PANDA - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
521300.9838Draft genome sequences of Limosilactobacillus fermentum IJAL 01 335, isolated from a traditional cereal fermented dough. Limosilactobacillus fermentum IJAL 01 335 was isolated from mawè, a spontaneously fermented cereal dough from Benin. The 1.83 Mb draft genome sequence (52.37% GC) comprises 154 contigs, 1,836 coding sequences, and 23 predicted antibiotic resistance genes, providing insights into its genetic features and potential application in food fermentation.202541170963
523610.9837Genome characterization of a multi-drug resistant Escherichia coli strain, L1PEag1, isolated from commercial cape gooseberry fruits (Physalis peruviana L.). INTRODUCTION: Foodborne infections, which are frequently linked to bacterial contamination, are a serious concern to public health on a global scale. Whether agricultural farming practices help spread genes linked to antibiotic resistance in bacteria associated with humans or animals is a controversial question. METHODS: This study applied a long-read Oxford Nanopore MinION-based sequencing to obtain the complete genome sequence of a multi-drug resistant Escherichia coli strain (L1PEag1), isolated from commercial cape gooseberry fruits (Physalis peruviana L.) in Ecuador. Using different genome analysis tools, the serotype, Multi Locus Sequence Typing (MLST), virulence genes, and antimicrobial resistance (AMR) genes of the L1PEag1 isolate were determined. Additionally, in vitro assays were performed to demonstrate functional genes. RESULTS: The complete genome sequence of the L1PEag1 isolate was assembled into a circular chromosome of 4825.722 Kbp and one plasmid of 3.561 Kbp. The L1PEag1 isolate belongs to the B2 phylogroup, sequence type ST1170, and O1:H4 serotype based on in silico genome analysis. The genome contains 4,473 genes, 88 tRNA, 8 5S rRNA, 7 16S rRNA, and 7 23S rRNA. The average GC content is 50.58%. The specific annotation consisted of 4,439 and 3,723 genes annotated with KEEG and COG respectively, 3 intact prophage regions, 23 genomic islands (GIs), and 4 insertion sequences (ISs) of the ISAs1 and IS630 families. The L1PEag1 isolate carries 25 virulence genes, and 4 perfect and 51 strict antibiotic resistant gene (ARG) regions based on VirulenceFinder and RGI annotation. Besides, the in vitro antibiotic profile indicated resistance to kanamycin (K30), azithromycin (AZM15), clindamycin (DA2), novobiocin (NV30), amikacin (AMK30), and other antibiotics. The L1PEag1 isolate was predicted as a human pathogen, matching 464 protein families (0.934 likelihood). CONCLUSION: Our work emphasizes the necessity of monitoring environmental antibiotic resistance, particularly in commercial settings to contribute to develop early mitigation techniques for dealing with resistance diffusion.202439104589
122320.9835Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. BACKGROUND: Calf diarrhea is a major economic concern in bovine industry all around the world. This study was carried out in order to investigate distribution of virulence genes, pathotypes, serogroups and antibiotic resistance properties of Escherichia coli isolated from diarrheic calves. RESULTS: Totally, 76.45% of 824 diarrheic fecal samples collected from Isfahan, Chaharmahal, Fars and Khuzestan provinces, Iran were positive for E. coli and all of them were also positive for cnf2, hlyA, cdtIII, f17c, lt, st, stx1, eae, ehly, stx2 and cnf1 virulence genes. Chaharmahal had the highest prevalence of STEC (84.61%), while Isfahan had the lowest (71.95%). E. coli serogroups had the highest frequency in 1-7 days old calves and winter season. Distribution of ETEC, EHEC, AEEC and NTEC pathotypes among E. coli isolates were 28.41%, 5.07%, 29.52% and 3.49%, respectively. Statistical analyses were significant for presence of bacteria between various seasons and ages. All isolates had the high resistance to penicillin (100%), streptomycin (98.25%) and tetracycline (98.09%) antibiotics. The most commonly detected resistance genes were aadA1, sul1, aac[3]-IV, CITM, and dfrA1. The most prevalent serogroup among STEC was O26. CONCLUSIONS: Our findings should raise awareness about antibiotic resistance in diarrheic calves in Iran. Clinicians should exercise caution when prescribing antibiotics.201425052999
248930.9834First Isolation and Identification of Aeromonas veronii in a Captive Giant Panda (Ailuropoda melanoleuca). The objective of this study was to understand biological characteristics of one bacteria strain named as VPG which was isolated from multiple organs of a dead captive giant panda cub. Here, we use biochemical tests, 16S rRNA and gyrB genes for bacterial identification, the disk diffusion method for antibiotic resistance phenotype, smart chip real-time PCR for the antibiotic resistance genotype, multiplex PCR for determination of virulence genes, and the acute toxicity test in mice for testing the pathogenicity of isolates. The isolate was identified as A. veronii strain based on the biochemical properties and genetic analysis. We found that the strain carried 31 antibiotic resistance genes, revealed antimicrobial resistance phenotypically to several antibiotics including penicillin, ampicillin, oxacillin, amoxicillin, imipenem, and vancomycin, and carried virulence genes including aer, act, lip, exu, ser, luxs, and tapA. The main pathological changes in giant panda were congestion, necrotic lesions and a large number of bacteria in multiple organs. In addition, the LD(50) in Kunming mice infected with strain VGP was 5.14 × 10(7) CFU/mL by intraperitoneal injection. Infection with strain VGP led to considerable histological lesions such as hemorrhage of internal organs, necrosis of lymphocytes and neurons in Kunming mice. Taken together, these results suggest that infection with strain VGP would be an important causes of death in this giant panda cub.202337685043
133340.9834Virulence-encoding genes related to extraintestinal pathogenic E. coli and multidrug resistant pattern of strains isolated from neonatal calves with different severity scores of umbilical infections. Umbilical infections in calves comprise a major cause of neonatal mortality and have been related to a variety of microorganisms. E. coli is an opportunistic enteropathogen characterized by a diversity of virulence factors (VF). Nonetheless, the gene profiles that encode VF associated with umbilical infections in calves and their effect on the clinical severity remains unclear. In this scenario, microbial identification (with an emphasis on E. coli), was carried out among 150 neonatal calves (≤30 days of age) with umbilical infections, where the omphalopathies were clinically scored as mild, moderate, or severe. Also, a panel of 16 virulence-encoding genes related to extraintestinal pathogenic E. coli (ExPEC) were investigated, i.e., fimbriae/adhesins (sfa/focDEa, papA, papC, afaBC), toxins (hlyA, sat, cnf1, cdt), siderophores (iroN, irp2, iucD, ireA), invasins (ibeA), and serum resistance (ompT, traT, kpsMT II). Bacteria and yeasts isolates were identified using mass spectrometry. Bacteria, yeasts, and fungi were isolated in 94.7% (142/150) of neonatal calves sampled. E. coli was the agent most frequently isolated (59/150 = 39.3%), in pure culture (27/59 = 45.8%) and combined infections (32/59 = 54.2%), although a great variety (n = 83) of other species of microorganisms were identified. Clinical severity scores of 1, 2, and 3 were observed in 32.2% (19/59), 23.7% (14/59), and 44.1% (26/59) of E. coli infections, respectively. The ExPEC genes detected were related to serum resistance (traT, 42/59 = 72.2%; ompT, 35/59 = 59.3%, kpsMTII, 10/59 = 17%), invasins (ibeA, 11/59 = 18.6%), siderophores (iucD, 9/59 = 15.3%; iroN, 8/59 = 13.6%), and adhesins/fimbriae (papA, 8/59 = 13.6%; papC, 15/59 = 9.6%). The presence of each virulence gene was not associated with the case's clinical score. Among all isolates, 89.8% (53/59) showed in vitro resistance to sulfamethoxazole/trimethoprim and 59.3% to ampicillin (35/59), while 94.1% (55/59) revealed a multidrug resistant profile. Great complexity of bacteria, yeast, and fungi species was identified, reinforcing the umbilical infections of neonatal calves as a polymicrobial disorder. The high occurrence of E. coli (39.3%) highlights the role of this pathogen in the etiology of umbilical infections in calves. Furthermore, a panel of ExPEC genes was investigated for the first time among calves that were clinically scored for case severity. The high prevalence of traT and ompT indicates that these serum resistance-related genes could be used as biomarkers for further investigations of ExPEC isolates from umbilical infections. Our results contribute to the etiological investigation, clinical severity scoring, antimicrobial resistance pattern, and virulence-related to ExPEC genes involved in umbilical infections of neonatal calves.202336427660
121150.9833Molecular characterization of multidrug-resistant Escherichia coli of the phylogroups A and C in dairy calves with meningitis and septicemia. Escherichia coli is an important cause of septicemia (SEPEC) and neonatal meningitis (NMEC) in dairy calves. However, the diversity of virulence profiles, phylogroups, antimicrobial resistance patterns, carriage of integron structures, and fluoroquinolone (FQ) resistance mechanisms have not been fully investigated. Also, there is a paucity of knowledge about the virulence profiles and frequency of potential SEPEC in feces from calves with or without diarrhea. This study aimed to characterize the virulence potential, phylogroups, antimicrobial susceptibility, integron content, and FQ-resistance mechanisms in Escherichia coli isolated from calves with meningitis and septicemia. Additionally, the virulence genes (VGs) and profiles of E. coli isolated from diarrheic and non-diarrheic calves were compared between them and together with NMEC and SEPEC in order to identify shared profiles. Tissue and fluid samples from eight dairy calves with septicemia, four of which had concurrent meningitis, were processed for bacteriology and histopathology. Typing of VGs was assessed in 166 isolates from diverse samples of each calf. Selected isolates were evaluated for antimicrobial susceptibility by the disk diffusion test. Phylogroups, integron gene cassettes cartography, and FQ-resistance determinants were analyzed by PCR, sequencing, and bioinformatic tools. Furthermore, 109 fecal samples and 700 fecal isolates from dairy calves with or without diarrhea were evaluated to detect 19 VGs by uniplex PCR. Highly diverse VG profiles were characterized among NMEC and SEPEC isolates, but iucD was the predominant virulence marker. Histologic lesions in all calves supported their pathogenicity. Selected isolates mainly belonged to phylogroups A and C and showed multidrug resistance. Classic (dfrA17 and arr3-dfrA27) and complex (dfrA17-aadA5::ISCR1::bla(CTX-M-2)) class 1 integrons were identified. Target-site mutations in GyrA (S83L and D87N) and ParC (S80I) encoding genes were associated with FQ resistance. The VGs detected more frequently in fecal samples included f17G (50%), papC (30%), iucD (20%), clpG (19%), eae (16%), and afaE-8 (13%). Fecal isolates displaying the profiles of f17 or potential SEPEC were found in 25% of calves with and without diarrhea. The frequency of E. coli VGs and profiles did not differ between both groups (p > 0.05) and were identical or similar to those found in NMEC and SEPEC. Overall, multidrug-resistant E. coli isolates with diverse VG profiles and belonging to phylogroups A and C can be implicated in natural cases of meningitis and septicemia. Their resistance phenotypes can be partially explained by class 1 integron gene cassettes and target-site mutations in gyrA and parC. These results highlight the value of antimicrobial resistance surveillance in pathogenic bacteria isolated from food-producing animals. Besides, calves frequently shed potential SEPEC in their feces as commensals ("Trojan horse"). Thus, these bacteria may be disseminated in the farm environment, causing septicemia and meningitis under predisposing factors.202234982979
272060.9832Phenotypic and genotypic characterization of antimicrobial resistance in Enterococcus spp. Isolated from the skin microbiota of channel catfish (Ictalurus punctatus) in Southeastern United States. BACKGROUND: Aquaculture systems may contribute to the emergence and persistence of antimicrobial-resistant (AMR) bacteria, posing risks to animal, environmental, and human health. This study characterized the phenotypic and genotypic antimicrobial resistance profiles of Enterococcus spp. isolated from the skin microbiota of 125 channel catfish (Ictalurus punctatus) harvested from two earthen ponds in Alabama, USA. METHODS: Skin swabs from the body of channel catfish were enriched in Enterococcosel broth and cultured on Enterococcosel agar at 28 °C for 24 h. Isolates were confirmed using Biolog Gen III and VITEK(®)2, and antimicrobial susceptibility was determined using the Kirby-Bauer disk diffusion method. Thirty-five randomly sampled isolates underwent whole-genome sequencing for genotypic characterization. RESULTS: 36% of isolates exhibited multidrug resistance (resistance to ≥ 3 antimicrobial classes), with the highest resistance rates observed for ampicillin (44.8%), rifampicin (42.4%), and tetracycline (38.4%). The most prevalent resistance genes were aac(6')-Iid (65.7%), aac(6')-Ii (22.9%), efmA, and msr(C) (20.0% each). Plasmid replicons rep1 and repUS15 frequently co-occurred with resistance genes. Biofilm-associated genes, including efaA, fsrA, fsrB, sprE, ebpABC, ace, and scm, were commonly detected. Multivariate analyses (PERMANOVA, PCA) revealed no significant species-level differences in resistance burden or biofilm gene carriage, indicating similar resistance and virulence gene carriage across species in this dataset. CONCLUSIONS: The skin microbiota of pond-raised catfish harbors antimicrobial-resistant Enterococcus spp. with mobile resistance elements and biofilm-associated virulence factors, suggesting a potential role in AMR persistence within aquaculture settings. These findings support the need for targeted AMR surveillance in fish-associated microbiota as part of integrated One Health strategies.202540760424
519370.9832Antibiotic resistance genes prediction via whole genome sequence analysis of Stenotrophomonas maltophilia. BACKGROUND: Stenotrophomonas maltophilia (S. maltophilia) is the first dominant ubiquitous bacterial species identified from the genus Stenotrophomonas in 1943 from a human source. S. maltophilia clinical strains are resistance to several therapies, this study is designed to investigate the whole genome sequence and antimicrobial resistance genes prediction in Stenotrophomonas maltophilia (S. maltophilia) SARC-5 and SARC-6 strains, isolated from the nasopharyngeal samples of an immunocompromised patient. METHODS: These bacterial strains were obtained from Pakistan Institute of Medical Sciences (PIMS) Hospital, Pakistan. The bacterial genome was sequenced using a whole-genome shotgun via a commercial service that used an NGS (Next Generation Sequencing) technology called as Illumina Hiseq 2000 system for genomic sequencing. Moreover, detailed in-silico analyses were done to predict the presence of antibiotic resistance genes in S. maltophilia. RESULTS: Results showed that S. maltophilia is a rare gram negative, rod-shaped, non sporulating bacteria. The genome assembly results in 24 contigs (>500 bp) having a size of 4668,850 bp with 65.8% GC contents. Phylogenetic analysis showed that SARC-5 and SARC-6 were closely related to S. maltophilia B111, S. maltophilia BAB-5317, S. maltophilia AHL, S. maltophilia BAB-5307, S. maltophilia RD-AZPVI_04, S. maltophilia JFZ2, S. maltophilia RD_MAAMIB_06 and lastly with S. maltophilia sp ROi7. Moreover, the whole genome sequence analysis of both SARC-5 and SARC-6 revealed the presence of four resistance genes adeF, qacG, adeF, and smeR. CONCLUSION: Our study confirmed that S. maltophilia SARC-5 and SARC-6 are one of the leading causes of nosocomial infection which carry multiple antibiotic resistance genes.202438128408
294180.9831Uncovering hidden threats: prevalence, antibiotic resistance and virulence gene profiles of Escherichia coli strains isolated from Testudines and their aquatic habitats. BACKGROUND: The gut microbiota of Testudines is fundamental to their digestion and overall health, yet remains a poorly investigated area in their biology, particularly in wild freshwater turtle (terrapins) and tortoise populations within South Africa. This study investigated the occurrence, diversity, virulence genes and antibiotic resistance of Escherichia coli isolated from Testudine gut microbiota and sediments at Timbavati Private Nature Reserve, South Africa. METHODS AND RESULTS: Cloacal swab samples were collected from 36 wild Testudines and 20 sediment samples from temporary and permanent water bodies. Presumed E. coli isolates were confirmed by polymerase chain reaction (PCR) targeting the β-D glucuronidase (uidA) gene and further validated through 16 S rRNA gene sequencing. Phenotypic antibiotic resistance was evaluated with the Kirby-Bauer method, whilst resistance and virulence genes were identified using PCR assays. E. coli was detected in 54 (62%) of 87 isolates (23 Testudines and 31 sediments), confirmed by uidA PCR assay. Detected virulence genes included eaeA (42%), virF (22%), stx1 (16%), and stx2 (3%), and isolates exhibited resistance to erythromycin (53%), cephalothin (48%), and spectinomycin (40%). Resistance genes such as mcr-4 (70%), bla(SHV) (46%), bla(TEM) (64%), mcr-1 (42%), qnrA (16%), mcr-2 (22%), qnrD (11%), and tetW (2%) were also detected. CONCLUSIONS: This study demonstrates that wild Testudines harbour E. coli in their gut and that it also occurs in their surrounding environment, with notable antibiotic resistance and virulence potential. The findings underscore the complexity of host-microbial interactions and the influence of environmental and host factors on microbial diversity, informing potential conservation and health management strategies for these reptilian species.202540751752
129590.9830Phenotypic and genotypic characterisation of antimicrobial resistance in faecal bacteria from 30 Giant pandas. To study the prevalence of antimicrobial resistance in faecal bacteria from Giant pandas in China, 59 isolates were recovered from faecal pats of 30 Giant pandas. Antimicrobial susceptibility testing of the isolates was performed by the standardised disk diffusion method (Kirby-Bauer). Of the 59 study isolates, 32.20% were resistant to at least one antimicrobial and 16.95% showed multidrug-resistant phenotypes. Thirteen drug resistance genes [aph(3')-IIa, aac(6')-Ib, ant(3'')-Ia, aac(3)-IIa, sul1, sul2, sul3, tetA, tetC, tetM, cat1, floR and cmlA] were analysed using four primer sets by multiplex polymerase chain reaction (PCR). The detection frequency of the aph(3')-IIa gene was the highest (10.17%), followed by cmlA (8.47%). The genes aac(6')-Ib, sul2 and tetA were not detected. PCR products were confirmed by DNA sequence analysis. The results revealed that multidrug resistance was widely present in bacteria isolated from Giant pandas.200919168331
1193100.9829The antibiotic resistome in Escherichia coli isolated from human, food, and animal sources. AIMS: The aim of this study was to analyze and compare the prevalence and distribution of resistance genes in Escherichia coli genomes isolated from human clinical samples and animal-based foods worldwide. METHODS AND RESULTS: We download from NCBI Pathogen Detection Database the corresponding metadata of the 7,123 E. coli genome to access the information about the antimicrobial resistance gene content. The geographic location and the source of isolation were also obtained and compiled with the antimicrobial resistance gene for statistical analysis, results and discussion. Our criteria considered four groups for analyzing the antimicrobial resistance gene distribution. The first group of genomes from invasive clinical human (ICH) samples from countries with Human Development Index (HDI) ≥ 0.850; the second group of ICH from countries with an HDI ≤ 0.849; the third group of animal-based foods (ABF) from countries with HDI ≥ 0.850 and the fourth group of ABFs from countries with HDI ≤ 0.849. The most prevalent genes in the first group were blaCTX-M-134 (96.53%) and blaCTX-M-27 (86.35%). In the second group, ere(A) (95.96%), soxS (94.49%), qepA8 (90.81%), blaCTX-M-15 (85.66%), and fosA3 (80.88%). In the third group, the most frequently detected were aadA12 (98.5%), ant(3") (89.92%), and blaCARB-2 (87.2%). In the fourth group, aadA12 and aac(3)-IV were identified in 100% of the analyzed genomes. CONCLUSIONS: It was clear that the use of aminoglycosides in animal production is increasing the selective pressure on micro-organisms in both groups of countries since genes linked to aminoglycoside resistance are related to E. coli from ABF samples. The genomic profile of E. coli from HDI ≥ 0.850 countries indicates a selective pressure aimed at cephalosporins given the high prevalence in both sources.202336626786
6080110.9829Metagenomic Insights into the Taxonomic and Functional Features of Traditional Fermented Milk Products from Russia. Fermented milk products (FMPs) contain probiotics that are live bacteria considered to be beneficial to human health due to the production of various bioactive molecules. In this study, nine artisanal FMPs (kefir, ayran, khurunga, shubat, two cottage cheeses, bryndza, khuruud and suluguni-like cheese) from different regions of Russia were characterized using metagenomics. A metagenomic sequencing of ayran, khurunga, shubat, khuruud and suluguni-like cheese was performed for the first time. The taxonomic profiling of metagenomic reads revealed that Lactococcus species, such as Lc. lactis and Lc. cremoris prevailed in khuruud, bryndza, one sample of cottage cheese and khurunga. The latter one together with suluguni-like cheese microbiome was dominated by bacteria, affiliated to Lactobacillus helveticus (32-35%). In addition, a high proportion of sequences belonging to the genera Lactobacillus, Lactococcus and Streptococcus but not classified at the species level were found in the suluguni-like cheese. Lactobacillus delbrueckii, as well as Streptococcus thermophilus constituted the majority in another cottage cheese, kefir and ayran metagenomes. The microbiome of shubat, produced from camel's milk, was significantly distinctive, and Lentilactobacillus kefiri, Lactobacillus kefiranofaciens and Bifidobacterium mongoliense represented the dominant components (42, 7.4 and 5.6%, respectively). In total, 78 metagenome-assembled genomes with a completeness ≥ 50.2% and a contamination ≤ 8.5% were recovered: 61 genomes were assigned to the Enterococcaceae, Lactobacillaceae and Streptococcaceae families (the Lactobacillales order within Firmicutes), 4 to Bifidobacteriaceae (the Actinobacteriota phylum) and 2 to Acetobacteraceae (the Proteobacteria phylum). A metagenomic analysis revealed numerous genes, from 161 to 1301 in different products, encoding glycoside hydrolases and glycosyltransferases predicted to participate in lactose, alpha-glucans and peptidoglycan hydrolysis as well as exopolysaccharides synthesis. A large number of secondary metabolite biosynthetic gene clusters, such as lanthipeptides, unclassified bacteriocins, nonribosomal peptides and polyketide synthases were also detected. Finally, the genes involved in the synthesis of bioactive compounds like β-lactones, terpenes and furans, nontypical for fermented milk products, were also found. The metagenomes of kefir, ayran and shubat was shown to contain either no or a very low count of antibiotic resistance genes. Altogether, our results show that traditional indigenous fermented products are a promising source of novel probiotic bacteria with beneficial properties for medical and food industries.202338276185
2484120.9828Multilocus sequence typing analysis and second-generation sequencing analysis of Salmonella Wandsworth. BACKGROUND: Salmonella Wandsworth is a rare serotype of Salmonella. This study analyzed the genotyping, genome structure, and molecular biological functions of Salmonella Wandsworth based on the results of multilocus sequence typing and next-generation sequencing genome assembly analysis. METHODS: Serological typing was performed using the slide-agglutination method. The micro broth dilution method was used to test antibiotic susceptibility. Multilocus sequence typing (MLST) was used to perform the homology analysis, while the second-generation sequencing genome analysis was used to analyze the whole genome of the bacteria. RESULTS: Salmonella Wandsworth is Group Q Salmonella. The MLST of this strain was ST1498. Salmonella Wandsworth was sensitive to antibiotics, such as ceftriaxone, imipenem, chloramphenicol, and colistin, but was resistant to ampicillin, cefalotin, gentamicin, and ciprofloxacin. The second-generation sequencing results showed that the genome sequence length of the bacteria was 5109457bp. Annotated COG library analysis generated 3,746 corresponding genes. After the comparison with the KEGG library, 1,340 genes, which participate in 19 types of metabolic pathways, were obtained. A total of 249 pathogenic factors and 2 disease islands were predicted. 2 CRISPR sites and 8 Cas sites were predicted. It can be seen from the evolutionary tree that Salmonella Wandsworth MLST1498 and Paratyphi B str.SPB7 are gathered together. We identified one resistance gene, namely, aac(6')-Iaa accounting for aminoglycoside resistance. CONCLUSION: Salmonella Wandsworth isolated in this study is Salmonella group Q. Consequently, it is necessary to strengthen the understanding of clinical infections of Salmonella Wandsworth and carry out continuous monitoring and research.202134245607
2490130.9828Relationship between drug resistance and the clustered, regularly interspaced, short, palindromic repeat-associated protein genes cas1 and cas2 in Shigella from giant panda dung. BACKGROUND: To detect drug resistance in Shigella obtained from the dung of the giant panda, explore the factors leading to drug resistance in Shigella, understand the characteristics of clustered, regularly interspaced, short, palindromic repeats (CRISPR), and assess the relationship between CRISPR and drug resistance. METHODS: We collected fresh feces from 27 healthy giant pandas in the Giant Panda Conservation base (Wolong, China). We identified the strains of Shigella in the samples by using nucleotide sequence analysis. Further, the Kirby-Bauer paper method was used to determine drug sensitivity of the Shigella strains. CRISPR-associated protein genes cas1 and cas2 in Shigella were detected by polymerase chain reaction (PCR), and the PCR products were sequenced and compared. RESULTS: We isolated and identified 17 strains of Shigella from 27 samples, including 14 strains of Shigella flexneri, 2 strains of Shigella sonnei, and 1 strain of Shigella dysenteriae. Further, drug resistance to cefazolin, imipenem, and amoxicillin-clavulanic acid was identified as a serious problem, as multidrug-resistant strains were detected. Further, cas1 and cas2 showed different degrees of point mutations. CONCLUSION: The CRISPR system widely exists in Shigella and shares homology with that in Escherichia coli. The cas1 and cas 2 mutations contribute to the different levels of resistance. Point mutations at sites 3176455, 3176590, and 3176465 in cas1 (a); sites 3176989, 3176992, and 3176995 in cas1 (b); sites 3176156 and 3176236 in cas2 may affect the resistance of bacteria, cause emergence of multidrug resistance, and increase the types of drug resistance.201728207509
3068140.9827Metagenomic profiling of pigeon faecal microbiota: insights into microbial diversity, pathogens, and antimicrobial resistance genes. Rock pigeon (Columba livia) droppings harbour diverse microorganisms, including potential pathogens. This study utilised shotgun metagenomic sequencing to analyse pigeon faecal microbiota and identify potential pathogens. Fresh faecal samples (273) were collected within Universiti Tunku Abdul Rahman Kampar campus, Malaysia. Total genome and viral genomes were extracted and sequenced using the Illumina NovaSeq 6000 platform. Taxonomic assignment, antimicrobial resistance (AMR) gene detection, and viral genome assembly were conducted using the CZ ID platform. The microbial diversity was predominated by bacteria, followed by eukaryotic viruses and fungi, with no archaea were detected. Pseudomonadota (84.44%) and Bacillota (15.26%) were the predominant bacterial phyla, with Pseudomonadota being 5.5 times more abundant, indicating potential enteric-like issues within the pigeon flocks. Approximately 5.11% of the bacterial community (comprising 38 species), was identified as potential pathogens, could primarily cause human enteric and respiratory infections. Nineteen AMR genes were detected, primarily associated with pathogenic Shigella, Salmonella, and Klebsiella. The presence of AMR genes and possible co-circulation among pathogenic bacteria impose the risk of emergence of multidrug-resistant bacteria. Nine avian virus species were detected. The predominant DNA virus, pigeon circovirus (73.23%) could cause immunosuppression, predisposing pigeons to secondary infections by E. coli, K. pneumoniae, and rotaviruses. The predominant RNA virus, rotaviruses (80.43%) could cause enteric diseases in both humans and birds. The fungal community comprised Kazachstania (94.11%) and Trichosporon (3.56%), with K. bovina and T. asahii identified as human pathogens. This study highlights the compelling need for effective pigeon control in dining areas, ventilation systems, and healthcare facilities.202540833454
1331150.9826Serotypes, antibiotic resistance, and virulence genes of Salmonella in children with diarrhea. BACKGROUND: Salmonella is an important foodborne pathogen that causes acute diarrhea in humans worldwide. This study analyzed the relationships of serotypes and antibiotic resistance with virulence genes of Salmonella isolated from children with salmonellosis. METHODS: Serological typing was performed using the slide-agglutination method. The Kirby-Bauer disk diffusion method was used to test antibiotic susceptibility. Twenty virulence genes were detected by PCR. RESULTS: Salmonella Typhimurium (21 isolates, 34.43%) and S Enteritidis (12 isolates, 19.67%) were the predominant species among the 61 isolates. Ampicillin resistance was most common (63.93%), and among the cephalosporins, resistance was most often found to cefotaxime, a third-generation cephalosporin (19.67%). Among the 20 virulence genes, prgH, ssrB, and pagC were detected in all Salmonella isolates. In S Typhimurium, the detection rates of hilA, sipB, marT, mgtC, sopB, pagN, nlpI, bapA, oafA, and tolC were high. In S Enteritidis, the detection rates of icmF, spvB, spvR, and pefA were high. Nitrofurantoin resistance was negatively correlated with the virulence gene bapA (P = .005) and was positively correlated with icmF, spvB, spvR, and pefA (P = .012, .008, .002, and .005, respectively), The P values between all other virulence genes and antibiotic resistance were >.05. CONCLUSION: Salmonella Typhimurium and S Enteritidis were the main serotypes in children with diarrhea in Hangzhou, China. Salmonella exhibited a high level of resistance to common antibiotics, and a high rate of bacteria carrying virulence genes was observed. However, no significant correlation was found between virulence genes and resistance to common antibiotics.202032797660
7733160.9826A glance at the gut microbiota and the functional roles of the microbes based on marmot fecal samples. Research on the gut microbiota, which involves a large and complex microbial community, is an important part of infectious disease control. In China, few studies have been reported on the diversity of the gut microbiota of wild marmots. To obtain full details of the gut microbiota, including bacteria, fungi, viruses and archaea, in wild marmots, we have sequenced metagenomes from five sample-sites feces on the Hulun Buir Grassland in Inner Mongolia, China. We have created a comprehensive database of bacterial, fungal, viral, and archaeal genomes and aligned metagenomic sequences (determined based on marmot fecal samples) against the database. We delineated the detailed and distinct gut microbiota structures of marmots. A total of 5,891 bacteria, 233 viruses, 236 fungi, and 217 archaea were found. The dominant bacterial phyla were Firmicutes, Proteobacteria, Bacteroidetes, and Actinomycetes. The viral families were Myoviridae, Siphoviridae, Phycodnaviridae, Herpesviridae and Podoviridae. The dominant fungi phyla were Ascomycota, Basidiomycota, and Blastocladiomycota. The dominant archaea were Biobacteria, Omoarchaea, Nanoarchaea, and Microbacteria. Furthermore, the gut microbiota was affected by host species and environment, and environment was the most important factor. There were 36,989 glycoside hydrolase genes in the microbiota, with 365 genes homologous to genes encoding β-glucosidase, cellulase, and cellulose β-1,4-cellobiosidase. Additionally, antibiotic resistance genes such as macB, bcrA, and msbA were abundant. To sum up, the gut microbiota of marmot had population diversity and functional diversity, which provides a basis for further research on the regulatory effects of the gut microbiota on the host. In addition, metagenomics revealed that the gut microbiota of marmots can degrade cellulose and hemicellulose.202337125200
1225170.9826Escherichia coli serogroups in slaughterhouses: Antibiotic susceptibility and molecular typing of isolates. This study aimed to investigate the contamination of carcasses and slaughterhouse environment with Escherichia coli O157:H7 and non-O157 serogroups (O45:H2, O103:H2, O121:H19, O145:H28, O26:H11, O111:H8). For this purpose, a total of 150 samples (30 carcasses, 30 shredding units, 30 knives, 30 slaughterhouse waste water and 30 wall surfaces) were collected from 5 different slaughterhouses in Kayseri, Turkey. The conventional and molecular methods were performed in order to detect Escherichia coli and its serogroups. Of the 150 samples, 55 (36%) were found to be contaminated with E. coli. Among isolates, E. coli serogroup (O157:H7) were detected in 2 (11%) carcass and 2 (11%) wastewater samples. None of the E. coli isolates harbored tested genes (stx1, stx2, eaeA, and hylA). Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of multidrug-resistant bacteria. It was also deduced that these isolates resistance to different antibiotics could be hazardous for public health.202235427957
1332180.9826First study on capsular serotypes and virulence factors of Pasteurella multocida isolates from Phan Rang sheep in Vietnam. BACKGROUND AND AIM: Pasteurella multocida is considered as a main factor mediating pneumonic pasteurellosis in ruminants, including sheep. It is also a current threat to Phan Rang sheep in Vietnam. This study aimed to characterize P. multocida isolated from Phan Rang sheep, their antibiotic resistance profile, and the prevalence of some virulence-associated genes of these strains. MATERIALS AND METHODS: Bacteria were isolated on brain heart infusion, 10% sheep blood agar plates, and screened by biochemical tests. The polymerase chain reaction technique was used with specific primers to identify P. multocida, the presence of virulence-associated genes, and serotypes of isolates. Antimicrobial susceptibility and biofilm formation of isolates were examined using the disk diffusion method and crystal violet-based method, respectively. RESULTS: A total of 41 P. multocida strains were isolated from 485 samples from clinically sick and healthy sheep. Of the isolates, 58.53% were serotype A, 9.75% were serotype B, and 31.71% were serotype D. Healthy animals were infected with serotype D only. All 15 virulence genes were identified in all strains isolated from clinically sick sheep, while strains isolated from healthy sheep carried 11/15 virulence genes tested. Among virulence-associated genes exbB, exbD, tonB, ompA, oma87, fimA, hgbA, and nanB were detected in over 90% of isolates, whereas hgbB, nanH, tbpA and pfhA were less frequent. Interestingly, pmHAS and tadD were highly prevalent in capsular type A strains, whereas the toxA gene was detected in capsular type D strains only. All of the isolated strains were fully susceptible to enrofloxacin, ciprofloxacin, neomycin, and ofloxacin. About 92.68% were susceptible to chloramphenicol and 90.24% to amikacin, but there was high resistance to erythromycin, tetracycline, and amoxicillin. Our results reveal that 53.65% of 41 isolates could produce biofilm, whereas 46.34% could not. CONCLUSION: Pasteurella multocida from Phan Rang sheep possess many virulence genes and resistance to several common antibiotics such as erythromycin, tetracycline, and amoxicillin. The results are an important warning regarding antibiotic resistance of P. multocida.202337042011
6026190.9826Probiotic Characteristics and Whole Genome Analysis of Lactiplantibacillus plantarum PM8 from Giant Panda (Ailuropoda melanoleuca) Milk. Milk is a rich source of probiotics, particularly lactic acid bacteria (LAB), which have been shown to promote gut health, support the immune system, enhance digestion, and prevent pathogen colonization. This study aimed to isolate and identify LAB strains from giant panda (Ailuropoda melanoleuca) milk, evaluate their probiotic properties, and analyze the genomic characteristics of a promising strain. Thirteen LAB strains were isolated from 12 samples of giant panda milk. Among all LAB strains, Lactiplantibacillus plantarum PM8 (PM8) demonstrated probiotic properties and safety features. It exhibited strong growth performance, high antipathogenic activity against four pathogens, and strong survival rates under simulated gastrointestinal conditions. PM8 also showed excellent adhesion capabilities to Caco-2 cells. Additionally, safety assessment revealed no hemolysin production and minimal antibiotic resistance, making it a promising candidate for probiotic applications. The genome of PM8 consists of 3,227,035 bp with a GC content of 44.60% and contains 3171 coding sequences, including 113 carbohydrate-active enzyme genes and genes related to exopolysaccharides synthesis, vitamin B biosynthesis, adhesion, antioxidant activity, and bile salt hydrolysis. Notably, it contains genes involved in nonribosomally synthesized secondary metabolite and bacteriocin production. The genomic safety analysis confirmed that PM8 lacks the capacity to transmit bacterial antimicrobial resistance and is non-pathogenic to both humans and animals. These findings suggest that PM8 holds considerable potential for enhancing gut health and supporting the development of safe probiotic products.202539900880