# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4446 | 0 | 0.9019 | Gut Microbiome of an 11th Century A.D. Pre-Columbian Andean Mummy. The process of natural mummification is a rare and unique process from which little is known about the resulting microbial community structure. In the present study, we characterized the microbiome of paleofeces, and ascending, transverse and descending colon of an 11th century A.D. pre-Columbian Andean mummy by 16S rRNA gene high-throughput sequencing and metagenomics. Firmicutes were the most abundant bacterial group, with Clostridium spp. comprising up to 96.2% of the mummified gut, while Turicibacter spp. represented 89.2% of the bacteria identified in the paleofeces. Microbiome profile of the paleofeces was unique when compared to previously characterized coprolites that did not undergo natural mummification. We identified DNA sequences homologous to Clostridium botulinum, Trypanosoma cruzi and human papillomaviruses (HPVs). Unexpectedly, putative antibiotic-resistance genes including beta-lactamases, penicillin-binding proteins, resistance to fosfomycin, chloramphenicol, aminoglycosides, macrolides, sulfa, quinolones, tetracycline and vancomycin, and multi-drug transporters, were also identified. The presence of putative antibiotic-resistance genes suggests that resistance may not necessarily be associated with a selective pressure of antibiotics or contact with European cultures. Identification of pathogens and antibiotic-resistance genes in ancient human specimens will aid in the understanding of the evolution of pathogens as a way to treat and prevent diseases caused by bacteria, microbial eukaryotes and viruses. | 2015 | 26422376 |
| 8639 | 1 | 0.8905 | Toad's survivability and soil microbiome alterations impacted via individual abundance. Artificial breeding is a valid strategy for the reverse of current extinction tendency in wild population of amphibian like toads. Considering public health, an alternative to antibiotics is demanded for ameliorating survival of toads during the culture period. Relying on the cognition of probiotics or antagonistic bacteria, the present work investigated viability and soil microorganism variations induced by distribution characteristic on toads using high-throughput sequencing technology. Comparison and analysis of soil metagenome from clustered and depopulated groups distinguished by toad behavior showed differences of bacterial community composition (e.g., Proteobacteria bacterium TMED72 and Nannocystis exedens) and antibiotic resistance genes involving antibiotic efflux and inactivation (e.g., mdtB and acrF). There were 18 and 10 distribution-typical genes independently enriched in Proteobacteria bacterium TMED72 and bacterium TMED88 of clustered group and Nannocystis exedens of depopulated group. In Nannocystis exedens, one of the distribution-typical genes was annotated as 6-phosphogluconate dehydrogenase acting role on bacterial growth restriction. It implied that, compared with the group emerging rare traces, the reduction of soil bacteria which possess genes retarding bacterial growth putatively impairs competitiveness to pathogenic bacteria and results in poor survivability of toads under clustering behavior. With the co-occurrence of virulence genes, more evidences are needed on the antagonistic bacteria Nannocystis exedens as antibiotic substitute. | 2025 | 40478395 |
| 5188 | 2 | 0.8882 | Zoonotic bacterial and parasitic intestinal pathogens in foxes, raccoons and other predators from eastern Germany. In this study, we investigated faecal specimens from legally hunted and road-killed red foxes, raccoons, raccoon dogs, badgers and martens in Germany for parasites and selected zoonotic bacteria. We found that Baylisascaris procyonis, a zoonotic parasite of raccoons, had spread to northeastern Germany, an area previously presumed to be free of this parasite. We detected various pathogenic bacterial species from the genera Listeria, Clostridium (including baratii), Yersinia and Salmonella, which were analysed using whole-genome sequencing. One isolate of Yersinia enterocolitica contained a virulence plasmid. The Salmonella Cholerasuis isolate encoded an aminoglycoside resistance gene and a parC point mutation, conferring resistance to ciprofloxacin. We also found tetracycline resistance genes in Paeniclostridium sordellii and Clostridium baratii. Phylogenetic analyses revealed that the isolates were polyclonal, indicating the absence of specific wildlife-adapted clones. Predators, which scavenge from various sources including human settlements, acquire and spread zoonotic pathogens. Therefore, their role should not be overlooked in the One Health context. | 2024 | 38747071 |
| 4445 | 3 | 0.8879 | Genomic Analysis and Resistance Mechanisms in Shigella flexneri 2a Strain 301. Shigella flexneri is one of the most prominent pathogenic bacteria in developing countries. In the battle against shigellosis and other bacterial diseases, antibiotic resistance has become an increasing global public health threat. Although the serious phenomenon of multidrug resistance (MDR) has been identified as one of the top three burdens on human health, resistance mechanisms are still poorly understood at the molecular level. In this study, we analyzed genomic data and the evolution of resistance in Shigella flexneri under sequential selection stress from three separate antibiotics: ciprofloxacin (CIP), ceftriaxone (CRO), and tetracycline. Through whole-genome sequencing, 82 chromosomal antibiotic resistance genes were identified. Re-sequencing of the evolved populations identified single nucleotide polymorphisms (SNPs) that contributed to MDR and SNPs that were specific to a single drug. A total of 40 SNPs in 8 genes and 3 intergenic regions, including mutations in metG (L582R) and 1538924, 1538924, and 1538924, appeared under each antibiotic. Several nonsynonymous mutations in gyrB (S464Y), ydgA (E378A), rob (R156H), and narX (K75E) were observed under selective pressure from CIP or CRO. Based on a bioinformatic analysis and previous reports, we discuss the contribution of these mutated genes to resistance. Therefore, more circumspect selection and use of antimicrobial drugs for treating shigellosis is necessary. | 2018 | 28853989 |
| 5233 | 4 | 0.8879 | Antibiotic resistance pattern of the allochthonous bacteria isolated from commercially available spices. Spices are often used in dried form, sometimes with significant microbial contamination including pathogenic and food spoilage bacteria. The antibiotic resistance represents an additional risk for food industry, and it is worthy of special attention as spices are important food additives. During our work, we examined the microbiological quality of 50 different spices with cultivation methods on diverse selective media. The identification of the most representative bacteria was carried out using 16S rDNA gene sequence analysis. Antibiotic resistance profiling of twelve identified Bacillus species (B. subtilis subsp. stercoris BCFK, B. licheniformis BCLS, B. siamensis SZBC, B. zhangzhouensis BCTA, B. altitudinis SALKÖ, B. velezensis CVBC, B. cereus SALÖB isolate, B. tequilensis KOPS, B. filamentosus BMBC, B. subtilis subsp. subtilis PRBC2, B. safensis BMPS, and B. mojavensis BCFK2 isolate) was performed using the standard disk-diffusion method against 32 antibiotics. The study showed that the majority resistance was obtained against penicillin G (100%), oxacillin (91.67%), amoxyclav (91.67%), rifampicin (75%), and azithromycin (75%). Our findings suggest that spices harbor multidrug-resistant bacteria. | 2021 | 34401102 |
| 5216 | 5 | 0.8870 | Unraveling the draft genome and phylogenomic analysis of a multidrug-resistant Planococcus sp. NCCP-2050(T): a promising novel bacteria from Pakistan. Planococcus is a genus of Gram-positive bacteria known for potential industrial and agricultural applications. Here, we report the first draft genome sequence and phylogenomic analysis of a CRISPR-carrying, multidrug-resistant, novel candidate Planococcus sp. NCCP-2050(T) isolated from agricultural soil in Pakistan. The strain NCCP-2050(T) exhibited significant resistance to various classes of antibiotics, including fluoroquinolones (i.e., ciprofloxacin, levofloxacin, ofloxacin, moxifloxacin, and bacitracin), cephalosporins (cefotaxime, ceftazidime, cefoperazone), rifamycins (rifampicin), macrolides (erythromycin), and glycopeptides (vancomycin). Planococcus sp. NCCP-2050(T) consists of genome size of 3,463,905 bp, comprised of 3639 annotated genes, including 82 carbohydrate-active enzyme genes and 39 secondary metabolite genes. The genome also contained 80 antibiotic resistance, 162 virulence, and 305 pathogen-host interaction genes along with two CRISPR arrays. Based on phylogenomic analysis, digital DNA-DNA hybridization, and average nucleotide identity values (i.e., 35.4 and 88.5%, respectively) it was suggested that strain NCCP-2050(T) might represent a potential new species within the genus Planococcus. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-023-03748-z. | 2023 | 37663752 |
| 3031 | 6 | 0.8865 | Novel Mobilizable Genomic Island GEI-D18A Mediates Conjugational Transfer of Antibiotic Resistance Genes in the Multidrug-Resistant Strain Rheinheimera sp. D18. Aquatic environments act as reservoirs of antimicrobial-resistant bacteria and antimicrobial resistance (AMR) genes, and the dissemination of antibiotic resistance from these environments is of increasing concern. In this study, a multidrug-resistant bacterial strain, identified as Rheinheimera sp. D18, was isolated from the sea water of an industrial maricultural system in the Yellow Sea, China. Whole-genome sequencing of D18 revealed the presence of a novel 25.8 kb antibiotic resistance island, designated GEI-D18A, which carries several antibiotic resistance genes (ARGs), including aadA1, aacA3, tetR, tet(B), catA, dfrA37, and three sul1 genes. Besides, integrase, transposase, resolvase, and recombinase encoding genes were also identified in GEI-D18A. The transferability of GEI-D18A was confirmed by mating experiments between Rheinheimera sp. D18 and Escherichia coli 25DN, and efflux pump inhibitor assays also suggested that tet(B) in GEI-D18A was responsible for tetracycline resistance in both D18 and the transconjugant. This study represents the first characterization of a mobilizable antibiotic resistance island in a species of Rheinheimera and provides evidence that Rheinheimera spp. could be important reservoirs and vehicles for ARGs in the Yellow Sea area. | 2020 | 32318052 |
| 5384 | 7 | 0.8863 | Characterization of drug resistance and virulotypes of Salmonella strains isolated from food and humans. The virulence of bacteria can be evaluated through both phenotypic and molecular assays. We applied these techniques to 114 strains of Salmonella enterica subsp. enterica collected from July 2010 to June 2012. Salmonella strains were of human origin (71/114) or isolated from food (43/114). The strain set included only the three predominant Salmonella serovars isolated in Italy from humans (S. Enteritidis, S. Typhimurium, S. 4,[5],12:i:-). These strains were screened via polymerase chain reaction for 12 virulence factors (gipA, gtgB, sopE, sspH1, sspH2, sodC1, gtgE, spvC, pefA, mig5, rck, srgA), while antimicrobial sensitivity was evaluated through the Kirby-Bauer assay. Fifty-nine different virulence profiles were highlighted; the genes showing the highest homology were those related to the presence of prophages (gipA, gtgB, sopE, sspH1, sspH2, sodC1, gtgE), while the genes related to the presence of plasmids were less frequently detected (spvC, pefA, mig5, rck, srgA). The Salmonella serovars Typhimurium and 4,[5],12:i:- were closely related in terms of both virulotyping and antibiotic resistance. S. Enteritidis showed higher antibiotic sensitivity and a higher prevalence of genes related to plasmids. | 2013 | 24102078 |
| 6183 | 8 | 0.8862 | Characterization of putative multidrug resistance transporters of the major facilitator-superfamily expressed in Salmonella Typhi. Multidrug resistance mediated by efflux pumps is a well-known phenomenon in infectious bacteria. Although much work has been carried out to characterize multidrug efflux pumps in Gram-negative and Gram-positive bacteria, such information is still lacking for many deadly pathogens. The aim of this study was to gain insight into the substrate specificity of previously uncharacterized transporters of Salmonella Typhi to identify their role in the development of multidrug resistance. S. Typhi genes encoding putative members of the major facilitator superfamily were cloned and expressed in the drug-hypersensitive Escherichia coli strain KAM42, and tested for transport of 25 antibacterial compounds, including representative antibiotics of various classes, antiseptics, dyes and detergents. Of the 15 tested putative transporters, STY0901, STY2458 and STY4874 exhibited a drug-resistance phenotype. Among these, STY4874 conferred resistance to at least ten of the tested antimicrobials: ciprofloxacin, norfloxacin, levofloxacin, kanamycin, streptomycin, gentamycin, nalidixic acid, chloramphenicol, ethidium bromide, and acriflavine, including fluoroquinolone antibiotics, which were drugs of choice to treat S. Typhi infections. Cell-based functional studies using ethidium bromide and acriflavine showed that STY4874 functions as a H(+)-dependent exporter. These results suggest that STY4874 may be an important drug target, which can now be tested by studying the susceptibility of a STY4874-deficient S. Typhi strain to antimicrobials. | 2015 | 25724589 |
| 5440 | 9 | 0.8862 | Molecular structure and evolution of the conjugative multiresistance plasmid pRE25 of Enterococcus faecalis isolated from a raw-fermented sausage. Plasmid pRE25 from Enterococcus faecalis transfers resistances against kanamycin, neomycin, streptomycin, clindamycin, lincomycin, azithromycin, clarithromycin, erythromycin, roxithromycin, tylosin, chloramphenicol, and nourseothricin sulfate by conjugation in vitro to E. faecalis JH2-2, Lactococcus lactis Bu2, and Listeria innocua L19. Its nucleotide sequence of 50237 base pairs represents the largest, fully sequenced conjugative multiresistance plasmid of enterococci (Plasmid 46 (2001) 170). The gene for chloramphenicol resistance (cat) was identified as an acetyltransferase identical to the one of plasmid pIP501 of Streptococcus agalactiae. Erythromycin resistance is due to a 23S ribosomal RNA methyl transferase, again as found in pIP501 (ermB). The aminoglycoside resistance genes are packed in tandem as in transposon Tn5405 of Staphylococcus aureus: an aminoglycoside 6-adenyltransferase, a streptothricin acetyl transferase, and an aminoglycoside phosphotransferase.). Identical resistance genes are known from pathogens like Streptococcus pyogenes, S. agalactiae, S. aureus, Campylobacter coli, Clostridium perfringens, and Clostridium difficile. pRE25 is composed of a 30.5-kbp segment almost identical to pIP501. Of the 15 genes involved in conjugative transfer, 10 codes for putative transmembrane proteins (e.g. trsB, traC, trsF, trsJ, and trsL). The enterococcal part is joined into the pIP501 part by insertion elements IS1216V of E. faecium Tn1545 (three copies), and homologs of IS1062 (E. faecalis) and IS1485 (E. faecium). pRE25 demonstrates that enterococci from fermented food do participate in the molecular communication between Gram-positive and Gram-negative bacteria of the human and animal microflora. | 2003 | 14597005 |
| 5234 | 10 | 0.8861 | A Multidrug-Resistant Escherichia coli Caused the Death of the Chinese Soft-Shelled Turtle (Pelodiscus sinensis). The rapid increase in drug resistance in recent years has become a significant global public health concern. Escherichia coli are ubiquitous bacteria, widely distributed in various environments. This study isolated a bacterial strain (HD-593) from diseased Chinese soft-shelled turtles (Pelodiscus sinensis). The bacterium was identified based on morphology, biochemical tests, and 16S rRNA sequencing, confirming it as E. coli. Drug susceptibility tests revealed that the HD-593 strain was highly resistant to ceftriaxone, enrofloxacin, doxycycline, sulfadiazine, gentamicin, neomycin, florfenicol, carbenicillin, cefradine, erythromycin, penicillin, ampicillin, midecamycin, and streptomycin. Resistance gene analysis confirmed the presence of quinolone resistance genes (oqxA and oqxB), aminoglycoside resistance genes (aac(3)-II and aphA1), a β-lactam resistance gene (blaTEM), and an acylaminol resistance gene (floR) in HD-593. The median lethal dose (LD50) of HD-593 for P. sinensis was 6.53 × 10(5) CFU/g. Biochemical analysis of serum revealed that HD-593 infection caused a significant reduction in total protein, albumin, and globulin levels, while markedly increasing the levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. Histopathological analysis revealed severe intestinal damage characterized by villi detachment and muscle cell necrosis. Additionally, extensive splenocyte necrosis with nuclear marginalization, glomerular swelling, and pronounced hepatic steatosis accompanied by distended sinusoids were observed. This study identified a multidrug-resistant E. coli strain from deceased P. sinensis, suggesting that drug resistance genes may circulate in aquaculture ecosystems, posing potential risks to aquaculture. | 2025 | 40431566 |
| 5215 | 11 | 0.8860 | Draft genome sequence of Bacillus safensis 2T-2, isolated from drinking water. Bacillus safensis 2T-2 was isolated from potable water at a municipal water treatment facility in the North West province of South Africa, representing the first report of this species in treated drinking water systems. Whole genome sequencing revealed a 3.78 Mb genome with 41.3 % GC content and 4000 coding sequences distributed across 126 contigs. Genome analysis identified six antibiotic resistance genes, including vancomycin resistance genes (vanT, vanY), fosfomycin resistance (fosBx1), chloramphenicol resistance (cat86), and two disinfectant resistance genes (qacG, qacJ). Despite the presence of resistance genes, PathogenFinder analysis confirmed low pathogenic potential (0.168 probability). The strain demonstrated significant biosynthetic capabilities with 12 secondary metabolite gene clusters, including antimicrobial compound production (plantazolicin), biosurfactants (lichenysin), siderophores (bacillibactin, schizokinen), and the lipopeptide fengycin. Five bacteriocin gene clusters were identified, containing three core peptide genes (UviB, plantazolicin, pumilarin) with associated modification and transport genes. Phylogenetic analysis positioned strain 2T-2 closest to B. safensis F0-36b, confirming species identification. These findings highlight the dual nature of environmental bacteria in water systems, possessing both concerning antibiotic resistance traits and beneficial biotechnological potential, emphasizing the need for enhanced water treatment strategies while revealing opportunities for bioactive compound discovery. | 2025 | 40727027 |
| 6131 | 12 | 0.8854 | Draft Genome Sequence of Eggerthia catenaformis Strain MAR1 Isolated from Saliva of Healthy Humans. Here, we report the draft genome sequence of Eggerthia catenaformis MAR1 isolated during a screen for d-cycloserine-resistant bacteria from the saliva of healthy humans. Analysis of the genome reveals that the strain has the potential to be a human pathogen and carries genes related to virulence and antibiotic resistance. | 2017 | 28705984 |
| 5129 | 13 | 0.8852 | Complete genome sequences of Vibrio parahaemolyticus strains L2171 and L2181 associated with AHPND in Penaeus vannamei postlarvae by hybrid sequencing. Vibrio parahaemolyticus strains L2171 and L2181 were isolated from a Penaeus vannamei shrimp hatchery. Both strains carry the pVA plasmid harboring the PirAB genes encoding the binary PirAB toxins that cause the acute hepatopancreatic necrosis disease (AHPND) in cultured shrimp. The strains also harbor multidrug resistance (MDR) and a repertoire of virulence factor genes. Our goal was to determine their complete genome sequences and perform a comprehensive analysis of their genetic characteristics. Therefore, the genomes of two strains, which are highly virulent to shrimp were sequenced by Illumina and the PacBio platforms. These data contribute to a better understanding of V. parahaemolyticus and its role as a pathogen in commercially important species such as farmed shrimp, providing valuable insights for disease management in aquaculture. | 2025 | 40677256 |
| 5891 | 14 | 0.8852 | Culturable bacteria in adults of a Southeast Asian black fly, Simulium tani (Diptera:Simuliidae). Although the microbiome of blood-feeding insects serves an integral role in host physiology, both beneficial and pathogenic, little is known of the microbial community of black flies. An investigation, therefore, was undertaken to identify culturable bacteria from one of Malaysia's most common black flies, Simulium tani Takaoka and Davies, using 16S rDNA sequencing, and then evaluate the isolates for antibiotic resistance and virulence genes. A total of 20 isolates representing 11 bacterial species in four genera were found. Five isolates showed β-hemolysis on Columbia agar, and virulence genes were found in three of these isolates. Some degree of resistance to six of the 12 tested antibiotics was found among the isolates. The baseline data from this study suggest rich opportunities for comparative studies exploring the diversity and roles of the microbiome of S. tani and other Southeast Asian black flies. | 2021 | 33878305 |
| 1995 | 15 | 0.8852 | Genomic insights into Shigella species isolated from small ruminants and manure in the North West Province, South Africa. This study investigated Shigella species' antibiotic resistance patterns and genomic characteristics from small ruminants and manure collected in Potchefstroom, North West, South Africa. Whole genome sequencing was used to determine resistome profiles of Shigella flexneri isolates from small ruminants' manure and Shigella boydii from sheep faeces. Comparative genomics was employed on the South African 261 S. flexneri strains available from GenBank, including the sequenced strains in this study, by investigating the serovars, antibiotic resistance genes (ARGs), and plasmid replicon types. The S. flexneri strains could not be assigned to known sequence types, suggesting novel or uncharacterized lineages. S. boydii R7-1A was assigned to sequence type 202 (ST202). Serovar 2A was the most common among South African S. flexneri strains, found in 96% of the 250 compared human-derived isolates. The shared mdf(A) was the most prevalent gene, identified in 99% of 261 S. flexneri genomes, including plasmid replicon types ColRNAI_1 (99%) and IncFII_1 (98%). Both species share a core set of resistance determinants mainly involving β-lactams (ampC1, ampC, ampH), macrolides (mphB), polymyxins (eptA, pmrF), multidrug efflux pumps (AcrAB-TolC, Mdt, Emr, Kpn families), and regulatory systems (marA, hns, crp, baeRS, evgAS, cpxA, gadX). However, S. boydii possesses additional resistance genes conferring resistance to tetracyclines (tet(A)), phenicols (floR), sulphonamides (sul2), and aminoglycosides (APH(3'')-Ib, APH(6)-Id), along with the acrEF efflux pump components (acrE, acrF). In contrast, S. flexneri harboured unique genes linked to polymyxin resistance (ugd) and regulatory functions (sdiA, gadW) that were absent in S. boydii. These findings highlight Shigella strains' genomic diversity and antimicrobial resistance potential in livestock-associated environments. Moreover, S. boydii highlights the potential risk of multidrug-resistant bacteria in farming and environmental routes. KEY POINTS: • First whole genome study of Shigella from manure and small ruminants in South Africa. • Shigella boydii strain carried multiple resistance genes to β-lactams and tetracycline. • Multidrug efflux pump gene mdf(A) was detected in 99% of South African Shigella flexneri strains. | 2025 | 41148367 |
| 5883 | 16 | 0.8851 | Genome-wide analysis reveals the emergence of multidrug resistant Stenotrophomonas acidaminiphila strain SINDOREI isolated from a patient with sepsis. Stenotrophomonas acidaminiphila, the most recent reported species in genus Stenotrophomonas, is a relatively rare bacteria and is an aerobic, glucose non-fermentative, Gram-negative bacterium. However, little information of S. acidaminiphila is known to cause human infections. In this research, we firstly reported a multidrug-resistant strain S. acidaminiphila SINDOREI isolated from the blood of a patient with sepsis, who was dead of infection eventually. The whole genome of strain SINDOREI was sequenced, and genome comparisons were performed among six closely related S. acidaminiphila strains. The core genes (2,506 genes) and strain-specific genes were identified, respectively, to know about the strain-level diversity in six S. acidaminiphila stains. The presence of a unique gene (narG) and essential genes involved in biofilm formation in strain SINDOREI are important for the pathogenesis of infections. Strain SINDOREI was resistant to trimethoprim/sulfamethoxazole, ciprofloxacin, ofloxacin, cefepime, ceftazidime, and aztreonam. Several common and specific antibiotic resistance genes were identified in strain SINDOREI. The presence of two sul genes and exclusive determinants GES-1, aadA3, qacL, and cmlA5 is responsible for the resistance to multidrug. The virulence factors and resistance determinants can show the relationship between the phenotype and genotype and afford potential therapeutic strategies for infections. | 2022 | 36212813 |
| 5142 | 17 | 0.8850 | Comparative genomics of Clostridium bolteae and Clostridium clostridioforme reveals species-specific genomic properties and numerous putative antibiotic resistance determinants. BACKGROUND: Clostridium bolteae and Clostridium clostridioforme, previously included in the complex C. clostridioforme in the group Clostridium XIVa, remain difficult to distinguish by phenotypic methods. These bacteria, prevailing in the human intestinal microbiota, are opportunistic pathogens with various drug susceptibility patterns. In order to better characterize the two species and to obtain information on their antibiotic resistance genes, we analyzed the genomes of six strains of C. bolteae and six strains of C. clostridioforme, isolated from human infection. RESULTS: The genome length of C. bolteae varied from 6159 to 6398 kb, and 5719 to 6059 CDSs were detected. The genomes of C. clostridioforme were smaller, between 5467 and 5927 kb, and contained 5231 to 5916 CDSs. The two species display different metabolic pathways. The genomes of C. bolteae contained lactose operons involving PTS system and complex regulation, which contribute to phenotypic differentiation from C. clostridioforme. The Acetyl-CoA pathway, similar to that of Faecalibacterium prausnitzii, a major butyrate producer in the human gut, was only found in C. clostridioforme. The two species have also developed diverse flagella mobility systems contributing to gut colonization. Their genomes harboured many CDSs involved in resistance to beta-lactams, glycopeptides, macrolides, chloramphenicol, lincosamides, rifampin, linezolid, bacitracin, aminoglycosides and tetracyclines. Overall antimicrobial resistance genes were similar within a species, but strain-specific resistance genes were found. We discovered a new group of genes coding for rifampin resistance in C. bolteae. C. bolteae 90B3 was resistant to phenicols and linezolide in producing a 23S rRNA methyltransferase. C. clostridioforme 90A8 contained the VanB-type Tn1549 operon conferring vancomycin resistance. We also detected numerous genes encoding proteins related to efflux pump systems. CONCLUSION: Genomic comparison of C. bolteae and C. clostridiofrome revealed functional differences in butyrate pathways and in flagellar systems, which play a critical role within human microbiota. Most of the resistance genes detected in both species were previously characterized in other bacterial species. A few of them were related to antibiotics inactive against Clostridium spp. Some were part of mobile genetic elements suggesting that these commensals of the human microbiota act as reservoir of antimicrobial resistances. | 2016 | 27769168 |
| 5486 | 18 | 0.8849 | Genomic Landscape of Multidrug Resistance and Virulence in Enterococcus faecalis IRMC827A from a Long-Term Patient. We report on a highly virulent, multidrug-resistant strain of Enterococcus faecalis IRMC827A that was found colonizing a long-term male patient at a tertiary hospital in Khobar, Saudi Arabia. The E. faecalis IRMC827A strain carries several antimicrobial drug resistance genes and harbours mobile genetic elements such as Tn6009, which is an integrative conjugative element that can transfer resistance genes between bacteria and ISS1N via an insertion sequence. Whole-genome-sequencing-based antimicrobial susceptibility testing on strains from faecal samples revealed that the isolate E. faecalis IRMC827A is highly resistant to a variety of antibiotics, including tetracycline, doxycycline, minocycline, dalfopristin, virginiamycin, pristinamycin, chloramphenicol, streptomycin, clindamycin, lincomycin, trimethoprim, nalidixic acid and ciprofloxacin. The isolate IRMC827A carries several virulence factors that are significantly associated with adherence, biofilm formation, sortase-assembled pili, manganese uptake, antiphagocytosis, and spreading factor of multidrug resistance. The isolate also encompasses two mutations (G2576T and G2505A) in the 23S rRNA gene associated with linezolid resistance and three more mutations (gyrA p.S83Y, gyrA p.D759N and parC p.S80I) of the antimicrobial resistance phenotype. The findings through next-generation sequencing on the resistome, mobilome and virulome of the isolate in the study highlight the significance of monitoring multidrug-resistant E. faecalis colonization and infection in hospitalized patients. As multidrug-resistant E. faecalis is a serious pathogen, it is particularly difficult to treat and can cause fatal infections. It is important to have quick and accurate diagnostic tests for multidrug-resistant E. faecalis, to track the spread of multidrug-resistant E. faecalis in healthcare settings, and to improve targeted interventions to stop its spread. Further research is necessary to develop novel antibiotics and treatment strategies for multidrug-resistant E. faecalis infections. | 2023 | 37887006 |
| 812 | 19 | 0.8848 | Characterization of plQ5 plasmid originating fromKlebsiella pneumoniae. plQ5 plasmid consists of a group of genes specifying resistance to ampicillin, chloramphenicol, carbencillin, kanamycin and trimethoprim-sulphamethoxazole. It is isolated inKlebslella pneumoniae ZD532, is about 26.8 Kb and is freely transmissible to various bacterial species of Gram-negative bacteria. Physical characterization revealed that plQ5 plasmid has a single site forHindill,BamHI,EcoRI and two sites forBglII restriction enzyme. | 1990 | 24429982 |