# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4524 | 0 | 0.9994 | Functional genomics in Campylobacter coli identified a novel streptomycin resistance gene located in a hypervariable genomic region. Numerous aminoglycoside resistance genes have been reported in Campylobacter spp. often resembling those from Gram-positive bacterial species and located in transferable genetic elements with other resistance genes. We discovered a new streptomycin (STR) resistance gene in Campylobactercoli showing 27-34 % amino acid identity to aminoglycoside 6-nucleotidyl-transferases described previously in Campylobacter. STR resistance was verified by gene expression and insertional inactivation. This ant-like gene differs from the previously described aminoglycoside resistance genes in Campylobacter spp. in several aspects. It does not appear to originate from Gram-positive bacteria and is located in a region corresponding to a previously described hypervariable region 14 of C. jejuni with no other known resistance genes detected in close proximity. Finally, it does not belong to a multiple drug resistance plasmid or transposon. This novel ant-like gene appears widely spread among C. coli as it is found in strains originating both from Europe and the United States and from several, apparently unrelated, hosts and environmental sources. The closest homologue (60 % amino acid identity) was found in certain C. jejuni and C. coli strains in a similar genomic location, but an association with STR resistance was not detected. Based on the findings presented here, we hypothesize that Campylobacter ant-like gene A has originated from a common ancestral proto-resistance element in Campylobacter spp., possibly encoding a protein with a different function. In conclusion, whole genome sequencing allowed us to fill in a knowledge gap concerning STR resistance in C. coli by revealing a novel STR resistance gene possibly inherent to Campylobacter. | 2016 | 27154456 |
| 4469 | 1 | 0.9993 | Integrons: an antibiotic resistance gene capture and expression system. Bacteria can transfer genetic information to provide themselves with protection against most antibiotics. The acquisition of resistance gene arrays involves genetic mobile elements like plasmids and transposons. Another class of genetic structures, termed integrons, have been described and contain one or more gene cassettes located at a specific site. Integrons are defined by an intl gene encoding an integrase, a recombination site attl and a strong promoter. At least six classes of integrons have been determined according to their intl gene. Classes 1, 2 and 3 are the most studied and are largely implicated in the dissemination of antibiotic resistance. A gene cassette includes an open reading frame and, at the 3'-end, a recombination site attC. Integration or excision of cassettes occur by a site-specific recombination mechanism catalyzed by the integrase. However, insertion can occur, albeit rarely, at non-specific sites leading to a stable situation for the cassette. Cassettes are transcribed from the common promoter located in the 5'-conserved segment and expression of distal genes is reduced by the presence of upstream cassettes. Most gene cassettes encode antibiotic resistant determinants but antiseptic resistant genes have also been described. Integrons seem to have a major role in the spread of multidrug resistance in gram-negative bacteria but integrons in gram-positive bacteria were described recently. Moreover, the finding of super-integrons with gene-cassettes coding for other determinants (biochemical functions, virulence factors) in Vibrio isolates dating from 1888 suggests the likely implication of this multicomponent cassette-integron system in bacterial genome evolution before the antibiotic era and to a greater extent than initially believed. | 2000 | 10987194 |
| 9888 | 2 | 0.9993 | Evolution and typing of IncC plasmids contributing to antibiotic resistance in Gram-negative bacteria. The large, broad host range IncC plasmids are important contributors to the spread of key antibiotic resistance genes and over 200 complete sequences of IncC plasmids have been reported. To track the spread of these plasmids accurate typing to identify the closest relatives is needed. However, typing can be complicated by the high variability in resistance gene content and various typing methods that rely on features of the conserved backbone have been developed. Plasmids can be broadly typed into two groups, type 1 and type 2, using four features that differentiate the otherwise closely related backbones. These types are found in many different countries in bacteria from humans and animals. However, hybrids of type 1 and type 2 are also occasionally seen, and two further types, each represented by a single plasmid, were distinguished. Generally, the antibiotic resistance genes are located within a small number of resistance islands, only one of which, ARI-B, is found in both type 1 and type 2. The introduction of each resistance island generates a new lineage and, though they are continuously evolving via the loss of resistance genes or introduction of new ones, the island positions serve as valuable lineage-specific markers. A current type 2 lineage of plasmids is derived from an early type 2 plasmid but the sequences of early type 1 plasmids include features not seen in more recent type 1 plasmids, indicating a shared ancestor rather than a direct lineal relationship. Some features, including ones essential for maintenance or for conjugation, have been examined experimentally. | 2018 | 30081066 |
| 9867 | 3 | 0.9993 | Mosaic plasmids are abundant and unevenly distributed across prokaryotic taxa. Mosaic plasmids, plasmids composed of genetic elements from distinct sources, are associated with the spread of antibiotic resistance genes. Transposons are considered the primary mechanism for mosaic plasmid formation, though other mechanisms have been observed in specific instances. The frequency with which mosaic plasmids have been described suggests they may play an important role in plasmid population dynamics. Our survey of the confirmed plasmid sequences available from complete and draft genomes in the RefSeq database shows that 46% of them fit a strict definition of mosaic. Mosaic plasmids are also not evenly distributed over the taxa represented in the database. Plasmids from some genera, including Piscirickettsia and Yersinia, are almost all mosaic, while plasmids from other genera, including Borrelia, are rarely mosaic. While some mosaic plasmids share identical regions with hundreds of others, the median mosaic plasmid only shares with 8 other plasmids. When considering only plasmids from finished genomes (51.6% of the total), mosaic plasmids have significantly higher proportions of transposase and antibiotic resistance genes. Conversely, only 56.6% of mosaic fragments (DNA fragments shared between mosaic plasmids) contain a recognizable transposase gene, and only 1.2% of mosaic fragments are flanked by inverted repeats. Mosaic fragments associated with the IS26 transposase gene are 3.8-fold more abundant than any other sequence shared between mosaic plasmids in the database, though this is at least partly due to overrepresentation of Enterobacteriaceae plasmids. Mosaic plasmids are a complicated trait of some plasmid populations, only partly explained by transposition. Though antibiotic resistance genes led to the identification of many mosaic plasmids, mosaic plasmids are a broad phenomenon encompassing many more traits than just antibiotic resistance. Further research will be required to determine the influence of ecology, host repair mechanisms, conjugation, and plasmid host range on the formation and influence of mosaic plasmids. AUTHOR SUMMARY: Plasmids are extrachromosomal genetic entities that are found in many prokaryotes. They serve as flexible storage for genes, and individual cells can make substantial changes to their characteristics by acquiring, losing, or modifying a plasmid. In some pathogenic bacteria, such as Escherichia coli, antibiotic resistance genes are known to spread primarily on plasmids. By analyzing a database of 8592 plasmid sequences we determined that many of these plasmids have exchanged genes with each other, becoming mosaics of genes from different sources. We next separated these plasmids into groups based on the organism they were isolated from and found that different groups had different fractions of mosaic plasmids. This result was unexpected and suggests that the mechanisms and selective pressures causing mosaic plasmids do not occur evenly over all species. It also suggests that plasmids may provide different levels of potential variation to different species. This work uncovers a previously unrecognized pattern in plasmids across prokaryotes, that could lead to new insights into the evolutionary role that plasmids play. | 2019 | 30797764 |
| 4467 | 4 | 0.9993 | PCR mapping of integrons reveals several novel combinations of resistance genes. The integron is a new type of mobile element which has evolved by a site-specific recombinational mechanism. Integrons consist of two conserved segments of DNA separated by a variable region containing one or more genes integrated as cassettes. Oligonucleotide probes specific for the conserved segments have revealed that integrons are widespread in recently isolated clinical bacteria. Also, by using oligonucleotide probes for several antibiotic resistance genes, we have found novel combinations of resistance genes in these strains. By using PCR, we have determined the content and order of the resistance genes inserted between the conserved segments in the integrons of these clinical isolates. PCR mapping of integrons can be a useful epidemiological tool to study the evolution of multiresistance plasmids and transposons and dissemination of antibiotic resistance genes. | 1995 | 7695304 |
| 9823 | 5 | 0.9993 | Transposition of an antibiotic resistance element in mycobacteria. Bacterial resistance to antibiotics is often plasmid-mediated and the associated resistance genes encoded by transposable elements. Mycobacteria, including the human pathogens Mycobacterium tuberculosis and M. leprae, are resistant to many antibiotics, and their cell-surface structure is believed to be largely responsible for the wide range of resistance phenotypes. Antibiotic-resistance plasmids have so far not been implicated in resistance of mycobacteria to antibiotics. Nevertheless, antibiotic-modifying activities such as aminoglycoside acetyltransferases and phosphotransferases have been detected in fast-growing species. beta-lactamases have also been found in most fast- and slow-growing mycobacteria. To date no mycobacterial antibiotic-resistance genes have been isolated and characterized. We now report the isolation, cloning and sequencing of a genetic region responsible for resistance to sulphonamides in M. fortuitum. This region also contains an open reading frame homologous to one present in Tn1696 (member of the Tn21 family) which encodes a site-specific integrase. The mycobacterial resistance element is flanked by repeated sequences of 880 base pairs similar to the insertion elements of the IS6 family found in Gram+ and Gram- bacteria. The insertion element is shown to transpose to different sites in the chromosome of a related fast-growing species, M. smegmatis. The characterization of this element should permit transposon mutagenesis in the analysis of mycobacterial virulence and related problems. | 1990 | 2163027 |
| 4466 | 6 | 0.9993 | Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. Resistance of gram-negative organisms to antibiotics such as beta-lactams, aminoglycosides, trimethoprim and chloramphenicol is caused by many different acquired genes, and a substantial proportion of these are part of small mobile elements known as gene cassettes. A gene cassette consists of the gene and a downstream sequence, known as a 59-base element (59-be), that acts as a specific recombination site. Gene cassettes can move into or out of a specific receptor site (attl site) in a companion element called an integron, and integration or excision of the cassettes is catalysed by a site-specific recombinase (Intl) that is encoded by the integron. At present count there are 40 different cassette-associated resistance genes and three distinct classes of integron, each encoding a distinct Intl integrase. The same cassettes are found in all three classes of integron, indicating that cassettes can move freely between different integrons. Integrons belonging to class I often contain a further antibiotic resistance gene, sull, conferring resistance to sulphonamides. The sull gene is found in a conserved region (3'-CS) that is not present in all members of this class. Class I integrons of the sull type are most prevalent in clinical isolates and have been found in many different organisms. Even though most of them are defective transposon derivatives, having lost at least one of the transposition genes, they are none the less translocatable and consequently found in many different locations. The transposon Tn7 is the best known representative of class 2 integrons, and Tn7 and relatives are also found in many different species. | 1998 | 16904397 |
| 3596 | 7 | 0.9993 | Association of mercury resistance with antibiotic resistance in the gram-negative fecal bacteria of primates. Gram-negative fecal bacterial from three longitudinal Hg exposure experiments and from two independent survey collections were examined for their carriage of the mercury resistance (mer) locus. The occurrence of antibiotic resistance was also assessed in both mercury-resistant (Hgr) and mercury-susceptible (Hgs) isolates from the same collections. The longitudinal studies involved exposure of the intestinal flora to Hg released from amalgam "silver" dental restorations in six monkeys. Hgr strains were recovered before the installation of amalgams, and frequently these became the dominant strains while amalgams were installed. Such persistent Hgr strains always carried the same mer locus throughout the experiments. In both the longitudinal and survey collections, certain mer loci were preferentially associated with one genus, whereas other mer loci were recovered from many genera. In general, strains with any mer locus were more likely to be multiresistant than were strains without mer loci; this clustering tendency was also seen for antibiotic resistance genes. However, the association of antibiotic multiresistance with mer loci was not random; regardless of source, certain mer loci occurred in highly multiresistant strains (with as many as seven antibiotic resistances), whereas other mer loci were found in strains without any antibiotic resistance. The majority of highly multiresistant Hgr strains also carried genes characteristic of an integron, a novel genetic element which enables the formation of tandem arrays of antibiotic resistance genes. Hgr strains lacking antibiotic resistance showed no evidence of integron components. | 1997 | 9361435 |
| 4468 | 8 | 0.9993 | Mobile gene cassettes and integrons: moving antibiotic resistance genes in gram-negative bacteria. In Gram-negative pathogens, multiple antibiotic resistance is common and many of the known resistance genes are contained in mobile gene cassettes. Cassettes can be integrated into or deleted from their receptor elements, the integrons, or infrequently may be integrated at other locations via site-specific recombination catalysed by an integron-encoded recombinase. As a consequence, arrays of several different antibiotic resistance genes can be created. Over 40 gene cassettes and three distinct classes of integrons have been identified to date. Cassette-associated genes conferring resistance to beta-lactams, aminoglycosides, trimethoprim, chloramphenicol, streptothricin and quaternary ammonium compounds used as antiseptics and disinfectants have been found. In addition, most members of the commonest family of integrons (class 1) include a sulfonamide resistance determinant in the backbone structure. Integrons are themselves translocatable, though most are defective transposon derivatives. Integron movement allows transfer of the cassette-associated resistance genes from one replicon to another or into another active transposon which facilitates spread of integrons that are transposition defective. Horizontal transfer of the resistance genes can be achieved when an integron containing one or more such genes is incorporated into a broad-host-range plasmid. Likewise, single cassettes integrated at secondary sites in a broad-host-range plasmid can also move across species boundaries. | 1997 | 9189642 |
| 4464 | 9 | 0.9993 | Class 1 integrons, gene cassettes, mobility, and epidemiology. Integrons are genetic elements that, although unable to move themselves, contain gene cassettes that can be mobilized to other integrons or to secondary sites in the bacterial genome. The majority of approximately 60 known gene cassettes encode resistance to antibiotics. Recently, a number of gene cassettes encoding extended-spectrum beta-lactamases or carbapenemases have been described. Up to at least five cassettes may be present in an integron, which leads to multiresistance. Frequently, more than one integron is observed within the same bacterial cell. Integrons are widespread in their species distribution. Although integrons are normally reported from Enterobacteriaceae and other gram-negative bacteria, an integron has been described in Corynebacterium glutamicum, a gram-positive species. The gene cassette in this integron showed even higher expression when compared to the expression in Escherichia coli. Integrons have been reported from all continents and are found frequently. The widespread occurrence of integrons is thought to be due to their association with transposon plasmids, conjugative plasmids, or both. Integrons form an important source for the spread of antibiotic resistance, at least in gram-negative bacteria but also potentially in gram-positive bacteria. The aim of this review is to describe the versatility of integrons, especially their mobility and their ability to collect resistance genes. | 1999 | 10614949 |
| 4526 | 10 | 0.9993 | The tetracycline resistance gene tet(M) exhibits mosaic structure. Tetracycline resistance genes of the M class, tet(M), are typically found on mobile genetic elements as the conjugative transposons of gram-positive bacteria. By comparing the sequences of eight different tet(M) genes (from Enterococcus faecalis, Streptococcus pneumoniae, Staphylococcus aureus, Ureaplasma urealyticum, and Neisseria), a mosaic structure was detected which could be traced to two distinct alleles. The two alleles displayed a divergence of 8% and a different G/C content. The block structure of these genes provides evidence for the contribution of homologous recombination to the evolution and the heterogeneity of the tet(M) locus. Unlike described cases of chromosomally located mosaic loci, tet(M) is a relatively recently acquired determinant in the species examined and it would appear that mosaic structure within tet(M) has evolved after acquisition of the gene by the mobile genetic elements upon which it is located. | 1996 | 8812782 |
| 4635 | 11 | 0.9993 | A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve. Bifidobacteria are mutualistic intestinal bacteria, and their presence in the human gut has been associated with health-promoting activities. The presence of antibiotic resistance genes in this genus is controversial, since, although bifidobacteria are nonpathogenic microorganisms, they could serve as reservoirs of resistance determinants for intestinal pathogens. However, until now, few antibiotic resistance determinants have been functionally characterized in this genus. In this work, we show that Bifidobacterium breve CECT7263 displays atypical resistance to erythromycin and clindamycin. In order to delimit the genomic region responsible for the observed resistance phenotype, a library of genomic DNA was constructed and a fragment of 5.8 kb containing a gene homologous to rRNA methylase genes was able to confer erythromycin resistance in Escherichia coli This genomic region seems to be very uncommon, and homologs of the gene have been detected in only one strain of Bifidobacterium longum and two other strains of B. breve In this context, analysis of shotgun metagenomics data sets revealed that the gene is also uncommon in the microbiomes of adults and infants. The structural gene and its upstream region were cloned into a B. breve-sensitive strain, which became resistant after acquiring the genetic material. In vitro conjugation experiments did not allow us to detect gene transfer to other recipients. Nevertheless, prediction of genes potentially acquired through horizontal gene transfer events revealed that the gene is located in a putative genomic island.IMPORTANCEBifidobacterium breve is a very common human intestinal bacterium. Often described as a pioneer microorganism in the establishment of early-life intestinal microbiota, its presence has been associated with several beneficial effects for the host, including immune stimulation and protection against infections. Therefore, some strains of this species are considered probiotics. In relation to this, because probiotic bacteria are used for human and animal consumption, one of the safety concerns over these bacteria is the presence of antibiotic resistance genes, since the human gut is a densely populated habitat that could favor the transfer of genetic material to potential pathogens. In this study, we analyzed the genetic basis responsible for the erythromycin and clindamycin resistance phenotype of B. breve CECT7263. We were able to identify and characterize a novel gene homologous to rRNA methylase genes which confers erythromycin and clindamycin resistance. This gene seems to be very uncommon in other bifidobacteria and in the gut microbiomes of both adults and infants. Even though conjugation experiments showed the absence of transferability under in vitro conditions, it has been predicted to be located in a putative genomic island recently acquired by specific bifidobacterial strains. | 2018 | 29500262 |
| 4465 | 12 | 0.9993 | Genetic analyses of sulfonamide resistance and its dissemination in gram-negative bacteria illustrate new aspects of R plasmid evolution. In contrast to what has been observed for many other antibiotic resistance mechanisms, there are only two known genes encoding plasmid-borne sulfonamide resistance. Both genes, sulI and sulII, encode a drug-resistant dihydropteroate synthase enzyme. In members of the family Enterobacteriaceae isolated from several worldwide sources, plasmid-mediated resistance to sulfonamides could be identified by colony hybridization as being encoded by sulI, sulII, or both. The sulI gene was in all cases found to be located in the newly defined, mobile genetic element, recently named an integron, which has been shown to contain a site-specific recombination system for the integration of various antibiotic resistance genes. The sulII gene was almost exclusively found as part of a variable resistance region on small, nonconjugative plasmids. Colony hybridization to an intragenic probe, restriction enzyme digestion, and nucleotide sequence analysis of small plasmids indicated that the sulII gene and contiguous sequences represent an independently occurring region disseminated in the bacterial population. The sulII resistance region was bordered by direct repeats, which in some plasmids were totally or partially deleted. The prevalence of sulI and sulII could thus be accounted for by their stable integration in transposons and in plasmids that are widely disseminated among gram-negative bacteria. | 1991 | 1952855 |
| 3005 | 13 | 0.9992 | Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. The insertion sequence IS26 plays a key role in disseminating antibiotic resistance genes in Gram-negative bacteria, forming regions containing more than one antibiotic resistance gene that are flanked by and interspersed with copies of IS26. A model presented for a second mode of IS26 movement that explains the structure of these regions involves a translocatable unit consisting of a unique DNA segment carrying an antibiotic resistance (or other) gene and a single IS copy. Structures resembling class I transposons are generated via RecA-independent incorporation of a translocatable unit next to a second IS26 such that the ISs are in direct orientation. Repeating this process would lead to arrays of resistance genes with directly oriented copies of IS26 at each end and between each unique segment. This model requires that IS26 recognizes another IS26 as a target, and in transposition experiments, the frequency of cointegrate formation was 60-fold higher when the target plasmid contained IS26. This reaction was conservative, with no additional IS26 or target site duplication generated, and orientation specific as the IS26s in the cointegrates were always in the same orientation. Consequently, the cointegrates were identical to those formed via the known mode of IS26 movement when a target IS26 was not present. Intact transposase genes in both IS26s were required for high-frequency cointegrate formation as inactivation of either one reduced the frequency 30-fold. However, the IS26 target specificity was retained. Conversion of each residue in the DDE motif of the Tnp26 transposase also reduced the cointegration frequency. Importance: Resistance to antibiotics belonging to several of the different classes used to treat infections is a critical problem. Multiply antibiotic-resistant bacteria usually carry large regions containing several antibiotic resistance genes, and in Gram-negative bacteria, IS26 is often seen in these clusters. A model to explain the unusual structure of regions containing multiple IS26 copies, each associated with a resistance gene, was not available, and the mechanism of their formation was unexplored. IS26-flanked structures deceptively resemble class I transposons, but this work reveals that the features of IS26 movement do not resemble those of the IS and class I transposons studied to date. IS26 uses a novel movement mechanism that defines a new family of mobile genetic elements that we have called "translocatable units." The IS26 mechanism also explains the properties of IS257 (IS431) and IS1216, which belong to the same IS family and mobilize resistance genes in Gram-positive staphylococci and enterococci. | 2014 | 25293759 |
| 4345 | 14 | 0.9992 | Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. Traditional genetic association studies are very difficult in bacteria, as the generally limited recombination leads to large linked haplotype blocks, confounding the identification of causative variants. Beta-lactam antibiotic resistance in Streptococcus pneumoniae arises readily as the bacteria can quickly incorporate DNA fragments encompassing variants that make the transformed strains resistant. However, the causative mutations themselves are embedded within larger recombined blocks, and previous studies have only analysed a limited number of isolates, leading to the description of "mosaic genes" as being responsible for resistance. By comparing a large number of genomes of beta-lactam susceptible and non-susceptible strains, the high frequency of recombination should break up these haplotype blocks and allow the use of genetic association approaches to identify individual causative variants. Here, we performed a genome-wide association study to identify single nucleotide polymorphisms (SNPs) and indels that could confer beta-lactam non-susceptibility using 3,085 Thai and 616 USA pneumococcal isolates as independent datasets for the variant discovery. The large sample sizes allowed us to narrow the source of beta-lactam non-susceptibility from long recombinant fragments down to much smaller loci comprised of discrete or linked SNPs. While some loci appear to be universal resistance determinants, contributing equally to non-susceptibility for at least two classes of beta-lactam antibiotics, some play a larger role in resistance to particular antibiotics. All of the identified loci have a highly non-uniform distribution in the populations. They are enriched not only in vaccine-targeted, but also non-vaccine-targeted lineages, which may raise clinical concerns. Identification of single nucleotide polymorphisms underlying resistance will be essential for future use of genome sequencing to predict antibiotic sensitivity in clinical microbiology. | 2014 | 25101644 |
| 9822 | 15 | 0.9992 | Molecular mechanisms for transposition of drug-resistance genes and other movable genetic elements. Transposition is proposed to be responsible for the rapid evolution of multiply drug-resistant bacterial strains. Transposons, which carry the genes encoding drug resistance, are linear pieces of DNA that range in size from 2.5 to 23 kilobase pairs and always contain at their ends nucleotide sequences repeated in inverse order. In some transposons the terminal inverted repeat sequences are capable of independent movement and are called insertion sequences. Transposons carry a gene that encodes transposase(s), the enzyme(s) responsible for recombination of the transposon into another DNA molecule. Studies on transposable genetic elements in bacteria have not only given insight into the spread of antibiotic resistance but also into the process of DNA movement. | 1987 | 3035697 |
| 4453 | 16 | 0.9992 | dfrA trimethoprim resistance genes found in Gram-negative bacteria: compilation and unambiguous numbering. To track the spread of antibiotic resistance genes, accurate identification of individual genes is essential. Acquired trimethoprim resistance genes encoding trimethoprim-insensitive homologues of the sensitive dihydrofolate reductases encoded by the folA genes of bacteria are increasingly found in genome sequences. However, naming and numbering in publicly available records (journal publications or entries in the GenBank non-redundant DNA database) has not always been unambiguous. In addition, the nomenclature has evolved over time. Here, the changes in nomenclature and the most commonly encountered problems and pitfalls affecting dfrA gene identification arising from historically incorrect or inaccurate numbering are explained. The complete set of dfrA genes/DfrA proteins found in Gram-negative bacteria for which readily searchable sequence information is currently available has been compiled using less than 98% identity for both the gene and the derived protein sequence as the criteria for assignment of a new number. In most cases, trimethoprim resistance has been demonstrated. The gene context, predominantly in a gene cassette or near the ori end of CR1 or CR2, is also covered. The RefSeq database that underpins the programs used to automatically identify resistance genes in genome data sets has been curated to assign all sequences listed to the correct number. This led to the assignment of corrected or new gene numbers to several mis-assigned sequences. The unique numbers assigned for the dfrA/DfrA set are now listed in the RefSeq database, which we propose provides a way forward that should end future duplication of numbers and the confusion that causes. | 2021 | 34180526 |
| 9821 | 17 | 0.9992 | Mercury resistance (mer) operons in enterobacteria. Mercury resistance is found in many genera of bacteria. Common amongst enterobacteria are transposons related to Tn21, which is both mercuric ion- and streptomycin-/spectinomycin- and sulphonamide-resistant. Other Tn21-related transposons often have different antibiotic resistances compared with Tn21, but share many non-antibiotic-resistance genes with it. In this article we discuss possible mechanisms for the evolution of Tn21 and related genetic elements. | 2002 | 12196175 |
| 9866 | 18 | 0.9992 | Integrons in Xanthomonas: a source of species genome diversity. Integrons are best known for assembling antibiotic resistance genes in clinical bacteria. They capture genes by using integrase-mediated site-specific recombination of mobile gene cassettes. Integrons also occur in the chromosomes of many bacteria, notably beta- and gamma-Proteobacteria. In a survey of Xanthomonas, integrons were found in all 32 strains representing 12 pathovars of two species. Their chromosomal location was downstream from the acid dehydratase gene, ilvD, suggesting that an integron was present at this site in the ancestral xanthomonad. There was considerable sequence and structural diversity among the extant integrons. The majority of integrase genes were predicted to be inactivated by frameshifts, stop codons, or large deletions, suggesting that the associated gene cassettes can no longer be mobilized. In support, groups of strains with the same deletions or stop codons/frameshifts in their integrase gene usually contained identical arrays of gene cassettes. In general, strains within individual pathovars had identical cassettes, and these exhibited no similarity to cassettes detected in other pathovars. The variety and characteristics of contemporary gene cassettes suggests that the ancestral integron had access to a diverse pool of these mobile elements, and that their genes originated outside the Xanthomonas genome. Subsequent inactivation of the integrase gene in particular lineages has largely fixed the gene cassette arrays in particular pathovars during their differentiation and specialization into ecological niches. The acquisition of diverse gene cassettes by different lineages within Xanthomonas has contributed to the species-genome diversity of the genus. The role of gene cassettes in survival on plant surfaces is currently unknown. | 2005 | 15755815 |
| 9826 | 19 | 0.9992 | Horizontal genetic exchange, evolution, and spread of antibiotic resistance in bacteria. Some transformable bacteria have acquired target-mediated antibiotic resistance by horizontal genetic exchange of fragments of chromosomal genes. The resistant strains express variants of the antibiotic target that are metabolically active but exhibit a lowered affinity for the antibiotic. The alleles encoding these resistant proteins are mosaics comprising DNA derived from the host and other bacteria, often members of a different species. Examples include penicillin-resistant penicillin-binding proteins (PBPs) in Streptococcus pneumoniae and the pathogenic Neisseria species and sulfonamide-resistant dihydropterate synthase in Neisseria meningitidis. Distinct mosaic alleles encoding antibiotic resistance have arisen on multiple occasions, indicating the mobility of chromosomal genes in these species. Mosaic genes can arise at any chromosomal locus, and S. pneumoniae organisms with high-level penicillin resistance have acquired mosaic PBP genes at three bacterial bpb loci. Furthermore, horizontal genetic exchange permits movement of alleles among bacterial lineages, increasing the opportunities for the spread of antibiotic resistance. | 1998 | 9710667 |