Gram-negative bacteria. The genetic context of cfr on plasmid pSCEC2 underlines the complexity of cfr transfer events and confirms the role that insertion sequences play in the spread of cfr.201424013193
3009160.9754Identification of a novel conjugative plasmid carrying the multiresistance gene cfr in Proteus vulgaris isolated from swine origin in China. The multiresistance gene cfr has a broad host range encompassing both Gram-positive and Gram-negative bacteria, and can be located on the chromosomes or on plasmids. In this study, a novel conjugative plasmid carrying cfr, designated as pPvSC3, was characterized in a Proteus vulgaris strain isolated from swine in China. Plasmid pPvSC3 is 284,528 bp in size and harbors 10 other antimicrobial resistance genes, making it a novel plasmid that differs from all known plasmids due to its unique backbone and repA gene. BLAST analysis of the plasmid sequence shows no significant homology to any known plasmid backbone, but shows high level homology to Providencia rettgeri strain CCBH11880 Contig_9, a strain isolated from surgical wound in Brazil, 2014. There are two resistance-determining regions in pPvSC3, a cfr-containing region and a multidrug-resistant (MDR) region. The cfr-containing region is flanked by IS26, which could be looped out via IS26-mediated recombination. The MDR region harbors 10 antimicrobial resistance genes carried by various DNA segments that originated from various sources. Plasmid pPvSC3 could be successfully transferred to Escherichia coli by conjugation. In summary, we have characterized a novel conjugative plasmid pPvSC3 carrying the multiresistance gene cfr and 10 other antimicrobial resistance genes, and consider that this novel type of plasmid deserves attention.201931499097
3013170.9753Nucleotide sequence and organization of the multiresistance plasmid pSCFS1 from Staphylococcus sciuri. OBJECTIVES: The multiresistance plasmid pSCFS1 from Staphylococcus sciuri was sequenced completely and analysed with regard to its gene organization and the putative role of a novel ABC transporter in antimicrobial resistance. METHODS: Plasmid pSCFS1 was transformed into Staphylococcus aureus RN4220, overlapping restriction fragments were cloned into Escherichia coli plasmid vectors and sequenced. For further analysis of the ABC transporter, a approximately 3 kb EcoRV-HpaI fragment was cloned into the staphylococcal plasmid pT181MCS and the respective S. aureus RN4220 transformants were subjected to MIC determination. RESULTS: A total of 14 ORFs coding for proteins of >100 amino acids were detected within the 17 108 bp sequence of pSCFS1. Five of them showed similarity to recombination/mobilization genes while another two were similar to plasmid replication genes. In addition to the previously described genes cfr for chloramphenicol/florfenicol resistance and erm(33) for inducible resistance to macrolide-lincosamide-streptogramin B resistance, a Tn554-like spectinomycin resistance gene and Tn554-related transposase genes were identified. Moreover, a novel ABC transporter was detected and shown to mediate low-level lincosamide resistance. CONCLUSION: Plasmid pSCFS1 is composed of various parts which show similarity to sequences known to occur on plasmids or transposons of Gram-positive, but also Gram-negative bacteria. It is likely that pSCFS1 represents the result of inter-plasmid recombination events also involving the truncation of a Tn554-like transposon.200415471995
3021180.9753Sequencing and comparative analysis of IncP-1α antibiotic resistance plasmids reveal a highly conserved backbone and differences within accessory regions. Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup.201121115076
5867190.9752Molecular analysis of florfenicol-resistant Pasteurella multocida isolates in Germany. OBJECTIVES: Three florfenicol-resistant Pasteurella multocida isolates from Germany, two from swine and one from a calf, were investigated for the genetics and transferability of florfenicol resistance. METHODS: The isolates were investigated for susceptibility to antimicrobial agents and plasmid content. Florfenicol resistance plasmids carrying the gene floR were identified by transformation and PCR. Plasmids were mapped, and a novel plasmid type was sequenced completely. PFGE served to determine the clonality of the isolates. RESULTS: In one porcine and the bovine P. multocida isolate, florfenicol resistance was associated with the plasmid pCCK381 previously described in a bovine P. multocida isolate from the UK. The remaining porcine isolate harboured a new type of floR-carrying plasmid, the 10 226 bp plasmid pCCK1900. Complete sequence analysis identified an RSF1010-like plasmid backbone with the mobilization genes mobA, mobB and mobC, the plasmid replication genes repA, repB and repC, the sulphonamide resistance gene sul2 and the streptomycin resistance genes strA and strB. The floR gene area was integrated into a region downstream of strB, which exhibited homology to the floR flanking regions found in various bacteria. PFGE revealed that the floR-carrying P. multocida strains from Germany were unrelated and also different from the UK strain. CONCLUSIONS: After the UK and France, floR-mediated florfenicol resistance has now also been identified in target bacteria from Germany. PFGE data and the analysis of plasmids strongly suggested that the spread of florfenicol resistance is due to the horizontal transfer of plasmids rather than the clonal dissemination of a resistant P. multocida isolate.200818786941