OUTPATIENT - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
140700.9869World Health Organization priority antimicrobial resistance in Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecium healthcare-associated bloodstream infections in Brazil (ASCENSION): a prospective, multicentre, observational study. BACKGROUND: Carbapenem-resistant Enterobacterales (CRE), Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa (CRPA), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) are listed by World Health Organization (WHO) as priority antimicrobial-resistant bacteria. Data on WHO Priority Antimicrobial resistance Phenotype (WPAP) bacteria from low- and middle-income countries are scarce. In this study, we investigated the occurrence of WPAP in healthcare-associated bloodstream infections (BSI) in Brazil, an upper-middle-income country in South America. METHODS: ASCENSION was a prospective, multicentre, observational study conducted in 14 hospitals from four of five Brazilian regions. Enterobacterales, A. baumannii, P. aeruginosa, S. aureus and E. faecium BSIs in hospitalised patients were analysed. The primary outcome was the frequency of WPAP among all bacteria of interest. Secondary outcomes were incidence-density of bacteria isolates in hospitalised patients, WPAP proportions within bacterial species, and 28-day mortality. PCR for carbapenemase genes was performed in carbapenem-resistant Gram-negative bacteria. FINDINGS: Between August 15, 2022, and August 14, 2023, 1350 isolates (1220 BSI episodes) were included. WPAP accounted for 38.8% (n = 524; 95% Confidence Interval 32.0-46.1) of all isolates, with CRE (19.3%) as the most frequent, followed by CRAB (9.6%), MRSA (4.9%), VRE (2.7%), and CRPA (2.4%). Incidence-density of all and WPAP isolates were 1.91 and 0.77/1000 patients-day, respectively. Carbapenem-resistant Klebsiella pneumoniae (CRKP) was the most common CRE, corresponding to 14.2% of all BSIs. A. baumannii isolates presented the highest proportion of WPAP (87.8%). Mortality rates were higher in patients with BSIs by WPAP than non-WPAP isolates. KPC (64.4%) was the predominant carbapenemase in CRE, followed by NDM (28.4%) and KPC + NDM co-production (7.1%). OXA-23 was the most frequent in CRAB. INTERPRETATION: A high frequency of WPAP bacteria, particularly CRKP and CRAB, were found in healthcare-associated BSIs in Brazil, posing them as a major public health problem in this country. FUNDING: National Council for Scientific and Technological Development, Brazil.202539957800
143310.9864Carbapenem resistance in gram-negative pathogens in an Iranian hospital: high prevalence of OXA-type carbapenemase genes. BACKGROUND: The widespread dissemination of carbapenem- resistant gram-negative bacteria poses a significant threat to global public health. PURPOSE: This study aimed to investigate the prevalence of carbapenem resistance in gram-negative bacteria isolated from patients at the Children's Medical Center Hospital, Tehran, Iran, to understand the molecular mechanisms underlying this resistance. METHODS: During the period spanning from June 2019 to June 2020, 777 gram-negative bacterial strains were isolated. Antibiotic susceptibility testing was performed according to Clinical and Laboratory Standards Institute. Polymerase chain reaction was used to detect carbapenem resistance genes including bla OXA23, bla OXA24, bla OXA48, bla OXA51, bla OXA58, bla OXA143, bla KPC, bla IMP, bla VIM, and bla NDM. RESULTS: Among the total bacterial isolates, 141 (18.1%) exhibited carbapenem resistance. Escherichia coli was the most prevalent (57.4%), followed by Klebsiella pneumoniae (11.3%), and Acinetobacter baumannii (10.6%). Other notable contributors included Enterobacter spp. (5.7%), Salmonella spp. (3.5%), and Stenotrophomonas maltophilia (2.8%). Citrobacter spp., Proteus mirabilis, and Pseudomonas aeruginosa contributed to the distributions of 2, 1, and 3 isolates, respectively. Notably, bla OXA48 showed the highest prevalence (33%), followed by bla OXA143 and bla OXA5 8 (27% and 24%, respectively). In addition, bla OXA24 was present in 11% of the total isolates, bla OXA23 in 10%, and bla NDM in 10%, whereas bla KPC, bla VIM, and bla IMP were not detected. CONCLUSION: Our study highlights the prevalence of carbapenemase- producing gram-negative isolates among pediatric patients. Notable resistance patterns, especially in K. pneumoniae and E. coli, underline the urgent need for proactive interventions, including appropriate antibiotic prescription practices and strengthening of antibiotic stewardship programs.202539483044
142420.9864Source-tracking ESBL-producing bacteria at the maternity ward of Mulago hospital, Uganda. INTRODUCTION: Escherichia coli, Klebsiella pneumoniae and Enterobacter (EKE) are the leading cause of mortality and morbidity in neonates in Africa. The management of EKE infections remains challenging given the global emergence of carbapenem resistance in Gram-negative bacteria. This study aimed to investigate the source of EKE organisms for neonates in the maternity environment of a national referral hospital in Uganda, by examining the phenotypic and molecular characteristics of isolates from mothers, neonates, and maternity ward. METHODS: From August 2015 to August 2016, we conducted a cross-sectional study of pregnant women admitted for elective surgical delivery at Mulago hospital in Kampala, Uganda; we sampled (nose, armpit, groin) 137 pregnant women and their newborns (n = 137), as well as health workers (n = 67) and inanimate objects (n = 70 -beds, ventilator tubes, sinks, toilets, door-handles) in the maternity ward. Samples (swabs) were cultured for growth of EKE bacteria and isolates phenotypically/molecularly investigated for antibiotic sensitivity, as well as β-lactamase and carbapenemase activity. To infer relationships among the EKE isolates, spatial cluster analysis of phenotypic and genotypic susceptibility characteristics was done using the Ridom server. RESULTS: Gram-negative bacteria were isolated from 21 mothers (15%), 15 neonates (11%), 2 health workers (3%), and 13 inanimate objects (19%); a total of 131 Gram-negative isolates were identified of which 104 were EKE bacteria i.e., 23 (22%) E. coli, 50 (48%) K. pneumoniae, and 31 (30%) Enterobacter. Carbapenems were the most effective antibiotics as 89% (93/104) of the isolates were susceptible to meropenem; however, multidrug resistance was prevalent i.e., 61% (63/104). Furthermore, carbapenemase production and carbapenemase gene prevalence were low; 10% (10/104) and 6% (6/104), respectively. Extended spectrum β-lactamase (ESBL) production occurred in 37 (36%) isolates though 61 (59%) carried ESBL-encoding genes, mainly blaCTX-M (93%, 57/61) implying that blaCTX-M is the ideal gene for tracking ESBL-mediated resistance at Mulago. Additionally, spatial cluster analysis revealed isolates from mothers, new-borns, health workers, and environment with similar phenotypic/genotypic characteristics, suggesting transmission of multidrug-resistant EKE to new-borns. CONCLUSION: Our study shows evidence of transmission of drug resistant EKE bacteria in the maternity ward of Mulago hospital, and the dynamics in the ward are more likely to be responsible for transmission but not individual mother characteristics. The high prevalence of drug resistance genes highlights the need for more effective infection prevention/control measures and antimicrobial stewardship programs to reduce spread of drug-resistant bacteria in the hospital, and improve patient outcomes.202337289837
142330.9863Distribution and molecular characterization of carbapenemase-producing gram-negative bacteria in Henan, China. This study aimed to investigate the epidemiological characteristics and trends over time of carbapenemase-producing (e.g., KPC, NDM, VIM, IMP, and OXA-48) Gram-negative bacteria (CPGNB). Non-duplicated multi-drug resistant Gram-negative bacteria (MDRGNB) were collected from the First Affiliated Hospital of Zhengzhou University from April 2019 to February 2023. Species identification of each isolate was performed using the Vitek2 system and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry according to the manufacturer's instructions. PCR detected carbapenem resistance genes in the strains, strains carrying carbapenem resistance genes were categorized as CPGNB strains after validation by carbapenem inactivation assay. A total of 5705 non-repetitive MDRGNB isolates belonging to 78 different species were collected during the study period, of which 1918 CPGNB were validated, with the respiratory tract being the primary source of specimens. Epidemiologic statistics showed a significant predominance of ICU-sourced strains compared to other departments. Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa were the significant CPGNB in Henan, and KPC and NDM were the predominant carbapenemases. Carbapenem-resistant infections in Henan Province showed an overall increasing trend, and the carriage of carbapenemase genes by CPGNB has become increasingly prevalent and complicated. The growing prevalence of CPGNB in the post-pandemic era poses a significant challenge to public safety.202438909136
140540.9863The threat of carbapenem resistance in Eastern Europe in patients with decompensated cirrhosis admitted to intensive care unit. BACKGROUND: Multidrug-resistant organisms are an increasing concern in patients with decompensated cirrhosis. AIM: We aimed to evaluate the prevalence of infections with carbapenem-resistant Enterobacteriaceae in patients with decompensated cirrhosis. METHODS: Patients with decompensated cirrhosis admitted to ICU were included. The isolated Enterobacteriaceae strains were tested for carbapenemase-producing genes using the Roche LightMix® Modular VIM/IMP/NDM/GES/KPC/OXA48-carbapenemase detection kit. RESULTS: 48 culture-positive infections were registered in 75 patients with acutely decompensated cirrhosis. Thirty patients contracted a second infection. 46% of bacteria isolated at admission and 60% of bacteria responsible for infections identified during ICU-stay were multiresistant. ESBL+ Enterobacteriaceae were predominant at admission, while carbapenem-resistance was dominant in both Enterobacteriaceae and Non-Fermenting-Gram-Negative Bacteria responsible for infections diagnosed during hospitalisation. OXA 48 or KPC type carbapenemases were present in 30% of the analyzed Enterobacteriaceae and in 40% of the phenotypically carbapenem-resistant Klebsiella pneumoniae strains. The length of ICU stay was a risk-factor for a second infection (p=0.04). Previous carbapenem usage was associated with occurence of infections with carbapenem-resistant Gram-negative bacteria during hospitalization (p=0.03). CONCLUSION: The prevalence of infections with carbapenem-resistant Enterobacteriaceae is high in patients with decompensated cirrhosis admitted to ICU. Carbapenemase-producing genes in Enterobacteriaceae in our center are bla(OXA-48) and bla(KPC).202235732546
141850.9862Nosocomial infections and antimicrobial susceptibility patterns among patients admitted to intensive care unit of Imam Khomeini hospital in Ilam, Iran. INTRODUCTION: Nosocomial infections (NIs) are a major challenge worldwide. Identification of antibiotic resistance pattern extended spectrum beta-lactamases (ESBLs) and carbapenem-resistant Enterobacteriaceae (CRE) were the objectives of this study. METHODS: In this cross-sectional study, the antimicrobial susceptibility pattern of bacterial isolates collected from patients with NIs in ICU was determined. Overall, 42 Escherichia coli and Klebsiella pneumoniae isolates from different infection sites were used to determine phenotypic tests of ESBLs, Metallo-β-lactamases (MBLs) and CRE. Detection of ESBLs, MBLs and CRE genes were performed by the polymerase chain reaction (PCR) method. RESULTS: From 71 patients with NIs, 103 different bacterial strains were isolated. The most frequently isolated bacteria were E. coli (n = 29; 28.16%), Acinetobacter baumannii (n = 15; 14.56%), and K. pneumoniae (n = 13; 12.26%). Also, the rate of multidrug-resistant (MDR) isolates was 58.25% (60/103). Based on phenotypic confirmation tests, 32 (76.19%) isolates of E. coli and K. pneumoniae produced ESBLs, and 6 (14.28%) isolates were identified as CRE producers. PCR showed the high prevalence of the bla(CTX-M) (n = 29; 90.62%) in ESBL genes. In addition, bla(NDM) was detected in 4 (66.66%), bla(OXA-23) in 3 (50%), and bla(OXA-48) gene in 1 (16.66%) isolates. The bla(VIM), bla(KPC), and bla(IMP) genes were not detected in any of the isolates. CONCLUSION: The Gram-negative bacteria E. coli, A. baumannii, and K. pneumoniae with high resistance levels were the most common bacteria causing NIs in the ICU. This study for the first time identified bla(OXA-11), bla(OXA-23), and bla(NDM-1) genes in E. coli and K. pneumoniae in Ilam city of Iran.202337155016
141360.9862Occurrence of Carbapenemases, Extended-Spectrum Beta-Lactamases and AmpCs among Beta-Lactamase-Producing Gram-Negative Bacteria from Clinical Sources in Accra, Ghana. Beta-lactamase (β-lactamase)-producing Gram-negative bacteria (GNB) are of public health concern due to their resistance to routine antimicrobials. We investigated the antimicrobial resistance and occurrence of carbapenemases, extended-spectrum β-lactamases (ESBLs) and AmpCs among GNB from clinical sources. GNB were identified using matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDITOF-MS). Antimicrobial susceptibility testing was performed via Kirby-Bauer disk diffusion and a microscan autoSCAN system. β-lactamase genes were determined via multiplex polymerase chain reactions. Of the 181 archived GNB analyzed, Escherichia coli and Klebsiella pneumoniae constituted 46% (n = 83) and 17% (n = 30), respectively. Resistance to ampicillin (51%), third-generation cephalosporins (21%), and ertapenem (21%) was observed among the isolates, with 44% being multi-drug resistant (MDR). β-lactamase genes such as AmpCs ((bla(FOX-M) (64%) and bla(DHA-M) and bla(EDC-M) (27%)), ESBLs ((bla(CTX-M) (81%), other β-lactamase genes bla(TEM) (73%) and bla(SHV) (27%)) and carbapenemase ((bla(OXA-)(48) (60%) and bla(NDM) and bla(KPC) (40%)) were also detected. One K. pneumoniae co-harbored AmpC (bla(FOX-M) and bla(EBC-M)) and carbapenemase (bla(KPC) and bla(OXA-)(48)) genes. bla(OXA-)(48) gene was detected in one carbapenem-resistant Acinetobacter baumannii. Overall, isolates were resistant to a wide range of antimicrobials including last-line treatment options. This underpins the need for continuous surveillance for effective management of infections caused by these pathogens in our settings.202337370334
95070.9862Incidence of Extended Spectrum β-Lactamase Genes (ESBLs) among community and health care infection in Mansoura University Hospital, Egypt. BACKGROUND: Multidrug-resistant (MDR) Gram-negative bacteria pose a significant challenge due to their limited treatment options. The production of extended-spectrum β-lactamases (ESBLs) is an important mechanism of resistance. This study aimed to identify the incidence and characteristics of ESBL-encoding genes (bla(CTX-M), bla(TEM), bla(SHV), and bla(OXA)) in MDR isolates. MATERIALS AND METHODS: A cross-sectional study was conducted from September 2022 to May 2023. ESBL-producing isolates (n = 105) out of 412 were recovered from hospitalized and outpatient settings and analyzed. Standard microbiological methods were used for isolates identification, susceptibility testing, and phenotypic ESBL detection. Additionally, bla(CTX-M), bla(TEM), bla(SHV), and bla(OXA) genes were identified using conventional PCR. RESULTS: Molecular profiling of β-lactamase determinants was conducted via PCR targeting bla(CTX-M), bla(TEM), bla(SHV), and bla(OXA) genes. Among phenotypically confirmed (100%) ESBL producers, 98% harbored one or more target genes, with bla(CTX-M) predominant (81%), followed by bla(SHV) (70.4%), bla(TEM) (62%), and bla(OXA) (30.4%). Carbapenem resistance was higher in ESBL-producing strains compared to non-ESBL strains. Extensively drug-resistant (XDR) isolates were the most common across hospital departments and outpatients. DISCUSSION: This study highlights the significant prevalence of ESBL genes and multidrug resistance among Gram-negative bacteria. The dominance of bla(CTX-M) and the existence of multiple resistance genes raise concerns about limited treatment options. The findings emphasize the need for stricter antibiotic stewardship and infection control measures to curb the spread of MDR pathogens. CONCLUSION: This study provides valuable insights into the alarming incidence of ESBL genes and MDR in Mansoura, Egypt. Continuous surveillance and implementation of effective control strategies are crucial to combat this growing public health threat.202540405086
143480.9861Molecular characterization of carbapenemases production among environmental Gram-negative isolates at Addis Ababa, Ethiopia: first detection of NDM Producers in hospital environments. INTRODUCTION: The Gram-Negative bacteria, particularly carbapenem-resistant strains (CR-GNB), pose a global health threat due to high morbidity and mortality. Detecting carbapenemase-encoding genes is essential for understanding their spread in hospital environments. This study investigated environmental colonization by CR-GNB in Ethiopian hospitals, including genetic characterization of resistance genes. METHODOLOGY: A cross-sectional study analyzed 103 environmental GNB isolates collected from inanimate surfaces at Tikur Anbessa Specialized Hospital (TASH) and ALERT Hospital (June-September 2021). Conventional microbiological methods identified the isolates, and antimicrobial susceptibility was tested using the Kirby-Bauer disk diffusion method. Carbapenemase production was screened using the Modified Hodge test (MHT) and combined disk test (CDT). Resistance genes (blaKPC, blaNDM, blaOXA-48) were detected via PCR in isolates with reduced meropenem susceptibility. RESULTS: The predominant GNB were Acinetobacter baumannii (47%), Pseudomonas aeruginosa (33%), and E. coli (12%). Among 103 isolates, 62% showed reduced meropenem susceptibility. The most common CR-GNB was Acinetobacter baumannii (37.5%), followed by E. coli (18.8%) and Klebsiella pneumoniae (12.5%). Carbapenemase production was detected in 41.7% of isolates via PCR, with blaNDM being the most common (43 isolates). Linens (26.4%) and beds (21.4%) had the highest contamination rates. Most carbapenemase-producing isolates were multidrug-resistant (MDR). CONCLUSIONS: The presence of blaNDM and blaKPC genes highlights hospital surfaces as reservoirs for resistance genes, contributing to healthcare-associated infections. Routine surveillance and early detection of carbapenemase producers are crucial for infection control and antimicrobial resistance management.202540305531
141090.9861A high prevalence of multi-drug resistant Gram-negative bacilli in a Nepali tertiary care hospital and associated widespread distribution of Extended-Spectrum Beta-Lactamase (ESBL) and carbapenemase-encoding genes. BACKGROUND: Multi-drug resistance (MDR) and extensive-drug resistance (XDR) associated with extended-spectrum beta-lactamases (ESBLs) and carbapenemases in Gram-negative bacteria are global public health concerns. Data on circulating antimicrobial resistance (AMR) genes in Gram-negative bacteria and their correlation with MDR and ESBL phenotypes from Nepal is scarce. METHODS: A retrospective study was performed investigating the distribution of ESBL and carbapenemase genes and their potential association with ESBL and MDR phenotypes in E. coli, Klebsiella spp., Enterobacter spp. and Acinetobacter spp. isolated in a major tertiary hospital in Kathmandu, Nepal, between 2012 and 2018. RESULTS: During this period, the hospital isolated 719 E. coli, 532 Klebsiella spp., 520 Enterobacter spp. and 382 Acinetobacter spp.; 1955/2153 (90.1%) of isolates were MDR and half (1080/2153) were ESBL producers. Upon PCR amplification, bla(TEM) (1281/1771; 72%), bla(CTXM-1) (930/1771; 53%) and bla(CTXM-8) (419/1771; 24%) were the most prevalent ESBL genes in the enteric bacilli. Bla(OXA) and bla(OXA-51) were the most common bla(OXA) family genes in the enteric bacilli (918/1771; 25%) and Acinetobacter spp. (218/382; 57%) respectively. Sixteen percent (342/2153) of all isolates and 20% (357/1771) of enteric bacilli harboured bla(NDM-1) and bla(KPC) carbapenemase genes respectively. Of enteric bacilli, Enterobacter spp. was the most frequently positive for bla(KPC) gene (201/337; 60%). The presence of each bla(CTX-M) and bla(OXA) were significantly associated with non-susceptibility to third generation cephalosporins (OR 14.7, p < 0.001 and OR 2.3, p < 0.05, respectively).The presence of each bla(TEM), bla(CTXM) and bla(OXA) family genes were significantly associated with ESBL positivity (OR 2.96, p < 0.001; OR 14.2, p < 0.001 and OR 1.3, p < 0.05 respectively) and being MDR (OR 1.96, p < 0.001; OR 5.9, p < 0.001 and OR 2.3, p < 0.001 respectively). CONCLUSIONS: This study documents an alarming level of AMR with high prevalence of MDR ESBL- and carbapenemase-positive ESKAPE microorganisms in our clinical setting. These data suggest a scenario where the clinical management of infected patients is increasingly difficult and requires the use of last-resort antimicrobials, which in turn is likely to intensify the magnitude of global AMR crisis.202033087115
2109100.9860Screening of nursing home residents for colonization with carbapenem-resistant Enterobacteriaceae admitted to acute care hospitals: Incidence and risk factors. BACKGROUND: There are increasing reports of multidrug-resistant gram-negative bacilli in nursing homes and acute care hospitals. METHODS: We performed a point prevalence survey to detect fecal carriage of gram-negative bacteria carrying carbapenem resistance genes or which were otherwise resistant to carbapenem antibiotics among 500 consecutive admissions from local nursing homes to 2 hospitals in Providence, Rhode Island. We performed a case-control study to identify risk factors associated with carriage of carbapenem-resistant Enterobacteriaceae (CRE). RESULTS: There were 404 patients with 500 hospital admissions during which they had rectal swab samples cultured. Fecal carriage of any carbapenem-resistant or carbapenemase- producing gram-negative bacteria was found in 23 (4.6%) of the 500 hospital admissions, including 7 CRE (1.4%), 2 (0.4%) of which were Klebsiella pneumoniae carbapenemase (ie, blaKPC) producing (CPE) Citrobacter freundii, 1 of which was carbapenem susceptible by standard testing methods. Use of a gastrostomy tube was associated with CRE carriage (P = .04). We demonstrated fecal carriage of carbapenem-resistant or carbapenemase-producing gram-negative bacteria in 4.6% of nursing home patients admitted to 2 acute care hospitals, but only 0.4% of such admissions were patients with fecal carriage of CPE. Use of gastrostomy tubes was associated with fecal carriage of gram-negative bacteria with detectable carbapenem resistance. CONCLUSION: CRE fecal carriage is uncommon in our hospital admissions from nursing homes.201626631643
1411110.9860Detection and characterization of carbapenem resistant Gram-negative bacilli isolates recovered from hospitalized patients at Soba University Hospital, Sudan. BACKGROUND: Antimicrobial resistance (AMR) poses a complex threat to global health security and universal health coverage. Recently, nosocomial infections with carbapenemase-producing Gram-negative bacilli (GNB) is increasing worldwide. We report the molecular characterization and detection of genes associated with carbapenemase producing Gram negative bacteria isolated from hospitalized patients at Soba University Hospital (SUH) in Khartoum State, Sudan. RESULTS: Between October 2016 and February 2017, a total of 206 GNB clinical specimens were collected from hospitalized patients in SUH. Of 206 carbapenem resistance isolates, 171 (83 %) were confirmed as phenotypically resistant and 121 (58.7 %) isolates harboured one or more carbapenemase genes. New Delhi metallo-β-lactamase (NDM) types were the most predominant genes, blaNDM 107(52 %), followed by blaIMP 7 (3.4 %), blaOXA-48 5(2.4 %) and blaVIM 2 (0.9 %). Co-resistance genes with NDM producing GNB were detected in 87 (81.3 %) of all blaNDM producing isolates. NDM-1 was the most frequent subtype observed in 75 (70 %) blaNDM producing isolates. The highest percentage of resistance was recorded in ampicillin (98 %), cephalexin (93.5 %) amoxicillin clavulanic acid (90 %), cefotaxime (89.7 %), ceftriaxone (88.4 %), ceftazidime (84.2 %), sulfamethoxazole-trimethoprim (78.4 %) and nitrofurantoin (75.2 %), aztreonam (66 %) and temocillin (64 %). A close correlation between phenotypic and carbapenemase genes detection in all GNB was observed. CONCLUSIONS: The frequency of carbapenemase producing bacilli was found to be high in SUH. NDM was found to be the most prevalent carbapenemase gene among clinical isolates. Close surveillance across all hospitals in Sudan is required. The relative distribution of carbapenemase genes among GNB in nosocomial infections in Africa needs to be defined.202133947325
1428120.9860Carbapenem-resistant Gram-negative bacteria associated with catheter-related bloodstream infections in three intensive care units in Egypt. We aimed to identify the carbapenem-resistant Gram-negative bacteria (GNB) causing catheter-related bloodstream infections (CRBSI) in intensive care units (ICU) in a tertiary care Egyptian hospital, to study their resistance mechanisms by phenotypic and genetic tests, and to use ERIC-PCR for assessing their relatedness. The study was conducted over 2 years in three ICUs in a tertiary care hospital in Egypt during 2015-2016. We identified 194 bloodstream infections (BSIs); 130 (67.01%) were caused by GNB, of which 57 were isolated from CRBSI patients (73.84%). Identification of isolates was performed using conventional methods and MALDI-TOF MS. Antimicrobial susceptibility testing (AST) was done by disc diffusion following CLSI guidelines. Phenotypic detection of carbapenemases enzymes activity was by modified Hodge test and the Carba-NP method. Isolates were investigated for the most common carbapenemases encoding genes bla(KPC), bla(NDM), and bla(OXA-48) using multiplex PCR. Molecular typing of carbapenem-resistant isolates was done by ERIC-PCR followed by sequencing of common resistance genes. The overall rate of CRBSI in our study was 3.6 per 1000 central venous catheter (CVC) days. Among 57 Gram-negative CRBSI isolates, Klebsiella pneumoniae (K. pneumoniae) was the most frequently isolated (27/57; 47.4%), of which more than 70% were resistant to Meropenem. Phenotypic tests for carbapenemases showed that 37.9% of isolates were positive by modified Hodge test and 63.8% by Carba-NP detection. Multiplex PCR assay detected the bla(NDM) in 28.6% of the isolates and bla(KPC) in 26.8%, bla(NDM) and bla(KPC) were detected together in the same isolate in 5.6%, while bla(OXA-48)-like were not detected. ERIC-PCR detected limited genetic relatedness between K. pneumoniae isolates. Elevated resistance rates were observed to all antibiotics including carbapenems among K. pneumoniae isolates causing CRBSI. ERIC-PCR showed that the resistant isolates were mainly polyclonal. Our results call for reinforcement of antimicrobial stewardship and measures to prevent CRBSI.201829936619
1417130.9860Prevalence and Phenotypic and Molecular Characterization of Carbapenemase-Producing Gram-Negative Bacteria in Gabon. Data collection and monitoring of carbapenemase-producing (CP) Gram-negative bacteria (GNB) are often limited. This study determined CP-GNB prevalence in Gabon and the genetic origins of the resistance genes. From January 2016 to March 2018, 869 clinically significant GNB isolates from inpatients and outpatients, and 19 fecal samples (inpatients) were analyzed in the main hospitals of Gabon. Fecal samples were screened using ChromID® CARBA SMART selective chromogenic medium biplates. Species were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Antibiotic susceptibility was tested using the disk diffusion method on Müller-Hinton agar, and resistance genes were assessed by multiplex polymerase chain reaction and sequencing. Overall, 1.61% of clinical isolates (14 of 869) and 5.26% of fecal samples (1 of 19) were CP-GNB. The CP-GNB rate was higher among inpatients (2.98%) than outpatients (0.33%), in intensive care units (28.57%, 4 of 14), and in urine samples (35.71%, 5 of 14). The most common CP-GNB were Klebsiella pneumoniae (53.33%) and Acinetobacter baumannii (26.67%). blaOXA-48 was the predominant carbapenemase-encoding gene (40%), followed by blaNDM-5 (33.33%). The A. baumannii multilocus sequence types ST2 and ST78, Enterobacter cloacae ST78, Escherichia coli ST2, and K. pneumonia ST48 and ST147 were found. These data indicate that CP bacteria are present in clinical and carriage samples. Preventive measures are needed to avoid the spread of resistance genes.202336535247
1441140.9860Molecular characterisation of carbapenem-resistant Klebsiella pneumoniae clinical isolates: preliminary experience from a tertiary care teaching hospital in the Himalayas. BACKGROUND: There is a lack of whole-genome sequencing (WGS) data on multidrug-resistant (MDR) bacteria from the Uttarakhand region of India. The aim of this study was to generate WGS data of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates recovered from patients in Uttarakhand's tertiary care centre. METHODS: A cross-sectional study included 29 MDR K. pneumoniae test isolates obtained from various clinical samples submitted to the bacteriology laboratory for culture and sensitivity testing from July 2018 to August 2019. After preliminary identification and antibiotic susceptibility testing, these isolates were subjected to WGS. RESULTS: A total of 27 of 29 isolates were CRKP. ST14 was the most common sequence type (n=8 [29.6%]). Carbapenem resistance was mainly encoded by OXA-48-like genes (21/27 [77.8%]). All isolates had a varied arsenal of resistance genes to different antibiotic classes. KL2 (9/27 [33.3%]) and KL51 (8/27 [29.6%]) were dominant K loci types. O1 and O2 together accounted for 88.9% (n=27) of CRKP isolates. Genes encoding yersiniabactin (ybt) and aerobactin (iuc) were identified in 88.9% (24/27) and 29.6% (8/27) of isolates. The predominant plasmid replicons present were ColKP3 (55.5%), IncFII(K) (51.8%) and IncFIB(pQil) (44.4%). CONCLUSIONS: This study emphasises the need for continued genomic surveillance of MDR bacteria that could be instrumental in developing treatment guidelines based on integrating phenotypic and molecular methods.202235029688
1429150.9859Detection of blaKPC and blaGES Carbapenemase Genes in Klebsiella pneumoniae Isolated from Hospitalized Patients in Kashan, Iran. INTRODUCTION: Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria are among the highly antimicrobial resistant gram negative bacteria and infections due to them are an increasingly major health problem worldwide. METHODS: In this study we have detected the blaKPC and blaGES carbapenemase genes in Klebsiella pneumoniae isolated from hospitalized patients in Kashan, Iran. In a cross-sectional study, a total of 181 K. pneumoniae isolates were recovered from clinical specimens during November 2013 to October 2014. RESULT: Antimicrobial susceptibility profiles were determined using disk diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and CLSI guidelines. Carbapenem-resistant K. pneumoniae isolates were identified. PCR method and sequencing were used for detection of blaKPC and blaGES carbapenemase genes. Of the 181 K. pneumoniae isolates, 35 (19.3%) were found to be resistant to imipenem and 150 (82.9%) were identified as MDR strains. Among carbapenems, the most resistant rate 39 (21.5%) was seen against ertapenem using disk diffusion method. Of K. pneumoniae isolates 21 (11.6%) and 42 (23.2%) carried blaKPC and blaGES genes, respectively and 19(10.5%) carried both genes simultaneously. CONCLUSION: The data of current study revealed that the frequency of resistance to carbapenems and production of carbapenemase enzymes especially GES type was high among clinical isolates of K pneumoniae in Kashan, Iran.201627527726
2196160.9858Antibiotic resistance profiles in Gram-negative bacteria causing bloodstream and urinary tract infections in paediatric and adult patients in Ndola District, Zambia, 2020-2021. BACKGROUND: Bloodstream infections (BSIs) and urinary tract infections (UTIs) caused by antibiotic resistant bacteria (ARB) have unfavourable treatment outcomes and negative economic impacts. OBJECTIVES: The main objective of this study was to determine antibiotic resistance profiles in Gram-negative bacteria (GNB) causing BSIs and UTIs. METHOD: A prospective study from October 2020 to January 2021 at Ndola Teaching Hospital and Arthur Davison Children's Hospital in the Ndola district, Zambia. Blood and urine samples collected from inpatients and outpatients presenting with fever and/or urinary tract infection symptoms were submitted for microbiological analysis. Pathogen identification and antibiotic susceptibility was determined by the automated VITEK 2 Compact machine. Resistance genes to commonly used antibiotics were determined using polymerase chain reaction. Data were analysed using SPSS version 28.0. RESULTS: One hundred and ten GNB were isolated, E. coli (45.5%) was predominant, with varying resistance profiles to different antibiotic classes. Resistance to third-generation cephalosporin was highest in Enterobacter cloacae (75%) and Klebsiella pneumoniae (71%), respectively. Emergence of carbapenem resistance was noted with the highest being 17% in Acinetobacter baumannii. Notably, the prevalence of multi-drug resistance was 63% and extensively drug-resistance was 32%. Resistance gene determinants identified included bla (CTX-M,) qnrA and bla (NDM). CONCLUSION: High level antibiotic resistance was observed in GNB known to be prevalent causative agents of BSIs and UTIs locally in Zambia. Improving microbiology diagnostic capacity, strengthening antimicrobial stewardship programs and enforcing infection prevention and control measures are of utmost importance in promoting rational use of antibiotics and preventing the spread and emergence of resistant pathogens.202540585877
1454170.9858OCCURRENCE OF AMINOGLYCOSIDES RESISTANCE GENES ACC(6)-IB AND ACC(3)-II AMONG GRAM-NEGATIVE ISOLATES CAUSING URINARY TRACT INFECTION IN PEDIATRIC PATIENTS, NAJAF, IRAQ. OBJECTIVE: The aim: The aim of the study was to detect the antimicrobial susceptibility patterns and frequency of aminoglycosides resistance genes of Gram-negative bacteria isolated from pediatric patient with UTI. PATIENTS AND METHODS: Materials and methods: The study has been performed with a total of 500 urine specimens collected from pediatric patients under the age of 18 year suspected with UTI, admitted to hospitals in Al-Najaf province/Iraq during the period from November 2018 to March 2019. RESULTS: Results: A total of 500 urine specimens had been tested, 120 (24%) had signifficant bacteriuria, while there 380 (76%) had non-signi!cant bacteriuria. Escherichia coli represent about 70 (68.2%) followed by followed by 23 (22.5%) K. pneumoniae, 5 (4.9%) P. aeruginosa, 2 (1.9%) Proteus spp., 1 (0.9%) Enterobacter spp. and 1 (0.9%) Oligella uratolytic. The antimicrobial susceptibility profile of 102 Gram-negative isolates, revealed that 59 (58%) were multidrug resistant (MDR) and 38(37%) were extensive drug resistant (XDR). The PCR results of aminoglycosides resistance showing that 23 (74.1%) Gram-negative isolates had acc(6')-Ib gene and 12 (38.7%) Gram-negative isolates acc(3')-II gene. CONCLUSION: Conclusions: A high frequency of multi-drug resistance and extensive-drug resistance of isolates were recognized, and an alarming percentage of amino-glycosides resistance to acc(6')-Ib and acc(3')-II.202337010165
842180.9858Molecular characterization of antimicrobial resistance genes and plasmid profiles in enterobacterales isolated from urinary tract infections in rural outpatient women in Otavalo, Ecuador. BACKGROUND: The rise of antibiotic-resistant bacteria poses a significant public health threat, particularly in the context of urinary tract infections (UTIs), which rank as the second most common ambulatory illness. UTIs are often caused by Enterobacterales species, such as Escherichia coli and Klebsiella pneumoniae, with increasing resistance to critical antibiotics complicating treatment. Indigenous rural populations, like those in Ecuador, face unique challenges due to cultural, social, and economic barriers that hinder access to healthcare, exacerbating the issue of antibiotic resistance. METHODS: This study analyzed 154 Enterobacterales strains isolated from ambulatory UTI cases in outpatiens from Otavalo, Ecuador, between October 2021 and February 2022. DNA was extracted, and the presence of antibiotic resistance genes (ARGs) was screened using PCR for extended-spectrum beta-lactamases and carbapenemases. Plasmid incompatibility groups were identified through replicon typing, and multi-locus sequence typing (MLST) was performed to characterize strains. RESULTS: The analysis revealed four prevalent ARGs, with bla(TEM) being the most common (87.01% of isolates), followed by bla(CTX-M-1) (44.16%), bla(SHV) (18.83%), and bla(CTX-M-9) (13.64%). No carbapenemases or mcr-1 genes were detected. Among the incompatibility groups, IncFIB, IncF, and IncY were the most prevalent. A diverse array of ARG combinations was observed, indicating significant plasmid-mediated genetic plasticity. MLST identified 33 distinct sequence types among E. coli isolates, with ST10 and ST3944 being the most frequent. For K. pneumoniae, ST15 and ST25 were predominant. CONCLUSIONS: This study reveals significant antibiotic resistance among Enterobacterales from urinary tract infections in rural outpatients in Ecuador. The bla(TEM) gene was found in 87.01% of isolates, with notable clones like E. coli ST10 and ST3944 linked to extraintestinal infections. K. pneumoniae ST15 and ST25 were prevalent, indicating multidrug resistance. The findings highlight the need for ongoing surveillance and targeted public health strategies to combat resistance in these vulnerable communities.202541131447
1421190.9858Predominance of Acinetobacter spp., Harboring the bla(IMP) Gene, Contaminating the Hospital Environment in a Tertiary Hospital in Mwanza, Tanzania: A Cross-Sectional Laboratory-Based Study. Data on colonization and hospital contamination of carbapenem-resistant Gram-negative bacteria (CR-GNB) are limited in low- and middle-income countries. We designed this study to determine the prevalence and co-existence of carbapenemase genes among CR-GNB isolated from clinical, colonization, and hospital environmental samples at a tertiary hospital in Mwanza, Tanzania. The modified Hodge test (MHT), the combined disk test (CDT), and the double-disk synergy test (DDST) were used for the phenotypic detection of carbapenemases. A multiplex PCR assay was used to detect bla(IMP) and bla(KPC), and a singleplex PCR assay was used to detect bla(OXA-48). Data were analyzed by STATA version 13.0. Overall, 68.8% (44/64) of the CR-GNB had at least one phenotype by phenotypic methods, whereby 60.9% (39/64) were both CDT and DDST positive and 31.3% (20/64) were MHT positive. A total of 23/64 (35.9%) had at least one of the genes tested with the predominance of bla(IMP) (91.3%; 21/23). In addition, 47.7% (21/44) of the CR-GNB phenotypes had at least one gene. Around 47.8% (11/23) of the CR-GNB carried multiple genes encoding for carbapenem resistance, with the maximum co-existence of bla(IMP)/bla(KPC)/bla(OXA-48) (45.5%; 5/11). The majority of carbapenem-resistant genes were detected in Acinetobacter spp. (82.6%; 19/23) and isolated from bed swabs (69.6%; 16/23). Acinetobacter spp. carrying the bla(IMP) gene predominantly contaminated the hospital environment. Therefore, we recommend routine decontamination of inanimate hospital surfaces, including patient beds.202235056011