# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 102 | 0 | 0.9110 | Paradoxical behaviour of pKM101; inhibition of uvr-independent crosslink repair in Escherichia coli by muc gene products. In strains of Escherichia coli deficient in excision repair (uvrA or uvrB), plasmid pKM101 muc+ but not pGW219 mucB::Tn5 enhanced resistance to angelicin monoadducts but reduced resistance to 8-methoxy-psoralen interstrand DNA crosslinks. Thermally induced recA-441 (= tif-1) bacteria showed an additional resistance to crosslinks that was blocked by pKM101. Plasmid-borne muc+ genes also conferred some additional sensitivity to gamma-radiation and it is suggested that a repair step susceptible to inhibition by muc+ gene products and possibly involving double-strand breaks may be involved after both ionizing radiation damage and psoralen crosslinks. | 1985 | 3883148 |
| 1404 | 1 | 0.9076 | Evaluation of a DNA microarray for rapid detection of the most prevalent extended-spectrum β-lactamases, plasmid-mediated cephalosporinases and carbapenemases in Enterobacteriaceae, Pseudomonas and Acinetobacter. The dissemination of Gram-negative bacteria (GNB) producing extended-spectrum β-lactamases (ESBLs), plasmid-encoded cephalosporinases (pAmpCs) and carbapenemases is a matter of great clinical concern. In this study, we evaluated a new low-density DNA array 'Check-MDR CT103 XL' (Check-Points, Wageningen, The Netherlands) that identifies the most clinically relevant β-lactamase genes of ESBLs (blaTEM, blaSHV, blaCTX-M, blaBEL, blaPER, blaGES and blaVEB), pAmpCs (blaCMY-2-like, blaDHA, blaFOX, blaACC-1, blaACT/MIR and blaCMY-1-like/MOX) and carbapenemases (blaKPC, blaOXA-48, blaVIM, blaIMP, blaNDM, blaGIM, blaSPM and blaOXA-23, -24 and -58) in cultured bacteria. In total, 223 GNB isolates with well-characterised resistance mechanisms to β-lactams were analysed. A specificity and sensitivity of 100% were recorded for most bla genes, with a slightly lower signal observed for blaIMP. The Check-MDR CT103 XL array proved highly accurate for the identification of epidemiologically relevant ESBL, pAmpC and carbapenemase genes harboured in Enterobacteriaceae, Pseudomonas and Acinetobacter spp. The Check-MDR CT103 XL assay is a significant improvement compared with Check-MDR CT103 and it highlights the ability of this array to evolve rapidly to adjust to the current needs for the detection of resistance mechanisms to β-lactam agents. | 2016 | 27374747 |
| 1391 | 2 | 0.9069 | Faecal carriage of extended-spectrum β-lactamase-producing and AmpC β-lactamase-producing bacteria among Danish army recruits. During May and June 2008, 84 Danish army recruits were tested for faecal carriage of extended-spectrum β-lactamase (ESBL)-producing and AmpC β-lactamase-producing bacteria. Three ESBL-producing (CTX-M-14a) Escherichia coli isolates, two AmpC-producing (CMY-2) E. coli isolates and one AmpC-producing (CMY-34) Citrobacter freundii isolate were detected. Two of the CTX-M-14a E. coli isolates had similar pulsed-field gel electrophoresis and multilocus sequence typing profiles, indicating the same origin or transmission between the two army recruits. The bla(CTX-M-14a) genes were transferable to an E. coli recipient. These commensal bacteria therefore constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria in the intestine. | 2011 | 20718802 |
| 1542 | 3 | 0.9057 | Genetics of extended-spectrum beta-lactamases. Bacteria have adapted to the introduction of aztreonam, cefotaxime, ceftazidime, ceftriaxone and other oxyimino-beta-lactams by altering existing plasmid-mediated class A and class D beta-lactamases so as to expand their spectrum of activity. In the TEM and SHV families of extended-spectrum beta-lactamases, relative activity toward oxyimino-substrates increases with the number of amino acid substitutions but at the price of lowered intrinsic efficiency, so that compensatory up-promoter events are often associated with increased enzyme expression. Another new mechanism of resistance is the capture on plasmids of normally chromosomal genes from Enterobacter cloacae, Citrobacter freundii or Pseudomonas aeruginosa, which upon transfer can provide Klebsiella pneumoniae or Escherichia coli with resistance to alpha-methoxy-beta-lactams, such as cefoxitin or cefotetan, as well as to oxyimino-beta-lactams. | 1994 | 7821301 |
| 6006 | 4 | 0.9051 | Missense Mutations in the CrrB Protein Mediate Odilorhabdin Derivative Resistance in Klebsiella pneumoniae. NOSO-502 is a preclinical antibiotic candidate of the Odilorhabdin class. This compound exhibits activity against Enterobacteriaceae pathogens, including carbapenemase-producing bacteria and most of the Colistin (CST)-resistant strains. Among a collection of CST-resistant Klebsiella pneumoniae strains harboring mutations on genes pmrAB, mgrB, phoPQ, and crrB, only those bearing mutations in gene crrB were found to be resistant to NOSO-502.CrrB is a histidine kinase which acts with the response regulator CrrA to modulate the PmrAB system, which finally induces the restructuring of the lipopolysaccharide present on the outer membrane and thus leading to CST resistance. Moreover, crrB mutations also enhance the transcription of neighboring genes such as H239_3063, an ABC transporter transmembrane region; H239_3064, a putative efflux pump also known as KexD; and H239_3065, a N-acetyltransferase.To elucidate the mechanism of resistance to NOSO-502 induced by CrrB missense mutations in K. pneumoniae, mutants of NCTC 13442 and ATCC BAA-2146 strains resistant to NOSO-502 and CST with single amino acid substitutions in CrrB (S8N, F33Y, Y34N, W140R, N141I, P151A, P151L, P151S, P151T, F303Y) were selected. Full susceptibility to NOSO-502 was restored in crrA or crrB deleted K. pneumoniae NCTC 13442 CrrB(P151L) mutants, confirming the role of CrrAB in controlling this resistance pathway. Deletion of kexD (but no other neighboring genes) in the same mutant also restored NOSO-502-susceptibility. Upregulation of the kexD gene expression was observed for all CrrB mutants. Finally, plasmid expression of kexD in a K. pneumoniae strain missing the locus crrABC and kexD significantly increased resistance to NOSO-502. | 2023 | 33685902 |
| 2496 | 5 | 0.9046 | Treatment of Bloodstream Infections Due to Gram-Negative Bacteria with Difficult-to-Treat Resistance. The rising incidence of bloodstream infections (BSI) due to Gram-negative bacteria (GNB) with difficult-to-treat resistance (DTR) has been recognized as a global emergency. The aim of this review is to provide a comprehensive assessment of the mechanisms of antibiotic resistance, epidemiology and treatment options for BSI caused by GNB with DTR, namely extended-spectrum Beta-lactamase-producing Enterobacteriales; carbapenem-resistant Enterobacteriales; DTR Pseudomonas aeruginosa; and DTR Acinetobacter baumannii. | 2020 | 32971809 |
| 1405 | 6 | 0.9039 | The threat of carbapenem resistance in Eastern Europe in patients with decompensated cirrhosis admitted to intensive care unit. BACKGROUND: Multidrug-resistant organisms are an increasing concern in patients with decompensated cirrhosis. AIM: We aimed to evaluate the prevalence of infections with carbapenem-resistant Enterobacteriaceae in patients with decompensated cirrhosis. METHODS: Patients with decompensated cirrhosis admitted to ICU were included. The isolated Enterobacteriaceae strains were tested for carbapenemase-producing genes using the Roche LightMix® Modular VIM/IMP/NDM/GES/KPC/OXA48-carbapenemase detection kit. RESULTS: 48 culture-positive infections were registered in 75 patients with acutely decompensated cirrhosis. Thirty patients contracted a second infection. 46% of bacteria isolated at admission and 60% of bacteria responsible for infections identified during ICU-stay were multiresistant. ESBL+ Enterobacteriaceae were predominant at admission, while carbapenem-resistance was dominant in both Enterobacteriaceae and Non-Fermenting-Gram-Negative Bacteria responsible for infections diagnosed during hospitalisation. OXA 48 or KPC type carbapenemases were present in 30% of the analyzed Enterobacteriaceae and in 40% of the phenotypically carbapenem-resistant Klebsiella pneumoniae strains. The length of ICU stay was a risk-factor for a second infection (p=0.04). Previous carbapenem usage was associated with occurence of infections with carbapenem-resistant Gram-negative bacteria during hospitalization (p=0.03). CONCLUSION: The prevalence of infections with carbapenem-resistant Enterobacteriaceae is high in patients with decompensated cirrhosis admitted to ICU. Carbapenemase-producing genes in Enterobacteriaceae in our center are bla(OXA-48) and bla(KPC). | 2022 | 35732546 |
| 1474 | 7 | 0.9039 | Simple, rapid, and cost-effective modified Carba NP test for carbapenemase detection among Gram-negative bacteria. PURPOSE: Detection of carbapenemases among Gram-negative bacteria (GNB) is important for both clinicians and infection control practitioners. The Clinical and Laboratory Standards Institute recommends Carba NP (CNP) as confirmatory test for carbapenemase production. The reagents required for CNP test are costly and hence the test cannot be performed on a routine basis. The present study evaluates modifications of CNP test for rapid detection of carbapenemases among GNB. MATERIALS AND METHODS: The GNB were screened for carbapenemase production using CNP, CarbAcineto NP (CANP), and modified CNP (mCNP) test. A multiplex polymerase chain reaction (PCR) was performed on all the carbapenem-resistant bacteria for carbapenemase genes. The results of three phenotypic tests were compared with PCR. RESULTS: A total of 765 gram negative bacteria were screened for carbapenem resistance. Carbapenem resistance was found in 144 GNB. The metallo-β-lactamases were most common carbapenemases followed by OXA-48-like enzymes. The CANP test was most sensitive (80.6%) for carbapenemases detection. The mCNP test was 62.1% sensitive for detection of carbapenemases. The mCNP, CNP, and CANP tests were equally sensitive (95%) for detection of NDM enzymes among Enterobacteriaceae. The mCNP test had poor sensitivity for detection of OXA-48-like enzymes. CONCLUSION: The mCNP test was rapid, cost-effective, and easily adoptable on routine basis. The early detection of carbapenemases using mCNP test will help in preventing the spread of multidrug-resistant organisms in the hospital settings. | 2017 | 28966495 |
| 1662 | 8 | 0.9031 | The characterization of ESBL genes in Escherichia coli and Klebsiella pneumoniae causing nosocomial infections in Vietnam. BACKGROUND: Extended-spectrum β-lactamases (ESBLs) are enzymes capable of hydrolyzing oxyimino-β-lactams and inducing resistance to third generation cephalosporins. The genes encoding ESBLs are widespread and generally located on highly transmissible resistance plasmids. We aimed to investigate the complement of ESBL genes in E. coli and Klebsiella pneumoniae causing nosocomial infections in hospitals in Ho Chi Minh City, Vietnam. METHODOLOGY: Thirty-two non-duplicate isolates of E. coli and Klebsiella pneumoniae causing nosocomial infections, isolated between March and June 2010, were subjected to antimicrobial susceptibility testing. All isolates were PCR-amplified to detect the blaSHV, blaTEM and blaCTX-M ESBL genes and subjected to plasmid analysis. RESULTS: We found that co-resistance to multiple antimicrobials was highly prevalent, and we report the predominance of the blaCTX-M-15 and blaCTX-M-27 genes, located on highly transmissible plasmids ranging from 50 to 170 kb in size. CONCLUSIONS: Our study represents a snap shot of ESBL-producing enteric bacteria causing nosocomial infections in this setting. We suggest that antimicrobial resistance in nosocomial E. coli and Klebsiella pneumoniae is rampant in Vietnam and ESBL organisms are widespread. In view of these data and the dramatic levels of antimicrobial resistance reported in Vietnam we advocate an urgent review of antimicrobial use in the Vietnamese healthcare system. | 2013 | 24334938 |
| 1392 | 9 | 0.9027 | High prevalence of bla(CTX-M-15) type extended-spectrum beta-lactamases in Gambian hooded vultures (Necrosyrtes monachus): A threatened species with substantial human interaction. One hundred fecal samples from hooded vultures in the Gambia (Banjul area) were investigated for the presence of bacteria with extended-spectrum cephalosporin- (ESBL/AmpC), carbapenemases, and colistin resistance. No Enterobacteriales carrying carbapenemases or resistance against colistin were detected. Fifty-four ESBL-producing Escherichia coli and five ESBL-producing Klebsiella pneumoniae isolates were identified in 52 of the samples, of which 52 E. coli and 4 K. pneumoniae yielded passed sequencing results. Fifty of the E. coli had ESBL phenotype and genotype harboring bla(CTX-M) genes, of which 88.5% (n = 46) were the bla(CTX-M-15) gene, commonly found on the African continent. Furthermore, the genetic context around bla(CTX-M-15) was similar between isolates, being colocalized with ISKpn19. In contrast, cgMLST analysis of the E. coli harboring ESBL genes revealed a genetic distribution over a large fraction of the currently known existing E. coli populations in the Gambia. Hooded vultures in the Gambia thus have a high ESBL E. coli-prevalence (>50%) with low diversity regarding key resistance genes. Furthermore, given the urban presence and frequent interactions between hooded vultures and humans, data from this study implies hooded vultures as potential vectors contributing to the further dissemination of antibiotic-resistance genes. | 2023 | 37186228 |
| 2105 | 10 | 0.9026 | Infections Caused by Antimicrobial Drug-Resistant Saprophytic Gram-Negative Bacteria in the Environment. BACKGROUND: Drug-resistance genes found in human bacterial pathogens are increasingly recognized in saprophytic Gram-negative bacteria (GNB) from environmental sources. The clinical implication of such environmental GNBs is unknown. OBJECTIVES: We conducted a systematic review to determine how often such saprophytic GNBs cause human infections. METHODS: We queried PubMed for articles published in English, Spanish, and French between January 2006 and July 2014 for 20 common environmental saprophytic GNB species, using search terms "infections," "human infections," "hospital infection." We analyzed 251 of 1,275 non-duplicate publications that satisfied our selection criteria. Saprophytes implicated in blood stream infection (BSI), urinary tract infection (UTI), skin and soft tissue infection (SSTI), post-surgical infection (PSI), osteomyelitis (Osteo), and pneumonia (PNA) were quantitatively assessed. RESULTS: Thirteen of the 20 queried GNB saprophytic species were implicated in 674 distinct infection episodes from 45 countries. The most common species included Enterobacter aerogenes, Pantoea agglomerans, and Pseudomonas putida. Of these infections, 443 (66%) had BSI, 48 (7%) had SSTI, 36 (5%) had UTI, 28 (4%) had PSI, 21 (3%) had PNA, 16 (3%) had Osteo, and 82 (12%) had other infections. Nearly all infections occurred in subjects with comorbidities. Resistant strains harbored extended-spectrum beta-lactamase (ESBL), carbapenemase, and metallo-β-lactamase genes recognized in human pathogens. CONCLUSION: These observations show that saprophytic GNB organisms that harbor recognized drug-resistance genes cause a wide spectrum of infections, especially as opportunistic pathogens. Such GNB saprophytes may become increasingly more common in healthcare settings, as has already been observed with other environmental GNBs such as Acinetobacter baumannii and Pseudomonas aeruginosa. | 2017 | 29164118 |
| 1663 | 11 | 0.9025 | The molecular basis of β-lactamase production in Gram-negative bacteria from Saudi Arabia. Resistance to β-lactams among Gram-negative bacteria is a worldwide issue. Increased prevalence of extended-spectrum β-lactamase (ESBL)-producers and the dissemination of carbapenem-resistance genes are particularly concerning. ESBL-producing strains are common in the Kingdom of Saudi Arabia, particularly among the Enterobacteriaceae, and carbapenem resistance is on the increase, especially among the non-fermenters. β-lactamase production is a major mechanism of resistance to these agents and although β-lactamase-producing strains have been documented in the Kingdom, relatively few reports characterized the molecular basis of this production. Nevertheless, available data suggest that CTX-M (CTX-M-15 in particular) is the predominant ESBL in the Enterobacteriaceae, with SHV also being prevalent in Klebsiella pneumoniae. Carbapenem resistance in the latter is mainly due to OXA-48 and NDM-1. In Pseudomonas aeruginosa, VEB-like enzymes are the most common ESBLs, and VIM is the prevalent metallo-β-lactamase. OXA-10 extended-spectrum enzymes are also frequent. PER and GES ESBLs have been reported in Acinetobacter baumannii, and oxacillinases (OXA-23 in particular) are the dominant carbapanamases in this species. | 2015 | 25418734 |
| 2094 | 12 | 0.9024 | Evaluation of the antibacterial activity of Weissella confusa K3 cell-free supernatant against extended-spectrum βeta lactamase (ESBL) producing uropathogenic Escherichia coli U60. Different strategies have been approved for controlling extended-spectrum βeta lactamase (ESBL) producing uropathogenic bacteria. The antibacterial activity of Lactic acid bacteria (LAB) is an effective strategy due to its probiotic characteristics and beneficial effects on human health. The antibiotic susceptibility test, disk diffusion method, and double disc synergy test indicated that five enteric uropathogenic isolates were ESBL producers during the present study. They recorded diameters of inhibition zones as ≤ 18, ≤ 8, ≤ 19, and ≤ 8 mm against cefotaxime (CTX), ceftazidime (CAZ), aztreonam (ATM), and ceftriaxone (CRO). Genotypically, bla(TEM) genes are the most common, with (100 %) occurrence in all the five enteric tested uropathogens, followed by bla(SHV) and bla(CTX) genes (60 %). In addition, out of 10 LAB isolates from dairy products, the CFS of isolate no. K3 had high antibacterial activity against the tested ESBLs, especially no. U60, with a MIC of 600 µl. Additionally, the MIC and sub-MIC of K3 CFS inhibited the production of antibiotic-resistant bla (TEM) genes of U60. Analyzing the 16S rRNA sequence confirmed that the most potent ESBL-producing bacteria (U60) and LAB (K3) isolates were identified as Escherichia coli U60.1 and Weissella confuse K3 with accession numbers MW173246 and MW173299.1, respectively, in GenBank. | 2023 | 36873575 |
| 2452 | 13 | 0.9024 | Worrying levels of antimicrobial resistance in Gram-negative bacteria isolated from cell phones and uniforms of Peruvian intensive care unit workers. BACKGROUND: Healthcare worker (HCW) uniforms and cell phones are involved in pathogen transmission. This study aimed to characterize pathogenic microorganism isolates from HCW uniforms and cell phones. METHODS: Gram-negative microorganisms were recovered from HCW uniforms and cell phones. Antimicrobial susceptibility and the presence of extended-spectrum β-lactamases (ESBL) and carbapenemases were determined. RESULTS: Escherichia coli was the most prevalent microorganism. Overall, high levels of resistance to cephalosporins, quinolones, co-trimoxazole and colistin were found. ESBL were mainly related to blaCTX-M-15 and blaSHV- genes. Carbapenem-resistant isolates presented as blaKPC or blaNDM. CONCLUSIONS: High levels of antimicrobial resistance, including colistin, were detected. Therefore, strategies are urgently needed to prevent bacterial dissemination. | 2022 | 34993550 |
| 1413 | 14 | 0.9020 | Occurrence of Carbapenemases, Extended-Spectrum Beta-Lactamases and AmpCs among Beta-Lactamase-Producing Gram-Negative Bacteria from Clinical Sources in Accra, Ghana. Beta-lactamase (β-lactamase)-producing Gram-negative bacteria (GNB) are of public health concern due to their resistance to routine antimicrobials. We investigated the antimicrobial resistance and occurrence of carbapenemases, extended-spectrum β-lactamases (ESBLs) and AmpCs among GNB from clinical sources. GNB were identified using matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDITOF-MS). Antimicrobial susceptibility testing was performed via Kirby-Bauer disk diffusion and a microscan autoSCAN system. β-lactamase genes were determined via multiplex polymerase chain reactions. Of the 181 archived GNB analyzed, Escherichia coli and Klebsiella pneumoniae constituted 46% (n = 83) and 17% (n = 30), respectively. Resistance to ampicillin (51%), third-generation cephalosporins (21%), and ertapenem (21%) was observed among the isolates, with 44% being multi-drug resistant (MDR). β-lactamase genes such as AmpCs ((bla(FOX-M) (64%) and bla(DHA-M) and bla(EDC-M) (27%)), ESBLs ((bla(CTX-M) (81%), other β-lactamase genes bla(TEM) (73%) and bla(SHV) (27%)) and carbapenemase ((bla(OXA-)(48) (60%) and bla(NDM) and bla(KPC) (40%)) were also detected. One K. pneumoniae co-harbored AmpC (bla(FOX-M) and bla(EBC-M)) and carbapenemase (bla(KPC) and bla(OXA-)(48)) genes. bla(OXA-)(48) gene was detected in one carbapenem-resistant Acinetobacter baumannii. Overall, isolates were resistant to a wide range of antimicrobials including last-line treatment options. This underpins the need for continuous surveillance for effective management of infections caused by these pathogens in our settings. | 2023 | 37370334 |
| 5032 | 15 | 0.9019 | Hijacking a small plasmid to confer high-level resistance to aztreonam-avibactam and ceftazidime-avibactam. Acquired β-lactamase-encoding genes are typically carried by large plasmids in Gram-negative bacteria, which also commonly carry multi-copy small plasmids. This study found that mobile genetic elements carrying antimicrobial resistance genes are capable of hijacking small plasmids. This study focused on aztreonam-avibactam (ATM-AVI) as this combination can be used to effectively counter almost all β-lactamases produced by bacteria, and has been recommended against carbapenem-resistant Enterobacterales. A clinical strain (085003) of carbapenem-resistant Escherichia coli was investigated, and mutants (085003R32 and 085003R512) able to grow under 32/4 and 512/4 mg/L of ATM-AVI were obtained as representatives of low- and high-level resistance, respectively, by induction. Comparative genomics showed that 085003R32 and 085003R512 had a single nucleotide mutation of β-lactamase gene bla(CMY-2), encoding a novel CMY with a Thr319Ile substitution, assigned 'CMY-2R'. Cloning and enzyme kinetics were used to verify that CMY-2R conferred ATM-AVI resistance by compromising binding of AVI and subsequent protection of ATM. Mechanisms for the discrepant resistance between 085003R32 and 085003R512 were investigated. Three tandem copies of bla(CMY-2R) were identified on a self-transmissible IncP1 plasmid of 085003R32 due to IS1294 misrecognizing its end terIS and rolling-circle replication. 085003R512 had only a single copy of bla(CMY-2R) on the IncP1 plasmid, but possessed anther bla(CMY-2R) on an already present 4-kb small plasmid. IS1294-mediated mobilization on to this multi-copy small plasmid increased the copy number of bla(CMY-2R) significantly, rendering higher resistance. This study shows that bacteria can employ multiple approaches to accommodate selection pressures imposed by exposure to varied concentrations of antimicrobial agents. | 2023 | 37769749 |
| 1555 | 16 | 0.9019 | Carbapenemase-producing Gram-negative bacteria: current epidemics, antimicrobial susceptibility and treatment options. Carbapenemases, with versatile hydrolytic capacity against β-lactams, are now an important cause of resistance of Gram-negative bacteria. The genes encoding for the acquired carbapenemases are associated with a high potential for dissemination. In addition, infections due to Gram-negative bacteria with acquired carbapenemase production would lead to high clinical mortality rates. Of the acquired carbapenemases, Klebsiella pneumoniae carbapenemase (Ambler class A), Verona integron-encoded metallo-β-lactamase (Ambler class B), New Delhi metallo-β-lactamase (Ambler class B) and many OXA enzymes (OXA-23-like, OXA-24-like, OXA-48-like, OXA-58-like, class D) are considered to be responsible for the worldwide resistance epidemics. As compared with monotherapy with colistin or tigecycline, combination therapy has been shown to effectively lower case-fatality rates. However, development of new antibiotics is crucial in the present pandrug-resistant era. | 2015 | 25812463 |
| 1414 | 17 | 0.9019 | Prevalence and antimicrobial susceptibility of extended-spectrum beta-lactamase-producing bacteria in intensive care units of Sanandaj general hospitals (Kurdistan, Iran). This study focused on analyzing the spread of extended-spectrum beta-lactamase (ESBL) enzymes among Gram-negative bacteria at intensive care units (ICUs). Between January 2007 and January 2008, 301 consecutive clinical isolates of Gram-negative type were isolated. Of these, 66 strains were collected from patients in ICUs in two major hospitals in Sanandaj (Kurdistan, Iran). The isolates were identified, tested for antimicrobial susceptibility, and analyzed for the presence of ESBL using the double-disk synergy test. Isolates with a positive ESBL phenotype were subjected to PCR for SHV, TEM, OXA and CTX-M beta-lactamase gene families. Sixty-six Gram-negative bacteria were isolated from clinical samples of 66 ICU patients. These isolates included 16 Escherichia coli, 28 Enterobacter spp., 5 Pseudomonas spp., 10 Klebsiella pneumoniae, 3 Serratia marcescens and 1 Stenotrophomonas maltophilia. Twenty-three (34.85%) of these isolates were ESBL producing. The ESBL genes detected were SHV, TEM, OXA-1, OXA-2 and CTX-M. The results show the presence of ESBL genes among Gram-negative bacteria in the ICU setting of Sanandaj's hospitals. There is a need to institute a strict hospital infection control policy and regular surveillance of bacterial resistance to antimicrobial agents. | 2009 | 19521074 |
| 2118 | 18 | 0.9017 | Gram-negative bacteria as causative agents of ventilator-associated pneumonia and their respective resistance mechanisms. Ventilator-associated pneumonia (VAP) is a serious and common complication in patients admitted to intensive care unit (ICU) and contributes to mortality. Multidrug Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae are frequently associated with VAP in ICU. A prospective study was set up in three ICUs of the University Hospital Center Zagreb and one ICU in General Hospital Pula from September 2017 to March 2018. Antibiotic susceptibility was determined by broth microdilution method. Production of extended-spectrum β-lactamases (ESBLs) was determined by double-disk synergy test and carbapenemases by Hodge and carbapenem inactivation method (CIM). The genes encoding ESBLs, carbapenemases of class A, B and D and qnr genes were determined by PCR. In total 97 Gram-negative bacteria isolates were analyzed. P. aeruginosa demonstrated high resistance rates for imipenem and meropenem with 74% and 68% of resistant strains, respectively. Moderate resistance rates were observed for ceftazidime andpiperacillin/tazobactam, ciprofloxacin and gentamicin (44%). All except three A. baumannii isolates, were resistant to carbapenems and to all other antibiotics apart from colistin and amikacin. Eight A. baumannii isolates were positive for bla(OXA-23) and 12 for bla(OXA-24) genes. Four K. pneumoniae and two E. cloacae strains were ESBL positive and harboured group 1 of CTX-M β-lactamases. Three P. mirabilis strains were positive for plasmid-mediated ampC β-lactamase of CMY family. Two carbapenem-resistant K. pneumoniae harboured OXA-48 and one carbapenem-resistant E. cloacae VIM-1. A high proportion of multidrug-resistant P. aeruginosa, K. pneumoniae and extensively resistant A. baumannii was reported. Acquired resistance mechanisms, mainly production of carbapenemases and ESBLs were dominant in A. baumannii and K. pneumoniae, respectively. Resistance of P. aeruginosa isolates was more likely due to upregulation of efflux pumps or porin loss. A marked diversity of β-lactamases was identified in Enterobacteriaceae. | 2020 | 32729399 |
| 1546 | 19 | 0.9017 | Bench-to-bedside review: The role of beta-lactamases in antibiotic-resistant Gram-negative infections. Multidrug resistance has been increasing among Gram-negative bacteria and is strongly associated with the production of both chromosomal- and plasmid-encoded beta-lactamases, whose number now exceeds 890. Many of the newer enzymes exhibit broad-spectrum hydrolytic activity against most classes of beta-lactams. The most important plasmid-encoded beta-lactamases include (a) AmpC cephalosporinases produced in high quantities, (b) the expanding families of extended-spectrum beta-lactamases such as the CTX-M enzymes that can hydrolyze the advanced-spectrum cephalosporins and monobactams, and (c) carbapenemases from multiple molecular classes that are responsible for resistance to almost all beta-lactams, including the carbapenems. Important plasmid-encoded carbapenemases include (a) the KPC beta-lactamases originating in Klebsiella pneumoniae isolates and now appearing worldwide in pan-resistant Gram-negative pathogens and (b) metallo-beta-lactamases that are produced in organisms with other deleterious beta-lactamases, causing resistance to all beta-lactams except aztreonam. beta-Lactamase genes encoding these enzymes are often carried on plasmids that bear additional resistance determinants for other antibiotic classes. As a result, some infections caused by Gram-negative pathogens can now be treated with only a limited number, if any, antibiotics. Because multidrug resistance in Gram-negative bacteria is observed in both nosocomial and community isolates, eradication of these resistant strains is becoming more difficult. | 2010 | 20594363 |