# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1066 | 0 | 0.9040 | Biomonitoring marine habitats in reference to antibiotic resistant bacteria and ampicillin resistance determinants from oviductal fluid of the nesting green sea turtle, Chelonia mydas. During the egg-laying process, oviductal fluid was collected using a non-invasive procedure from the cloacal vent of the green turtles. Forty-two independent isolates of antibiotic-resistant bacteria from 11 genera were obtained from 20 turtles during nesting. The dominant isolate was Citrobacter (52.4%), followed by Pseudomonas, Proteus, Enterobacter, Salmonella, Escherichia coli, Shigella, Edwardsiella, Morganella, Providencia and Arcomobacter. Most of the isolates were resistant to ampicillin. Ampicillin-resistant isolates showed variations in their resistance for the following classes of β-lactamases: extended-spectrum β-lactamases (EBSLs), AmpC type β-lactamases C (AmpC), and screen-positive β-lactamase. None of the isolates produced metallo β-lactamase. Some ampicillin-resistant genes were detected by multiplex polymerase chain reaction (PCR) only. Inhibitor based test (IBT) categorized some isolates as AmpC β-lactamase producers. β-Lactamase genes were detected from a few strains. The sequencing of those genes revealed the presence of cephamycinase (CMY) and AmpC β-lactamases. The oviductal fluid was used in this study as a source of bacterial antibiotic-resistant determinants for biomonitoring marine turtles exposed to contaminated effluents. This data can be of value in understanding the decline of this endangered species as a result of exposure to marine pollution which is threatening their survival. | 2012 | 22406312 |
| 1391 | 1 | 0.9028 | Faecal carriage of extended-spectrum β-lactamase-producing and AmpC β-lactamase-producing bacteria among Danish army recruits. During May and June 2008, 84 Danish army recruits were tested for faecal carriage of extended-spectrum β-lactamase (ESBL)-producing and AmpC β-lactamase-producing bacteria. Three ESBL-producing (CTX-M-14a) Escherichia coli isolates, two AmpC-producing (CMY-2) E. coli isolates and one AmpC-producing (CMY-34) Citrobacter freundii isolate were detected. Two of the CTX-M-14a E. coli isolates had similar pulsed-field gel electrophoresis and multilocus sequence typing profiles, indicating the same origin or transmission between the two army recruits. The bla(CTX-M-14a) genes were transferable to an E. coli recipient. These commensal bacteria therefore constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria in the intestine. | 2011 | 20718802 |
| 2094 | 2 | 0.9004 | Evaluation of the antibacterial activity of Weissella confusa K3 cell-free supernatant against extended-spectrum βeta lactamase (ESBL) producing uropathogenic Escherichia coli U60. Different strategies have been approved for controlling extended-spectrum βeta lactamase (ESBL) producing uropathogenic bacteria. The antibacterial activity of Lactic acid bacteria (LAB) is an effective strategy due to its probiotic characteristics and beneficial effects on human health. The antibiotic susceptibility test, disk diffusion method, and double disc synergy test indicated that five enteric uropathogenic isolates were ESBL producers during the present study. They recorded diameters of inhibition zones as ≤ 18, ≤ 8, ≤ 19, and ≤ 8 mm against cefotaxime (CTX), ceftazidime (CAZ), aztreonam (ATM), and ceftriaxone (CRO). Genotypically, bla(TEM) genes are the most common, with (100 %) occurrence in all the five enteric tested uropathogens, followed by bla(SHV) and bla(CTX) genes (60 %). In addition, out of 10 LAB isolates from dairy products, the CFS of isolate no. K3 had high antibacterial activity against the tested ESBLs, especially no. U60, with a MIC of 600 µl. Additionally, the MIC and sub-MIC of K3 CFS inhibited the production of antibiotic-resistant bla (TEM) genes of U60. Analyzing the 16S rRNA sequence confirmed that the most potent ESBL-producing bacteria (U60) and LAB (K3) isolates were identified as Escherichia coli U60.1 and Weissella confuse K3 with accession numbers MW173246 and MW173299.1, respectively, in GenBank. | 2023 | 36873575 |
| 1063 | 3 | 0.8999 | Enterobacteriaceae resistant to third-generation cephalosporins and quinolones in fresh culinary herbs imported from Southeast Asia. Since multidrug resistant bacteria are frequently reported from Southeast Asia, our study focused on the occurrence of ESBL-producing Enterobacteriaceae in fresh imported herbs from Thailand, Vietnam and Malaysia. Samples were collected from fresh culinary herbs imported from Southeast Asia in which ESBL-suspected isolates were obtained by selective culturing. Analysis included identification by MALDI-TOF mass spectrometry, susceptibility testing, XbaI-PFGE, microarray, PCR and sequencing of specific ESBL genes, PCR based replicon typing (PBRT) of plasmids and Southern blot hybridization. In addition, the quinolone resistance genotype was characterized by screening for plasmid mediated quinolone resistance (PMQR) genes and mutations in the quinolone resistance determining region (QRDR) of gyrA and parC. The study encompassed fifty samples of ten batches of culinary herbs (5 samples per batch) comprising nine different herb variants. The herbs originated from Thailand (Water morning glory, Acacia and Betel leaf), Vietnam (Parsley, Asian pennywort, Houttuynia leaf and Mint) and Malaysia (Holy basil and Parsley). By selective culturing 21 cefotaxime resistant Enterobacteriaceae were retrieved. Array analysis revealed 18 isolates with ESBL genes and one isolate with solely non-ESBL beta-lactamase genes. Mutations in the ampC promoter region were determined in two isolates with PCR and sequencing. The isolates were identified as Klebsiella pneumoniae (n=9), Escherichia coli (n=6), Enterobacter cloacae complex (n=5) and Enterobacter spp. (n=1). All isolates tested were multidrug resistant. Variants of CTX-M enzymes were predominantly found followed by SHV enzymes. PMQR genes (including aac(6')-1b-cr, qnrB and qnrS) were also frequently detected. In almost all cases ESBL and quinolone resistance genes were located on the same plasmid. Imported fresh culinary herbs from Southeast Asia are a potential source for contamination of food with multidrug resistant bacteria. Because these herbs are consumed without appropriate heating, transfer to human bacteria cannot be excluded. | 2014 | 24607424 |
| 1226 | 4 | 0.8991 | Multi-drug resistant gram-negative enteric bacteria isolated from flies at Chengdu Airport, China. We collected flies from Chengdu Shuangliu International Airport to examine for the presence of bacteria and to determine the sensitivity patterns of those bacteria. A total of 1,228 flies were collected from 6 sites around Chengdu Shuangliu International Airport from April to September 2011. The predominant species was Chrysomya megacephala (n=276, 22.5%). Antimicrobial-resistant gram-negative enteric bacteria (n=48) were isolated from flies using MacConkey agar supplemented with cephalothin (20 microg/ml). These were identified as Escherichia coli (n=37), Klebsiella pneumoniae (n=6), Pseudomonas aeruginosa (n=3) and Aeromonas hydrophila (n=2). All isolated bacteria were tested for resistance to 21 commonly used antimicrobials: amoxicillin (100%), ticarcillin (100%), cephalothin (100%), cefuroxime (100%), ceftazidime 1 (93.8%), piperacillin (93.8%), cefotaxime (89.6%), ticarcillin-clavulanate (81.3%), trimethoprim-sulfamethoxazole (62.5%), ciprofloxacin (54.2%), gentamicin (45.8%), cefepime (39.6%), tobramycin (39.6%), ceftazidime (22.9%), cefoxitin (16.7%), amikacin (16.7%), netilmicin (14.6%), amoxicillin-clavulanate (6.3%) and piperacillin-tazobactam (2.1%). No resistance to meropenem or imipenem was observed. Antibiotic resistance genes among the isolated bacteria were analyzed for by polymerase chain reaction. Thirty of the 48 bacteria with resistance (62.5%) possessed the blaTEM gene. | 2013 | 24450236 |
| 1067 | 5 | 0.8990 | Virulence and plasmidic resistance determinants of Escherichia coli isolated from municipal and hospital wastewater treatment plants. Escherichia coli is simultaneously an indicator of water contamination and a human pathogen. This study aimed to characterize the virulence and resistance of E. coli from municipal and hospital wastewater treatment plants (WWTPs) in central Portugal. From a total of 193 isolates showing reduced susceptibility to cefotaxime and/or nalidixic acid, 20 E. coli with genetically distinct fingerprint profiles were selected and characterized. Resistance to antimicrobials was determined using the disc diffusion method. Extended spectrum β-lactamase and plasmid-mediated quinolone resistance genes, phylogroups, pathogenicity islands (PAIs) and virulence genes were screened by polymerase chain reaction (PCR). CTX-M producers were typed by multilocus sequence typing. Resistance to beta-lactams was associated with the presence of bla(TEM), bla(SHV), bla(CTX-M-15) and bla(CTX-M-32). Plasmid-mediated quinolone resistance was associated with qnrA, qnrS and aac(6')-Ib-cr. Aminoglycoside resistance and multidrug-resistant phenotypes were also detected. PAI IV(536), PAI II(CFT073), PAI II(536) and PAI I(CFT073), and uropathogenic genes iutA, papAH and sfa/foc were detected. With regard to the clinical ST131 clone, it carried bla(CTX-M-15), blaTEM-type, qnrS and aac(6')-lb-cr; IncF and IncP plasmids, and virulence factors PAI IV(536), PAI I(CFT073), PAI II(CFT073), iutA, sfa/foc and papAH were identified in the effluent of a hospital plant. WWTPs contribute to the dissemination of virulent and resistant bacteria in water ecosystems, constituting an environmental and public health risk. | 2015 | 26042965 |
| 1233 | 6 | 0.8987 | Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines. This cross-sectional study was conducted to determine the prevalence, antibiogram, and resistance profile of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) isolates from healthy pigs and pig farms in Luzon, Philippines. A total of 162 rectal samples from healthy finisher and breeder pigs and boot swab samples from pig houses were collected from 54 randomly selected pig farms. Bacteria were isolated and screened using MacConkey agar plate supplemented with 1 mg/L cefotaxime. Identification of bacteria and antimicrobial susceptibility test were carried out through Vitek(®) 2 and combined disk test. PCR amplifications were carried out in all isolates targeting bla(CTX-M) and its five major groupings, bla(TEM), and bla(SHV). The farm prevalence of ESBL-EC was 57.41% (95% confidence interval [CI] = 43.21-70.77). A total of 48 (29.63%) ESBL-EC isolates were isolated from samples that showed 14 different phenotypic multidrug resistance patterns. The prevalence of bla(CTX-M) gene was 91.67% (95% CI = 80.02-97.68). All major bla(CTX-M-groups) except bla(CTX-M-25group) were detected. The bla(CTX-M-1) was the most prevalent bla(CTX-M) gene, 75.0% (95% CI = 60.40-86.36). The prevalence of bla(TEM) and bla(SHV) genes was 91.67% (95% CI = 80.02-97.68) and 60.42% (95% CI = 45.27-74.23), respectively. Coexistence of different bla(CTX-M), bla(TEM), and bla(SHV) genes was observed in 44 isolates with 20 different genotypic patterns. High prevalence, diverse antibiogram profile, and genotypic resistance pattern of ESBL-EC isolates from healthy pigs and pig farms were observed in this study that could result in possible transmission to farm workers, susceptible bacteria, and the environment. | 2020 | 31532307 |
| 1175 | 7 | 0.8987 | Existence of a novel qepA variant in quinolone resistant Escherichia coli from aquatic habitats of Bangladesh. Of 19 environmental Escherichia coli (n = 12) and Klebsiella pneumoniae (n = 7) tested for quinolone resistance-related genes qnrA, qnrB, qnrC, qnrS and qepA, four each of E. coli and K. pneumoniae possessed qnrS, and another E. coli isolate possessed a new variant of qepA. This is the first detection of qepA in environmentally dwelling bacteria in Bangladesh. | 2017 | 29075330 |
| 1227 | 8 | 0.8986 | Antibiotic resistance among coliform bacteria isolated from carcasses of commercially slaughtered chickens. A total of 322 coliform bacteria Escherichia coli, Enterobacter spp., Citrobacter spp., Klebsiella spp. and Serratia spp., were isolated from 50 carcasses of commercially slaughtered chickens. Their resistance to ampicillin, tetracycline, gentamicin, chloramphenicol, cephalotine, cotrimoxazole, nalidixic acid and nitrofurantoin, were determined. The most commonly found resistance was to tetracycline followed by cephalotine, cotrimoxazole and nalidixic acid. A large percentage of E. coli (41%) and Klebsiella spp. (38%) showed multiple antibiotic resistance. | 1990 | 2282290 |
| 1093 | 9 | 0.8984 | The rate of frequent co-existence of plasmid-mediated quinolone resistance (PMQR) and extended-spectrum β-lactamase (ESBL) genes in Escherichia coli isolates from retail raw chicken in South Korea. Since plasmid-encoded antibiotic resistance facilitates the emergence of antibiotic-resistant bacteria, the increasing prevalence of Escherichia coli harboring plasmid-mediated quinolone resistance (PMQR) and extended-spectrum β-lactamase (ESBL) genes is a public health concern. The objective of this study is to investigate the co-existence of PMQR and ESBL genes in E. coli isolates from retail raw chicken in South Korea. Among 67 ESBL-producing E. coli isolates from 40 retail raw chicken, more than half of them carried PMQR genes, including qnrS, aac(6')-Ib-cr, and oqxAB. The qnrS was predominantly (91.4%) detected in E. coli isolates carrying both PMQR and ESBL. The aac(6')-Ib-cr was detected in seven ESBL-producing E. coli strains, and 85.7% of the aac(6')-Ib-cr-positive strains also carried qnrS. Moreover, the strains co-harboring qnrS and aac(6')-Ib-cr exhibited increased resistance to ciprofloxacin and kanamycin. These results demonstrate that PMQR genes are frequently detected in ESBL-producing E. coli isolates from retail raw chicken in South Korea. | 2022 | 35646407 |
| 1382 | 10 | 0.8984 | Surveillance of antimicrobial-resistant Escherichia coli in Sheltered dogs in the Kanto Region of Japan. There is a lack of an established antimicrobial resistance (AMR) surveillance system in animal welfare centers. Therefore, the AMR prevalence in shelter dogs is rarely known. Herein, we conducted a survey in animal shelters in Chiba and Kanagawa prefectures, in the Kanto Region, Japan, to ascertain the AMR status of Escherichia coli (E. coli) prevalent in shelter dogs. E. coli was detected in the fecal samples of all 61 and 77 shelter dogs tested in Chiba and Kanagawa, respectively. The AMR was tested against 20 antibiotics. E. coli isolates derived from 16.4% and 26.0% of samples from Chiba and Kanagawa exhibited resistance to at least one antibiotic, respectively. E. coli in samples from Chiba and Kanagawa prefectures were commonly resistant to ampicillin, piperacillin, streptomycin, kanamycin, tetracycline, and nalidixic acid; that from the Kanagawa Prefecture to cefazolin, cefotaxime, aztreonam, ciprofloxacin, and levofloxacin and that from Chiba Prefecture to chloramphenicol and imipenem. Multidrug-resistant bacteria were detected in 18 dogs from both regions; β-lactamase genes (blaTEM, blaDHA-1, blaCTX-M-9 group CTX-M-14), quinolone-resistance protein genes (qnrB and qnrS), and mutations in quinolone-resistance-determining regions (gyrA and parC) were detected. These results could partially represent the AMR data in shelter dogs in the Kanto Region of Japan. | 2022 | 35031646 |
| 1115 | 11 | 0.8984 | Prevalence of extended spectrum beta lactamase and plasmid mediated quinolone resistant genes in strains of Klebsiella pneumonia, Morganella morganii, Leclercia adecarboxylata and Citrobacter freundii isolated from poultry in South Western Nigeria. A serious concern is arising on the coexistence of extended-spectrum beta-lactamase (ESBL) and plasmid mediated quinolone resistance (PMQR) producing bacteria in animal husbandry, which could be transferred to humans, especially in strains that may not be routinely screened for resistance. This study therefore tested the prevalence of ESBL and PMQR genes in selected bacteria isolated from poultry faeces. Faecal droppings of birds were collected from 11 farms in five states in South Western Nigeria. Bacteria were isolated from the samples on cefotaxime supplemented plates and identified with MALDI-TOF. The MIC was determined using VITEK system and resistance genes were detected with PCR. A total of 350 strains were isolated from different samples and selected strains were identified as 23 Klebsiella pneumonia, 12 Morganella morganii, seven Leclercia adecarboxylata and one Citrobacter freundii. All the species were resistant to gentamycin, trimethoprim/sulphamethaxole, tobramycin, piperacillin, cefotaxime and aztreonam (except Morganella morganii strains which were mostly susceptible to aztreonam). All the tested strains were susceptible to imipenem, meropenem and amikacin. All Leclercia adecarboxylata strains were resistant to ceftazidime, cefepime and fosfomycin while all Morganella morganii strains were resistant to fosfomycin, moxifloxacin and ciprofloxacin. All tested species were generally sensitive to ciprofloxacin except Morganella morganii strains which were resistant to ciprofloxacin. The resistance to ciprofloxacin, ceftazidime, cefepime, tigercylin, colistin and fosfomycin were 65%, 40%, 23%,, 7%, 33%, 48% respectively while the prevalence of SHV, TEM and CTX genes were 42%, 63%, 35% respectively. 9.3% of the isolates had the three ESBL genes, 2.33% had qnrA gene, 4.65% had qnr B gene while none had qnrS gene. The most prevalent PMQR gene is Oqxb (25.58%) while 6.98% had the qep gene. Klebsiella pneumoniae generally had both ESBL and PMQR genes. The high prevalence of extended spectrum beta-lactamase genes in the studied strains calls for caution in the use of beta lactam antibiotics in poultry feeds. This is the first report of the occurrence of extended spectrum beta-lactamase and plasmid mediated quinolone resistance genes in Morganella morganii and Leclercia adecarboxylata strains isolated from poultry faeces. | 2018 | 29942700 |
| 1027 | 12 | 0.8983 | Identification of CTX-M-15 and CTX-M-27 in Antibiotic-Resistant Gram-Negative Bacteria Isolated from Three Rivers Running in Central Italy. The main goal of this study was to identify Gram-negative bacteria resistant to antibiotics, in particular β-lactams, in stream waters and effluents from urban wastewater treatment plants draining into Fino, Tavo, and Saline rivers of the Abruzzo region, Italy. Eight sampling sites were selected because they were the most contaminated by coliforms during previous sampling campaign. One sample for each site was collected for the detection of total and fecal coliforms, Escherichia coli and Enterococcus species by Colilert-18 and Enterolert-E Quanti-Tray/2000. Antibiotic-resistant bacteria, selected on ampicillin and cefotaxime-supplemented agar plates, were identified by EnteroPluri test systems and then confirmed by MALDI-TOF. The resistant determinants were identified and characterized by PCR and sequencing. The microbiological analysis allowed to detect E. coli, total coliforms, fecal coliforms, and enterococci with a coefficient of variation of 215.7%, 212.8%, 242.5%, and 188.5%, respectively. Several Gram-negative bacteria were identified: Serratia liquefaciens, E. coli, Enterobacter cloacae, Citrobacter freundii, Raoultella ornithinolytica, Acinetobacter johnsonii, Aeromonas veronii, Aeromonas hydrophila, and Pseudomonas koreensis. All strains possessed class 1 integrons, insertion sequences, and genes encoding for serin- and metallo-β-lactamases. Extended-spectrum β-lactamases, such as CTX-M-15 and CTX-M-27, were found in Enterobacteriaceae, whereas CphA metallo-β-lactamase was found in A. veronii and A. hydrophila. The main resistance's mechanism to β-lactams observed among the analyzed strains is represented by the production of serin β-lactamases (CTX-M-15, CTX-M-27, and SHV-1) and metallo β-lactamase (CphA). | 2019 | 30994417 |
| 1413 | 13 | 0.8982 | Occurrence of Carbapenemases, Extended-Spectrum Beta-Lactamases and AmpCs among Beta-Lactamase-Producing Gram-Negative Bacteria from Clinical Sources in Accra, Ghana. Beta-lactamase (β-lactamase)-producing Gram-negative bacteria (GNB) are of public health concern due to their resistance to routine antimicrobials. We investigated the antimicrobial resistance and occurrence of carbapenemases, extended-spectrum β-lactamases (ESBLs) and AmpCs among GNB from clinical sources. GNB were identified using matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDITOF-MS). Antimicrobial susceptibility testing was performed via Kirby-Bauer disk diffusion and a microscan autoSCAN system. β-lactamase genes were determined via multiplex polymerase chain reactions. Of the 181 archived GNB analyzed, Escherichia coli and Klebsiella pneumoniae constituted 46% (n = 83) and 17% (n = 30), respectively. Resistance to ampicillin (51%), third-generation cephalosporins (21%), and ertapenem (21%) was observed among the isolates, with 44% being multi-drug resistant (MDR). β-lactamase genes such as AmpCs ((bla(FOX-M) (64%) and bla(DHA-M) and bla(EDC-M) (27%)), ESBLs ((bla(CTX-M) (81%), other β-lactamase genes bla(TEM) (73%) and bla(SHV) (27%)) and carbapenemase ((bla(OXA-)(48) (60%) and bla(NDM) and bla(KPC) (40%)) were also detected. One K. pneumoniae co-harbored AmpC (bla(FOX-M) and bla(EBC-M)) and carbapenemase (bla(KPC) and bla(OXA-)(48)) genes. bla(OXA-)(48) gene was detected in one carbapenem-resistant Acinetobacter baumannii. Overall, isolates were resistant to a wide range of antimicrobials including last-line treatment options. This underpins the need for continuous surveillance for effective management of infections caused by these pathogens in our settings. | 2023 | 37370334 |
| 1095 | 14 | 0.8981 | Short communication: Extended-spectrum cephalosporin-resistant Escherichia coli in colostrum from New Brunswick, Canada, dairy cows harbor bla(CMY-2) and bla(TEM) resistance genes. Dairy calves are colonized shortly after birth by multidrug resistant (MDR) bacteria, including Escherichia coli. The role of dairy colostrum fed to calves as a potential source of MDR bacteria resistance genes has not been investigated. This study determined the recovery rate of extended-spectrum cephalosporin-resistant (ESC-R) E. coli in colostrum from cows. The ESC-R E. coli isolates were further investigated to determine their phenotypic antimicrobial resistance pattern and the genes conferring ESC-R. Fresh colostrum was collected from 452 cows from 8 dairy herds in New Brunswick, Canada. The ESC-R E. coli was isolated from the colostrum by using the VACC agar, a selective media for extended-spectrum β-lactamase producing Enterobacteriaceae. Minimum inhibitory concentration was determined for all the suspected ESC-R E. coli isolates using a commercial gram-negative broth microdilution method. Two multiplex PCR were conducted on all the suspected ESC-R E. coli isolates to determine the presence of the bla(CTX-M) (groups 1, 2, 9, and 8/25) bla(CMY-2), bla(SHV), and bla(TEM) resistance genes. The ESC-R E. coli were detected in 20 (4.43%) of the colostrum samples. At least 1 ESC-R E. coli isolate was detected in 6 (75%) of the dairy herds. All ESC-R E. coli had MDR profiles based on minimum inhibitory concentration testing. No bla(CTX-M) groups genes were detected; however, the bla(CMY-2) gene was detected in 9 or 20 (45%) and bla(TEM) was detected in 7 of 20 (35%) of the ESC-R E. coli. No ESC-R E. coli had both bla(CMY-2) and bla(TEM) resistance genes. This is the first report of bla(CMY-2) and bla(TEM) genes found in E. coli isolates cultured from dairy colostrum to our knowledge. | 2017 | 28780105 |
| 1232 | 15 | 0.8981 | Monitoring of Non-β-Lactam Antibiotic Resistance-Associated Genes in ESBL Producing Enterobacterales Isolates. Genetic context of extended spectrum β-Lactamase (ESBL) producing Enterobacterales and its association with plasmid mediated quinolone resistance (PMQR), aminoglycoside modifying enzymes (AME) and Trimethoprim/Sulfamethoxazole (TMP-SMX) resistance is little known from North India. Therefore, the current study was aimed to investigate the frequency of Non-β-Lactam antibiotic resistance associated genes in extended spectrum β-Lactamase producing Enterobacterales. For this study, Non-Duplicate phenotypically confirmed ESBL producing Enterobacterales isolates (N = 186) were analyzed for ESBLs, PMQRs, AMEs and TMP-SMX resistance genes using polymerase chain reaction (PCR). PCR detected presence of PMQR genes in 81.29% (N = 139) of ESBL isolates (N = 171), AME genes in 60.82% and TMP-SMX resistance genes in 63.74% of the isolates. Molecular characterization of ESBL producing Enterobacterales showed 84.79% bla(TEM) followed by 73.68% bla(CTX-M), 43.86% bla(SHV), 19.88% bla(PER) and 9.94% bla(VEB), respectively. Analysis of PMQR genes revealed 77.7% aac(6')-lb-cr the most commonly detected gene followed by 67.63% oqxB, 62.59% oqxA, 43.17% qnrB, 19.42% qnrD, 18.7% qnrS, 9.35% qnrA, 3.6% qepA and 2.88% qnrC, respectively. Analysis of AMEs gene profile demonstrated 81.73% aac(6')-Ib, the most frequently encountered gene followed by 46.15% aph(3')-Ia, 44.23% ant(3")-Ia, respectively. A 100% prevalence of sul1, followed by dfrA (54.63%) and sul2 (15.74%) was observed. In summary, prevalence of ESBL-Producing genes (particularly bla(TEM) and bla(CTX-M)) along with PMQR, AMEs, and TMP-SMX resistant genes may potentially aid in the transfer of antimicrobial resistance among these strains. | 2020 | 33317078 |
| 1214 | 16 | 0.8981 | Plasmid-mediated quinolone resistance genes in fecal bacteria from rooks commonly wintering throughout Europe. This study concerned the occurrence of fecal bacteria with plasmid-mediated quinolone resistance (PMQR) genes in rooks (Corvus frugilegus, medium-sized corvid birds) wintering in continental Europe during winter 2010/2011. Samples of fresh rook feces were taken by cotton swabs at nine roosting places in eight European countries. Samples were transported to one laboratory and placed in buffered peptone water (BPW). The samples from BPW were enriched and subcultivated onto MacConkey agar (MCA) supplemented with ciprofloxacin (0.06 mg/L) to isolate fluoroquinolone-resistant bacteria. DNA was isolated from smears of bacterial colonies growing on MCA and tested by PCR for PMQR genes aac(6')-Ib, qepA, qnrA, qnrB, qnrC, qnrD, qnrS, and oqxAB. All the PCR products were further analyzed by sequencing. Ciprofloxacin-resistant bacteria were isolated from 37% (392 positive/1,073 examined) of samples. Frequencies of samples with ciprofloxacin-resistant isolates ranged significantly from 3% to 92% in different countries. The qnrS1 gene was found in 154 samples and qnrS2 in 2 samples. The gene aac(6')-Ib-cr was found in 16 samples. Thirteen samples were positive for qnrB genes in variants qnrB6 (one sample), qnrB18 (one), qnrB19 (one), qnrB29 (one), and qnrB49 (new variant) (one). Both the qnrD and oqxAB genes were detected in six samples. The genes qnrA, qnrC, and qepA were not found. Wintering omnivorous rooks in Europe were commonly colonized by bacteria supposedly Enterobacteriaceae with PMQR genes. Rooks may disseminate these epidemiologically important bacteria over long distances and pose a risk for environmental contamination. | 2012 | 22731858 |
| 1464 | 17 | 0.8979 | Detection of TEM and CTX-M genes from ciprofloxacin resistant Proteus mirabilis and Escherichia coli isolated on urinary tract infections (UTIs). The multidrug resistant Gram negative bacteria (MDRGNB) is an emerging burden and now represents a daily challenge for the management of antimicrobial therapy in healthcare settings. The present study was aimed to detect the prevalence of TEM and CTX-M type genes from GNB on urinary tract infection (UTIs). The ciprofloxacin resistant uropathogens were detected by HEXA UTI 5 disc diffusion method. The phenotypic detection of uropathogens producing extended spectrum beta lactamases (ESBLs) was confirmed by double disc combination test (DDCT) and phenotype confirmation test (PCT). The prevalence of TEM and CTX-M genes of uropathogens was identified by multiplex PCR analysis. The in vitro antimicrobial susceptibility of E. coli producing ESBL (26), 21 isolates of P. mirabilis, 17 P. aeruginosa, 14 K. pneumoniae and 6 Enterobacter sp. were detected. Based on the extension of the cephalosporin zone edge towards augmentin disc in the DDST method proved 84% of the isolates were ESBL positive. Similar results were obtained in phenotypic confirmatory test (PCT) by the increases of ≥5 mm zone of inhibition in the combination disc when compared with ceftazidime disc alone. The prevalence of TEM and CTX-M genes were determined from multidrug resistance uropathogens (MDU) respectively as 83%, 75%, 71%, 63%, 60%, 55%, 54%, 50%. The most prevalent (TEM + CTX-M) genes were also detected in ciprofloxacin resistant strains P. mirabilis BDUMS1 (KY617768) and E. coli BDUMS3 (KY617770). Due to the increase of ESBL genes in uropathogens, sustained supervision for using favorable antibiotics and decreasing the infection is essential. | 2018 | 29778819 |
| 1451 | 18 | 0.8979 | Molecular Epidemiology of Extensively Drug-Resistant mcr Encoded Colistin-Resistant Bacterial Strains Co-Expressing Multifarious β-Lactamases. Plasmid-mediated colistin resistance (Col-R) conferred by mcr genes endangers the last therapeutic option for multifarious β-lactamase-producing bacteria. The current study aimed to explore the mcr gene molecular epidemiology in extensively drug-resistant (XDR) bacteria. Col-R gram-negative bacterial strains were screened using a minimum inhibitory concentration (MIC) breakpoint ≥4 µg/mL. Resistant isolates were examined for mcr variants, extended-spectrum β-lactamase, AmpC, and carbapenemase genes using polymerase chain reaction (PCR). The MIC breakpoints for mcr-positive strains were determined using broth microdilution and E-test strips. Overall, 19/718 (2.6%) gram-negative rods (GNRs) harboring mcr were identified, particularly in pus (p = 0.01) and tracheal secretions (p = 0.03). Molecular epidemiology data confirmed 18/19 (95%) mcr-1 and 1/19 (5%) mcr-2 genes. Integron detection revealed 15/17 (88%) Int-1 and 2/17 (12%) Int-2. Common co-expressing drug-resistant β-lactamase genes included 8/16 (50%) bla(CTM-1), 3/16 (19%) bla(CTM-15), 3/3 (100%) bla(CMY-2), 2/8 (25%) bla(NDM-1), and 2/8 (25%) bla(NDM-5). The MIC(50) and MIC(90) values (µg/mL) were as follows: Escherichia coli, 12 and 24; Klebsiella pneumoniae, 12 and 32; Acinetobacter baumannii, 8 and 12; and Pseudomonas aeruginosa, 32 and 64, respectively. Treatment of XDR strains has become challenging owing to the co-expression of mcr-1, mcr-2, multifarious β-lactamase genes, and integrons. | 2021 | 33923991 |
| 1092 | 19 | 0.8979 | High qnrS retention of ESBL-producing and mcr-harbouring colistin-resistant Escherichia coli in Vietnamese food products. Plasmid-mediated antibiotic-resistant bacteria's transmission is fatal and a major threat to public health. This study aimed to clarify the presence of plasmid-mediated quinolone resistance(PMQR)genes in extended-spectrum β-lactamase(ESBL)-producing or/and mcr-harbouring colistin(COL)-resistant Escherichia coli(ESBL-COL-EC)isolates from Vietnamese and Japanese chicken meat. Resistance towards ciprofloxacin(CIP)was examined in 308 ESBL-COL-EC isolates; CIP-resistant ESBL-COL-EC isolates were examined for the PMQR gene. Approximately, 71.1% and 38.1% of ESBL-COL-EC and ESBLproducing E. coli isolates from Vietnamese and Japanese chicken meat were CIP-resistant, respectively. Multiplex PCR led PMQR detection showed that 35.2% of CIP-resistant ESBL-COL-EC isolates from Vietnamese food contained PMQR gene, whereas CIP-resistant ESBL-COL-EC isolates from Japanese chicken meat did not. Conjugation assays showed that the transmission of qnrS gene carried by E. coli to Salmonella. In conclusion, ESBL-COL-EC isolates from Vietnamese food are associated with a high frequency of fluoroquinolone resistance and a high distribution of the qnrS gene. | 2024 | 39343582 |