# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6507 | 0 | 0.9978 | What Are the Drivers Triggering Antimicrobial Resistance Emergence and Spread? Outlook from a One Health Perspective. Antimicrobial resistance (AMR) has emerged as a critical global public health threat, exacerbating healthcare burdens and imposing substantial economic costs. Currently, AMR contributes to nearly five million deaths annually worldwide, surpassing mortality rates of any single infectious disease. The economic burden associated with AMR-related disease management is estimated at approximately $730 billion per year. This review synthesizes current research on the mechanisms and multifaceted drivers of AMR development and dissemination through the lens of the One Health framework, which integrates human, animal, and environmental health perspectives. Intrinsic factors, including antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs), enable bacteria to evolve adaptive resistance mechanisms such as enzymatic inactivation, efflux pumps, and biofilm formation. Extrinsic drivers span environmental stressors (e.g., antimicrobials, heavy metals, disinfectants), socioeconomic practices, healthcare policies, and climate change, collectively accelerating AMR proliferation. Horizontal gene transfer and ecological pressures further facilitate the spread of antimicrobial-resistant bacteria across ecosystems. The cascading impacts of AMR threaten human health and agricultural productivity, elevate foodborne infection risks, and impose substantial economic burdens, particularly in low- and middle-income countries. To address this complex issue, the review advocates for interdisciplinary collaboration, robust policy implementation (e.g., antimicrobial stewardship), and innovative technologies (e.g., genomic surveillance, predictive modeling) under the One Health paradigm. Such integrated strategies are essential to mitigate AMR transmission, safeguard global health, and ensure sustainable development. | 2025 | 40558133 |
| 6506 | 1 | 0.9976 | Mitigating antimicrobial resistance through effective hospital wastewater management in low- and middle-income countries. Hospital wastewater (HWW) is a significant environmental and public health threat, containing high levels of pollutants such as antibiotic-resistant bacteria (ARB), antibiotic-resistant genes (ARGs), antibiotics, disinfectants, and heavy metals. This threat is of particular concern in low- and middle-income countries (LMICs), where untreated effluents are often used for irrigating vegetables crops, leading to direct and indirect human exposure. Despite being a potential hotspot for the spread of antimicrobial resistance (AMR), existing HWW treatment systems in LMICs primarily target conventional pollutants and lack effective standards for monitoring the removal of ARB and ARGs. Consequently, untreated or inadequately treated HWW continues to disseminate ARB and ARGs, exacerbating the risk of AMR proliferation. Addressing this requires targeted interventions, including cost-effective treatment solutions, robust AMR monitoring protocols, and policy-driven strategies tailored to LMICs. This perspective calls for a paradigm shift in HWW management in LMIC, emphasizing the broader implementation of onsite treatment systems, which are currently rare. Key recommendations include developing affordable and contextually adaptable technologies for eliminating ARB and ARGs and enforcing local regulations for AMR monitoring and control in wastewater. Addressing these challenges is essential for protecting public health, preventing the environmental spread of resistance, and contributing to a global effort to preserve the efficacy of antibiotics. Recommendations include integrating scalable onsite technologies, leveraging local knowledge, and implementing comprehensive AMR-focused regulatory frameworks. | 2024 | 39944563 |
| 6686 | 2 | 0.9976 | The Impact of Wastewater on Antimicrobial Resistance: A Scoping Review of Transmission Pathways and Contributing Factors. BACKGROUND/OBJECTIVES: Antimicrobial resistance (AMR) is a global issue driven by the overuse of antibiotics in healthcare, agriculture, and veterinary settings. Wastewater and treatment plants (WWTPs) act as reservoirs for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The One Health approach emphasizes the interconnectedness of human, animal, and environmental health in addressing AMR. This scoping review analyzes wastewater's role in the AMR spread, identifies influencing factors, and highlights research gaps to guide interventions. METHODS: This scoping review followed the PRISMA-ScR guidelines. A comprehensive literature search was conducted across the PubMed and Web of Science databases for articles published up to June 2024, supplemented by manual reference checks. The review focused on wastewater as a source of AMR, including hospital effluents, industrial and urban sewage, and agricultural runoff. Screening and selection were independently performed by two reviewers, with conflicts resolved by a third. RESULTS: Of 3367 studies identified, 70 met the inclusion criteria. The findings indicated that antibiotic residues, heavy metals, and microbial interactions in wastewater are key drivers of AMR development. Although WWTPs aim to reduce contaminants, they often create conditions conducive to horizontal gene transfer, amplifying resistance. Promising interventions, such as advanced treatment methods and regulatory measures, exist but require further research and implementation. CONCLUSIONS: Wastewater plays a pivotal role in AMR dissemination. Targeted interventions in wastewater management are essential to mitigate AMR risks. Future studies should prioritize understanding AMR dynamics in wastewater ecosystems and evaluating scalable mitigation strategies to support global health efforts. | 2025 | 40001375 |
| 6665 | 3 | 0.9975 | A One-Health Perspective of Antimicrobial Resistance (AMR): Human, Animals and Environmental Health. Antibiotics are essential for treating bacterial and fungal infections in plants, animals, and humans. Their widespread use in agriculture and the food industry has significantly enhanced animal health and productivity. However, extensive and often inappropriate antibiotic use has driven the emergence and spread of antimicrobial resistance (AMR), a global health crisis marked by the reduced efficacy of antimicrobial treatments. Recognized by the World Health Organization (WHO) as one of the top ten global public health threats, AMR arises when certain bacteria harbor antimicrobial resistance genes (ARGs) that confer resistance that can be horizontally transferred to other bacteria, accelerating resistance spread in the environment. AMR poses a significant global health challenge, affecting humans, animals, and the environment alike. A One-Health perspective highlights the interconnected nature of these domains, emphasizing that resistant microorganisms spread across healthcare, agriculture, and the environment. Recent scientific advances such as metagenomic sequencing for resistance surveillance, innovative wastewater treatment technologies (e.g., ozonation, UV, membrane filtration), and the development of vaccines and probiotics as alternatives to antibiotics in livestock are helping to mitigate resistance. At the policy level, global initiatives including the WHO Global Action Plan on AMR, coordinated efforts by (Food and Agriculture Organization) FAO and World Organisation for Animal Health (WOAH), and recommendations from the O'Neill Report underscore the urgent need for international collaboration and sustainable interventions. By integrating these scientific and policy responses within the One-Health framework, stakeholders can improve antibiotic stewardship, reduce environmental contamination, and safeguard effective treatments for the future. | 2025 | 41157271 |
| 6508 | 4 | 0.9975 | Synergizing Ecotoxicology and Microbiome Data Is Key for Developing Global Indicators of Environmental Antimicrobial Resistance. The One Health concept recognises the interconnectedness of humans, plants, animals and the environment. Recent research strongly supports the idea that the environment serves as a significant reservoir for antimicrobial resistance (AMR). However, the complexity of natural environments makes efforts at AMR public health risk assessment difficult. We lack sufficient data on key ecological parameters that influence AMR, as well as the primary proxies necessary for evaluating risks to human health. Developing environmental AMR 'early warning systems' requires models with well-defined parameters. This is necessary to support the implementation of clear and targeted interventions. In this review, we provide a comprehensive overview of the current tools used globally for environmental AMR human health risk assessment and the underlying knowledge gaps. We highlight the urgent need for standardised, cost-effective risk assessment frameworks that are adaptable across different environments and regions to enhance comparability and reliability. These frameworks must also account for previously understudied AMR sources, such as horticulture, and emerging threats like climate change. In addition, integrating traditional ecotoxicology with modern 'omics' approaches will be essential for developing more comprehensive risk models and informing targeted AMR mitigation strategies. | 2024 | 39611949 |
| 6664 | 5 | 0.9975 | Addressing the global challenge of bacterial drug resistance: insights, strategies, and future directions. The COVID-19 pandemic underscored bacterial resistance as a critical global health issue, exacerbated by the increased use of antibiotics during the crisis. Notwithstanding the pandemic's prevalence, initiatives to address bacterial medication resistance have been inadequate. Although an overall drop in worldwide antibiotic consumption, total usage remains substantial, requiring rigorous regulatory measures and preventive activities to mitigate the emergence of resistance. Although National Action Plans (NAPs) have been implemented worldwide, significant disparities persist, particularly in low- and middle-income countries (LMICs). Settings such as farms, hospitals, wastewater treatment facilities, and agricultural environments include a significant presence of Antibiotic Resistant Bacteria (ARB) and antibiotic-resistance genes (ARG), promoting the propagation of resistance. Dietary modifications and probiotic supplementation have shown potential in reshaping gut microbiota and reducing antibiotic resistance gene prevalence. Combining antibiotics with adjuvants or bacteriophages may enhance treatment efficacy and mitigate resistance development. Novel therapeutic approaches, such as tailored antibiotics, monoclonal antibodies, vaccines, and nanoparticles, offer alternate ways of addressing resistance. In spite of advancements in next-generation sequencing and analytics, gaps persist in comprehending the role of gut microbiota in regulating antibiotic resistance. Effectively tackling antibiotic resistance requires robust policy interventions and regulatory measures targeting root causes while minimizing public health risks. This review provides information for developing strategies and protocols to prevent bacterial colonization, enhance gut microbiome resilience, and mitigate the spread of antibiotic resistance. | 2025 | 40066274 |
| 6656 | 6 | 0.9975 | Understanding the Evolution and Transmission Dynamics of Antibiotic Resistance Genes: A Comprehensive Review. Antibiotic resistance poses a formidable challenge to global public health, necessitating comprehensive understanding and strategic interventions. This review explores the evolution and transmission dynamics of antibiotic resistance genes, with a focus on Bangladesh. The indiscriminate use of antibiotics, compounded by substandard formulations and clinical misdiagnosis, fuels the emergence and spread of resistance in the country. Studies reveal high resistance rates among common pathogens, emphasizing the urgent need for targeted interventions and rational antibiotic use. Molecular assessments uncover a diverse array of antibiotic resistance genes in environmental reservoirs, highlighting the complex interplay between human activities and resistance dissemination. Horizontal gene transfer mechanisms, particularly plasmid-mediated conjugation, facilitate the exchange of resistance determinants among bacterial populations, driving the evolution of multidrug-resistant strains. The review discusses clinical implications, emphasizing the interconnectedness of environmental and clinical settings in resistance dynamics. Furthermore, bioinformatic and experimental evidence elucidates novel mechanisms of resistance gene transfer, underscoring the dynamic nature of resistance evolution. In conclusion, combating antibiotic resistance requires a multifaceted approach, integrating surveillance, stewardship, and innovative research to preserve the efficacy of antimicrobial agents and safeguard public health. | 2024 | 39113256 |
| 6537 | 7 | 0.9975 | Antibiotic Abuse in Ornamental Fish: An Overlooked Reservoir for Antibiotic Resistance. Ornamental fish represent a significant aquaculture sector with notable economic value, yet their contribution to antibiotic residues and resistance remains underrecognized. This review synthesizes evidence on widespread and often unregulated antibiotic use-including tetracyclines and fluoroquinolones-in ornamental fish production, transportation, and retail, primarily targeting bacterial diseases such as aeromonosis and vibriosis. Pathogenic microorganisms including Edwardsiella, Flavobacterium, and Shewanella spp. cause diseases like hemorrhagic septicemia, fin rot, skin ulcers, and exophthalmia, impairing fish health and marketability. Prophylactic and therapeutic antibiotic applications elevate antibiotic residues in fish tissues and carriage water, thereby selecting for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). These resistant elements pose significant risks to fish health, human exposure via direct contact and bioaerosols, and environmental health through contamination pathways. We emphasize the urgent need for a holistic One Health approach, involving enhanced surveillance, stringent regulatory oversight, and adoption of alternative antimicrobial strategies, such as probiotics and advanced water treatments. Coordinated global actions are crucial to effectively mitigate antibiotic resistance within the ornamental fish industry, ensuring sustainable production, safeguarding public health, and protecting environmental integrity. | 2025 | 40284775 |
| 6713 | 8 | 0.9974 | Human Colonization with Antibiotic-Resistant Bacteria from Nonoccupational Exposure to Domesticated Animals in Low- and Middle-Income Countries: A Critical Review. Data on community-acquired antibiotic-resistant bacterial infections are particularly sparse in low- and middle-income countries (LMICs). Limited surveillance and oversight of antibiotic use in food-producing animals, inadequate access to safe drinking water, and insufficient sanitation and hygiene infrastructure in LMICs could exacerbate the risk of zoonotic antibiotic resistance transmission. This critical review compiles evidence of zoonotic exchange of antibiotic-resistant bacteria (ARB) or antibiotic resistance genes (ARGs) within households and backyard farms in LMICs, as well as assesses transmission mechanisms, risk factors, and environmental transmission pathways. Overall, substantial evidence exists for exchange of antibiotic resistance between domesticated animals and in-contact humans. Whole bacteria transmission and horizontal gene transfer between humans and animals were demonstrated within and between households and backyard farms. Further, we identified water, soil, and animal food products as environmental transmission pathways for exchange of ARB and ARGs between animals and humans, although directionality of transmission is poorly understood. Herein we propose study designs, methods, and topical considerations for priority incorporation into future One Health research to inform effective interventions and policies to disrupt zoonotic antibiotic resistance exchange in low-income communities. | 2022 | 35947446 |
| 6666 | 9 | 0.9974 | Antibiotic residues in poultry products and bacterial resistance: A review in developing countries. Antimicrobial resistance (AMR) is a growing global concern, particularly in poultry farming, where antibiotics are widely used for both disease prevention and growth promotion. This review examines the misuse of antibiotics in poultry production, especially in developing countries, and its contribution to the emergence of antibiotic-resistant bacteria. The findings highlight that factors such as increasing demand for poultry protein, the availability of inexpensive antibiotics, and weak regulatory oversight have led to widespread misuse, accelerating the spread of resistance genes. Although evidence links poultry farming to AMR, significant data gaps remain, especially regarding resistance transmission from poultry to humans. The review underscores the urgent need for stronger regulatory frameworks, phased-out use of antimicrobial growth promoters, and enhanced awareness campaigns to address this issue. Improving the capacity of regulatory bodies and developing more robust national data monitoring systems are essential steps to mitigate the threat of AMR in poultry farming and to protect both animal and human health. | 2024 | 39551017 |
| 6647 | 10 | 0.9974 | Potential Elimination of Human Gut Resistome by Exploiting the Benefits of Functional Foods. Recent advances in technology over the last decades have strived to elucidate the diverse and abundant ecosystem of the human microbiome. The intestinal microbiota represents a densely inhabited environment that offers a plethora of beneficial effects to the host's wellbeing. On the other hand, it can serve as a potential reservoir of Multi-Drug Resistant (MDR) bacteria and their antibiotic-resistant genes (ARgenes), which comprise the "gut resistome." ARgenes, like antibiotics, have been omnipresent in the environment for billions of years. In the context of the gut microbiome, these genes may conflate into exogenous MDR or emerge in commensals due to mutations or gene transfers. It is currently generally accepted that Antimicrobial Resistance (AMR) poses a serious threat to public health worldwide. It is of paramount importance that researchers focus on, amongst other parameters, elaborating strategies to manage the gut resistome, particularly focusing on the diminution of AMR. Potential interventions in the gut microbiome field by Fecal Microbiota Transplant (FMT) or functional foods are newly emerged candidates for the uprooting of MDR strains and restoring dysbiosis and resilience. Probiotic nutrition is thought to diminish gut colonization from pathobionts. Yet only a few studies have explored the effects of antibiotics use on the reservoir of AR genes and the demanding time for return to normal by gut microbiota-targeted strategies. Regular administration of probiotic bacteria has recently been linked to restoration of the gut ecosystem and decrease of the gut resistome and AR genes carriers. This review summarizes the latest information about the intestinal resistome and the intriguing methods of fighting against AMR through probiotic-based methods and gut microbial shifts that have been proposed. This study contains some key messages: (1) AMR currently poses a lethal threat to global health, and it is pivotal for the scientific community to do its utmost in fighting against it; (2) human gut microbiome research, within the last decade especially, seems to be preoccupied with the interface of numerous diseases and identifying a potential target for a variety of interventions; (3) the gut resistome, comprised of AR genesis, presents very early on in life and is prone to shifts due to the use of antibiotics or dietary supplements; and (4) future strategies involving functional foods seem promising for the battle against AMR through intestinal resistome diminution. | 2020 | 32117102 |
| 6691 | 11 | 0.9974 | The antimicrobial resistance monitoring and research (ARMoR) program: the US Department of Defense response to escalating antimicrobial resistance. Responding to escalating antimicrobial resistance (AMR), the US Department of Defense implemented an enterprise-wide collaboration, the Antimicrobial Resistance Monitoring and Research Program, to aid in infection prevention and control. It consists of a network of epidemiologists, bioinformaticists, microbiology researchers, policy makers, hospital-based infection preventionists, and healthcare providers who collaborate to collect relevant AMR data, conduct centralized molecular characterization, and use AMR characterization feedback to implement appropriate infection prevention and control measures and influence policy. A particularly concerning type of AMR, carbapenem-resistant Enterobacteriaceae, significantly declined after the program was launched. Similarly, there have been no further reports or outbreaks of another concerning type of AMR, colistin resistance in Acinetobacter, in the Department of Defense since the program was initiated. However, bacteria containing AMR-encoding genes are increasing. To update program stakeholders and other healthcare systems facing such challenges, we describe the processes and impact of the program. | 2014 | 24795331 |
| 6601 | 12 | 0.9973 | Use of Wastewater to Monitor Antimicrobial Resistance Trends in Communities and Implications for Wastewater-Based Epidemiology: A Review of the Recent Literature. Antimicrobial resistance (AMR) presents a global health challenge, necessitating comprehensive surveillance and intervention strategies. Wastewater-based epidemiology (WBE) is a promising tool that can be utilized for AMR monitoring by offering population-level insights into microbial dynamics and resistance gene dissemination in communities. This review (n = 29 papers) examines the current landscape of utilizing WBE for AMR surveillance with a focus on methodologies, findings, and gaps in understanding. Reported methods from the reviewed literature included culture-based, PCR-based, whole genome sequencing, mass spectrometry, bioinformatics/metagenomics, and antimicrobial susceptibility testing to identify and measure antibiotic-resistant bacteria and antimicrobial resistance genes (ARGs) in wastewater, as well as liquid chromatography-tandem mass spectrometry to measure antibiotic residues. Results indicate Escherichia coli, Enterococcus spp., and Pseudomonas spp. are the most prevalent antibiotic-resistant bacterial species with hospital effluent demonstrating higher abundances of clinically relevant resistance genes including bla, bcr, qnrS, mcr, sul1, erm, and tet genes compared to measurements from local treatment plants. The most reported antibiotics in influent wastewater across studies analyzed include azithromycin, ciprofloxacin, clindamycin, and clarithromycin. The influence of seasonal variation on the ARG profiles of communities differed amongst studies indicating additional factors hold significance when examining the conference of AMR within communities. Despite these findings, knowledge gaps remain, including longitudinal studies in multiple and diverse geographical regions and understanding co-resistance mechanisms in relation to the complexities of population contributors to AMR. This review underscores the urgent need for collaborative and interdisciplinary efforts to safeguard public health and preserve antimicrobial efficacy. Further investigation on the use of WBE to understand these unique population-level drivers of AMR is advised in a proposed framework to inform best practice approaches moving forward. | 2025 | 41011405 |
| 6693 | 13 | 0.9973 | Antimicrobial resistance among clinically significant bacteria in wildlife: An overlooked one health concern. Antimicrobial resistance (AMR) has emerged as a critical global health challenge. However, the significance of AMR is not limited to humans and domestic animals but extends to wildlife and the environment. Based on the analysis of > 200 peer-reviewed papers, this review provides comprehensive and current insights into the detection of clinically significant antimicrobial resistant bacteria and resistance genes in wild mammals, birds and reptiles worldwide. The review also examines the overlooked roles of wildlife in AMR emergence and transmission. In wildlife, AMR is potentially driven by anthropogenic activity, agricultural and environmental factors, and natural evolution. This review highlights the significance of AMR surveillance in wildlife, identifies species and geographical foci and gaps, and demonstrates the value of multifaceted One Health strategies if further escalation of AMR globally is to be curtailed. | 2024 | 38906487 |
| 6690 | 14 | 0.9973 | Antimicrobial resistance situation in animal health of Bangladesh. Antimicrobial resistance (AMR) is a crucial multifactorial and complex global problem and Bangladesh poses a regional and global threat with a high degree of antibiotic resistance. Although the routine application of antimicrobials in the livestock industry has largely contributed to the health and productivity, it correspondingly plays a significant role in the evolution of different pathogenic bacterial strains having multidrug resistance (MDR) properties. Bangladesh is implementing the National Action Plan (NAP) for containing AMR in human, animal, and environment sectors through "One Health" approach where the Department of Livestock Services (DLS) is the mandated body to implement NAP strategies in the animal health sector of the country. This review presents a "snapshot" of the predisposing factors, and current situations of AMR along with the weakness and strength of DLS to contain the problem in animal farming practices in Bangladesh. In the present review, resistance monitoring data and risk assessment identified several direct and/or indirect predisposing factors to be potentially associated with AMR development in the animal health sector of Bangladesh. The predisposing factors are inadequate veterinary healthcare, monitoring and regulatory services, intervention of excessive informal animal health service providers, and farmers' knowledge gap on drugs, and AMR which have resulted in the misuse and overuse of antibiotics, ultimate in the evolution of antibiotic-resistant bacteria and genes in all types of animal farming settings of Bangladesh. MDR bacteria with extreme resistance against antibiotics recommended to use in both animals and humans have been reported and been being a potential public health hazard in Bangladesh. Execution of extensive AMR surveillance in veterinary practices and awareness-building programs for stakeholders along with the strengthening of the capacity of DLS are recommended for effective containment of AMR emergence and dissemination in the animal health sector of Bangladesh. | 2020 | 33487990 |
| 6533 | 15 | 0.9973 | The Role of the Environment (Water, Air, Soil) in the Emergence and Dissemination of Antimicrobial Resistance: A One Health Perspective. Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments-water, soil, and air-as dynamic reservoirs and transmission routes for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs). Recent metagenomic, epidemiological, and mechanistic evidence demonstrates that anthropogenic pressures-including pharmaceutical effluents, agricultural runoff, untreated sewage, and airborne emissions-amplify resistance evolution and interspecies gene transfer via horizontal gene transfer mechanisms, biofilms, and mobile genetic elements. Importantly, it is not only highly polluted rivers such as the Ganges that contribute to the spread of AMR; even low concentrations of antibiotics and their metabolites, formed during or after treatment, can significantly promote the selection and dissemination of resistance. Environmental hotspots such as European agricultural soils and airborne particulate zones near wastewater treatment plants further illustrate the complexity and global scope of pollution-driven AMR. The synergistic roles of co-selective agents, including heavy metals, disinfectants, and microplastics, are highlighted for their impact in exacerbating resistance gene propagation across ecological and geographical boundaries. The efficacy and limitations of current mitigation strategies, including advanced wastewater treatments, thermophilic composting, biosensor-based surveillance, and emerging regulatory frameworks, are evaluated. By integrating a One Health perspective, this review underscores the imperative of including environmental considerations in global AMR containment policies and proposes a multidisciplinary roadmap to mitigate resistance spread across interconnected human, animal, and environmental domains. | 2025 | 40867959 |
| 6534 | 16 | 0.9973 | Antibiotic resistance dissemination in soil ecosystems: deep understanding for effective management and global health protection. Antibiotic resistance poses a significant threat to global health, extending beyond clinical settings into environmental reservoirs such as soil, where resistant bacteria persist and evolve. Current efforts focus on understanding the origins and implications of antibiotic resistance in soil ecosystems. It defines antibiotic resistance within an environmental context and highlights soil as a critical reservoir for antibiotic-resistant genes (ARGs). Key sources of antibiotics in soil are identified, including agricultural practices, medical waste, and municipal and industrial effluents. The classification and mechanisms of ARGs are outlined, along with their transmission pathways, particularly within soil biofilms, which play a crucial role in gene transfer and microbial protection. The interplay between soil microbial communities and antibiotic resistance is discussed, emphasizing its potential risks to human health, including infectious diseases and food safety concerns. Strategies for mitigating antibiotic resistance in soil are presented, focusing on optimizing antibiotic usage, developing alternatives, and enhancing degradation mechanisms. This review underscores the need for interdisciplinary research to deepen understanding of soil microbial diversity and its connection to antibiotic resistance, emphasizing integrated efforts to safeguard soil and human health. | 2025 | 41166035 |
| 6689 | 17 | 0.9973 | Wastewater-Based Epidemiology as a Complementary Tool for Antimicrobial Resistance Surveillance: Overcoming Barriers to Integration. This commentary highlights the potential of wastewater-based epidemiology (WBE) as a complementary tool for antimicrobial resistance (AMR) surveillance. WBE can support the early detection of resistance trends at the population level, including in underserved communities. However, several challenges remain, including technical variability, complexities in data interpretation, and regulatory gaps. An additional limitation is the uncertainty surrounding the origin of resistant bacteria and their genes in wastewater, which may derive not only from human sources but also from industrial, agricultural, or infrastructural contributors. Therefore, effective integration of WBE into public health systems will require standardized methods, sustained investment, and cross-sector collaboration. This could be achieved through joint monitoring initiatives that combine hospital wastewater data with agricultural and municipal surveillance to inform antibiotic stewardship policies. Overcoming these barriers could position WBE as an innovative tool for AMR monitoring, enhancing early warning systems and supporting more responsive, equitable, and preventive public health strategies. | 2025 | 40522150 |
| 6657 | 18 | 0.9973 | From Cure to Crisis: Understanding the Evolution of Antibiotic-Resistant Bacteria in Human Microbiota. The growing prevalence of antibiotic-resistant bacteria within the human microbiome has become a pressing global health crisis. While antibiotics have revolutionized medicine by significantly reducing mortality and enabling advanced medical interventions, their misuse and overuse have led to the emergence of resistant bacterial strains. Key resistance mechanisms include genetic mutations, horizontal gene transfer, and biofilm formation, with the human microbiota acting as a reservoir for antibiotic resistance genes (ARGs). Industrialization and environmental factors have exacerbated this issue, contributing to a rise in infections with multidrug-resistant (MDR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Enterobacteriaceae. These resistant pathogens compromise the effectiveness of essential treatments like surgical prophylaxis and chemotherapy, increase healthcare costs, and prolong hospital stays. This crisis highlights the need for a global One-Health approach, particularly in regions with weak regulatory frameworks. Innovative strategies, including next-generation sequencing (NGS) technologies, offer promising avenues for mitigating resistance. Addressing this challenge requires coordinated efforts, encompassing research, policymaking, public education, and antibiotic stewardship, to safeguard current antibiotics and foster the development of new therapeutic solutions. An integrated, multidimensional strategy is essential to tackle this escalating problem and ensure the sustainability of effective antimicrobial treatments. | 2025 | 39858487 |
| 6535 | 19 | 0.9972 | Occurrence and dissemination of antibiotics and antibiotic resistance in aquatic environment and its ecological implications: a review. The occurrence of antibiotics and antibiotic-resistant bacteria (ARBs), genes (ARGs), and mobile genetic elements (MGEs) in aquatic systems is growing global public health concern. These emerging micropollutants, stemming from improper wastewater treatment and disposal, highlight the complex and evolving nature of environmental pollution. Current literature reveals potential biases, such as a geographical focus on specific regions, leading to an insufficient understanding of the global distribution and dynamics of antibiotic resistance in aquatic systems. There is methodological inconsistency across studies, making it challenging to compare findings. Potential biases include sample collection inconsistencies, detection sensitivity variances, and data interpretation variability. Gaps in understanding include the need for comprehensive, standardized long-term monitoring programs, elucidating the environmental fate and transformation of antibiotics and resistance genes. This review summarizes current knowledge on the occurrence and dissemination of emerging micropollutants, their ecological impacts, and the global health implications of antimicrobial resistance. It highlights the need for interdisciplinary collaborations among researchers, policymakers, and stakeholders to address the challenges posed by antibiotic resistance in aquatic resistance in aquatic systems effectively. This review highlights widespread antibiotic and antibiotic resistance in aquatic environment, driven by human and agricultural activities. It underscores the ecological consequences, including disrupted microbial communities and altered ecosystem functions. The findings call for urgent measures to mitigate antibiotics pollution and manage antibiotic resistance spread in water bodies. | 2024 | 39028459 |