OSSWEET14 - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
9800.9171Natural variations in the promoter of OsSWEET13 and OsSWEET14 expand the range of resistance against Xanthomonas oryzae pv. oryzae. Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the major diseases that impact rice production in Asia. The bacteria use transcription activator-like effectors (TALEs) to hijack the host transcription machinery and activate key susceptibility (S) genes, specifically members of the SWEET sucrose uniporters through the recognition of effector-binding element (EBEs) in the promoter regions. However, natural variations in the EBEs that alter the binding affinity of TALEs usually prevent sufficient induction of SWEET genes, leading to resistance phenotypes. In this study, we identified candidate resistance alleles by mining a rice diversity panel for mutations in the promoter of OsSWEET13 and OsSWEET14, which are direct targets of three major TALEs PthXo2, PthXo3 and AvrXa7. We found natural variations at the EBE of both genes, which appeared to have emerged independently in at least three rice subspecies. For OsSWEET13, a 2-bp deletion at the 5th and 6th positions of the EBE, and a substitution at the 17th position appear to be sufficient to prevent activation by PthXo2. Similarly, a single nucleotide substitution at position 10 compromised the induction of OsSWEET14 by AvrXa7. These findings might increase our opportunities to reduce pathogen virulence by preventing the induction of SWEET transporters. Pyramiding variants along with other resistance genes may provide durable and broad-spectrum resistance to the disease.201830212546
4810.9103Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Boosted responsiveness of plant cells to stress at the onset of pathogen- or chemically induced resistance is called priming. The chemical β-aminobutyric acid (BABA) enhances Arabidopsis thaliana resistance to hemibiotrophic bacteria through the priming of the salicylic acid (SA) defence response. Whether BABA increases Arabidopsis resistance to the necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) is not clear. In this work, we show that treatment with BABA protects Arabidopsis against the soft-rot pathogen Pcc. BABA did not prime the expression of the jasmonate/ethylene-responsive gene PLANT DEFENSIN 1.2 (PDF1.2), the up-regulation of which is usually associated with resistance to necrotrophic pathogens. Expression of the SA marker gene PATHOGENESIS RELATED 1 (PR1) on Pcc infection was primed by BABA treatment, but SA-defective mutants demonstrated a wild-type level of BABA-induced resistance against Pcc. BABA primed the expression of the pattern-triggered immunity (PTI)-responsive genes FLG22-INDUCED RECEPTOR-LIKE KINASE 1 (FRK1), ARABIDOPSIS NON-RACE SPECIFIC DISEASE RESISTANCE GENE (NDR1)/HAIRPIN-INDUCED GENE (HIN1)-LIKE 10 (NHL10) and CYTOCHROME P450, FAMILY 81 (CYP81F2) after inoculation with Pcc or after treatment with purified bacterial microbe-associated molecular patterns, such as flg22 or elf26. PTI-mediated callose deposition was also potentiated in BABA-treated Arabidopsis, and BABA boosted Arabidopsis stomatal immunity to Pcc. BABA treatment primed the PTI response in the SA-defective mutants SA induction deficient 2-1 (sid2-1) and phytoalexin deficient 4-1 (pad4-1). In addition, BABA priming was associated with open chromatin configurations in the promoter region of PTI marker genes. Our data indicate that BABA primes the PTI response upon necrotrophic bacterial infection and suggest a role for the PTI response in BABA-induced resistance.201322947164
520.9101GmRAR1 and GmSGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean. RAR1, SGT1, and HSP90 are important components of effector-triggered immunity (ETI) in diverse plants, where RAR1 and SGT1 are thought to serve as HSP90 co-chaperones. We show that ETI in soybean requires RAR1 and SGT1 but not HSP90. Rsv1-mediated extreme resistance to Soybean mosaic virus (SMV) and Rpg-1b-mediated resistance to Pseudomonas syringae were compromised in plants silenced for GmRAR1 and GmSGT1-2 but not GmHSP90. This suggests that RAR1- or SGT1-dependant signaling is not always associated with a dependence on HSP90. Unlike in Arabidopsis, SGT1 in soybean also mediates ETI against the bacterial pathogen P. syringae. Similar to Arabidopsis, soybean RAR1 and SGT1 proteins interact with each other and two related HSP90 proteins. Plants silenced for GmHSP90 genes or GmRAR1 exhibited altered morphology, suggesting that these proteins also contribute to developmental processes. Silencing GmRAR1 and GmSGT1-2 impaired resistance to virulent bacteria and systemic acquired resistance (SAR) in soybean as well. Because the Arabidopsis rar1 mutant also showed a defect in SAR, we conclude that RAR1 and SGT1 serve as a point of convergence for basal resistance, ETI, and SAR. We demonstrate that, although soybean defense signaling pathways recruit structurally conserved components, they have distinct requirements for specific proteins.200919061405
5030.9098OsNPR1 Enhances Rice Resistance to Xanthomonas oryzae pv. oryzae by Upregulating Rice Defense Genes and Repressing Bacteria Virulence Genes. The bacteria pathogen Xanthomonas oryzae pv. oryzae (Xoo) infects rice and causes the severe disease of rice bacteria blight. As the central regulator of the salic acid (SA) signaling pathway, NPR1 is responsible for sensing SA and inducing the expression of pathogen-related (PR) genes in plants. Overexpression of OsNPR1 significantly increases rice resistance to Xoo. Although some downstream rice genes were found to be regulated by OsNPR1, how OsNPR1 affects the interaction of rice-Xoo and alters Xoo gene expression remains unknown. In this study, we challenged the wild-type and OsNPR1-OE rice materials with Xoo and performed dual RNA-seq analyses for the rice and Xoo genomes simultaneously. In Xoo-infected OsNPR1-OE plants, rice genes involved in cell wall biosynthesis and SA signaling pathways, as well as PR genes and nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes, were significantly upregulated compared to rice variety TP309. On the other hand, Xoo genes involved in energy metabolism, oxidative phosphorylation, biosynthesis of primary and secondary metabolism, and transportation were repressed. Many virulence genes of Xoo, including genes encoding components of type III and other secretion systems, were downregulated by OsNPR1 overexpression. Our results suggest that OsNPR1 enhances rice resistance to Xoo by bidirectionally regulating gene expression in rice and Xoo.202337240026
4940.9092Ectopic activation of the rice NLR heteropair RGA4/RGA5 confers resistance to bacterial blight and bacterial leaf streak diseases. Bacterial blight (BB) and bacterial leaf streak (BLS) are important diseases in Oryza sativa caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively. In both bacteria, transcription activator-like (TAL) effectors are major virulence determinants that act by transactivating host genes downstream of effector-binding elements (EBEs) bound in a sequence-specific manner. Resistance to Xoo is mostly related to the action of TAL effectors, either by polymorphisms that prevent the induction of susceptibility (S) genes or by executor (R) genes with EBEs embedded in their promoter, and that induce cell death and resistance. For Xoc, no resistance sources are known in rice. Here, we investigated whether the recognition of effectors by nucleotide binding and leucine-rich repeat domain immune receptors (NLRs), the most widespread resistance mechanism in plants, is also able to stop BB and BLS. In one instance, transgenic rice lines harboring the AVR1-CO39 effector gene from the rice blast fungus Magnaporthe oryzae, under the control of an inducible promoter, were challenged with transgenic Xoo and Xoc strains carrying a TAL effector designed to transactivate the inducible promoter. This induced AVR1-CO39 expression and triggered BB and BLS resistance when the corresponding Pi-CO39 resistance locus was present. In a second example, the transactivation of an auto-active NLR by Xoo-delivered designer TAL effectors resulted in BB resistance, demonstrating that NLR-triggered immune responses efficiently control Xoo. This forms the foundation for future BB and BLS disease control strategies, whereupon endogenous TAL effectors will target synthetic promoter regions of Avr or NLR executor genes.201627289079
4650.9090The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice. Transcription activator-like effector (TALE)-dependent dominant disease resistance (R) genes in plants, also referred to as executor R genes, are induced on infection by phytopathogenic bacteria of the genus Xanthomonas harbouring the corresponding TALE genes. Unlike the traditional R proteins, the executor R proteins do not determine the resistance specificity and may function broadly in different plant species. The executor R gene Bs4C-R in the resistant genotype PI 235047 of the pepper species Capsicum pubescens (CpBs4C-R) confers disease resistance to Xanthomonas campestris pv. vesicatoria (Xcv) harbouring the TALE genes avrBsP/avrBs4. In this study, the synthetic genes of CpBs4C-R and two other Bs4C-like genes, the susceptible allele in the genotype PI585270 of C. pubescens (CpBs4C-S) and the CaBs4C-R homologue gene in the cultivar 'CM334' of Capsicum annum (CaBs4C), were characterized in tobacco (Nicotiana benthamiana) and rice (Oryza sativa). The Bs4C genes induced cell death in N. benthamiana. The functional Bs4C-eCFP fusion proteins were localized to the endoplasmic reticulum (ER) membrane in the leaf epidermal cells of N. benthamiana. The Xa10 promoter-Bs4C fusion genes in transgenic rice conferred strain-specific disease resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight in rice, and were specifically induced by the Xa10-incompatible Xoo strain PXO99(A) (pHM1avrXa10). The results indicate that the Bs4C proteins from pepper species function broadly in rice and the Bs4C protein-mediated cell death from the ER is conserved between dicotyledonous and monocotyledonous plants, which can be utilized to engineer novel and enhanced disease resistance in heterologous plants.201829603592
9960.9085Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice. TAL (transcription activator-like) effectors from Xanthomonas bacteria activate the cognate host genes, leading to disease susceptibility or resistance dependent on the genetic context of host target genes. The modular nature and DNA recognition code of TAL effectors enable custom-engineering of designer TAL effectors (dTALE) for gene activation. However, the feasibility of dTALEs as transcription activators for gene functional analysis has not been demonstrated. Here, we report the use of dTALEs, as expressed and delivered by the pathogenic Xanthomonas oryzae pv. oryzae (Xoo), in revealing the new function of two previously identified disease-related genes and the potential of one developmental gene for disease susceptibility in rice/Xoo interactions. The dTALE gene dTALE-xa27, designed to target the susceptible allele of the resistance gene Xa27, elicited a resistant reaction in the otherwise susceptible rice cultivar IR24. Four dTALE genes were made to induce the four annotated Xa27 homologous genes in rice cultivar Nipponbare, but none of the four induced Xa27-like genes conferred resistance to the dTALE-containing Xoo strains. A dTALE gene was also generated to activate the recessive resistance gene xa13, an allele of the disease-susceptibility gene Os8N3 (also named Xa13 or OsSWEET11, a member of sucrose efflux transporter SWEET gene family). The induction of xa13 by the dTALE rendered the resistant rice IRBB13 (xa13/xa13) susceptible to Xoo. Finally, OsSWEET12, an as-yet uncharacterized SWEET gene with no corresponding naturally occurring TAL effector identified, conferred susceptibility to the Xoo strains expressing the corresponding dTALE genes. Our results demonstrate that dTALEs can be delivered through the bacterial secretion system to activate genes of interest for functional analysis in plants.201323430045
51870.9068Bacitracin and nisin resistance in Staphylococcus aureus: a novel pathway involving the BraS/BraR two-component system (SA2417/SA2418) and both the BraD/BraE and VraD/VraE ABC transporters. Two-component systems (TCSs) are key regulatory pathways allowing bacteria to adapt their genetic expression to environmental changes. Bacitracin, a cyclic dodecylpeptide antibiotic, binds to undecaprenyl pyrophosphate, the lipid carrier for cell wall precursors, effectively inhibiting peptidoglycan biosynthesis. We have identified a novel and previously uncharacterized TCS in the major human pathogen Staphylococcus aureus that we show to be essential for bacitracin and nisin resistance: the BraS/BraR system (Bacitracin resistance associated; SA2417/SA2418). The braRS genes are located immediately upstream from genes encoding an ABC transporter, accordingly designated BraDE. We have shown that the BraSR/BraDE module is a key bacitracin and nisin resistance determinant in S. aureus. In the presence of low antibiotic concentrations, BraSR activate transcription of two operons encoding ABC transporters: braDE and vraDE. We identified a highly conserved imperfect palindromic sequence upstream from the braDE and vraDE promoter sequences, essential for their transcriptional activation by BraSR, suggesting it is the likely BraR binding site. We demonstrated that the two ABC transporters play distinct and original roles in antibiotic resistance: BraDE is involved in bacitracin sensing and signalling through BraSR, whereas VraDE acts specifically as a detoxification module and is sufficient to confer bacitracin and nisin resistance when produced on its own. We show that these processes require functional BraD and VraD nucleotide-binding domain proteins, and that the large extracellular loop of VraE confers its specificity in bacitracin resistance. This is the first example of a TCS associated with two ABC transporters playing separate roles in signal transduction and antibiotic resistance.201121696458
874480.9066The Arabidopsis GPI-Anchored LTPg5 Encoded by At3g22600 Has a Role in Resistance against a Diverse Range of Pathogens. Arabidopsis contains 34 genes for glycosylphosphatidylinositol (GPI)-anchored LTPg proteins. A motif analysis has placed these into four groups. With one exception, all are produced with a signal peptide and are most likely attached to the cell membrane via the GPI anchor. Several of the LTPg genes across the four groups are downregulated in syncytia induced by the beet cyst nematode Heterodera schachtii. We have here studied At3g22600 encoding LTPg5, which is the most strongly downregulated LTPg gene. It is mainly expressed in roots, and a promoter::GUS line was used to confirm the downregulation in syncytia and also showed downregulation in galls of the root knot nematode Meloidogyne incognita. In contrast, infection with bacteria (Pseudomonas syringae) and fungi (Botrytis cinerea) led to the induction of the gene in leaves. This diverse regulation of LTPg5 indicated a role in resistance, which we confirmed with overexpression lines and a T-DNA mutant. The overexpression lines were more resistant to both nematode species and to P. syringae and B. cinerea, while a knock-out mutant was more susceptible to H. schachtii and P. syringae. Thus, LTPg5 encoded by At3g22600 is part of the Arabidopsis resistance mechanism against pathogens. LTPg5 has probably no direct antimicrobial activity but could perhaps act by associating with a receptor-like kinase, leading to the induction of defense genes such as PR1.202032150834
5790.9065Functional analysis of NtMPK2 uncovers its positive role in response to Pseudomonas syringae pv. tomato DC3000 in tobacco. Mitogen-activated protein kinase cascades are highly conserved signaling modules downstream of receptors/sensors and play pivotal roles in signaling plant defense against pathogen attack. Extensive studies on Arabidopsis MPK4 have implicated that the MAP kinase is involved in multilayered plant defense pathways. In this study, we identified tobacco NtMPK2 as an ortholog of AtMPK4. Transgenic tobacco overexpressing NtMPK2 markedly enhances resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) virulent and avirulent strains. Transcriptome analysis of NtMPK2-dependent genes shows that possibly the basal resistance system is activated by NtMPK2 overexpression. In addition to NtMPK2-mediated resistance, multiple pathways are involved in response to the avirulent bacteria based on analysis of Pst-responding genes, including SA and ET pathways. Notably, it is possible that biosynthesis of antibacterial compounds is responsible for inhibition of Pst DC3000 avirulent strain when programmed cell death processes in the host. Our results uncover that NtMPK2 positively regulate tobacco defense response to Pst DC3000 and improve our understanding of plant molecular defense mechanism.201626482478
94100.9063Dominant and Recessive Major R Genes Lead to Different Types of Host Cell Death During Resistance to Xanthomonas oryzae in Rice. The bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is the most devastating bacterial disease of rice worldwide. A number of dominant major disease resistance (MR) genes and recessive MR genes against Xoo have been cloned and molecularly characterized in the last two decades. However, how these MR genes mediated-resistances occur at the cytological level is largely unknown. Here, by ultrastructural examination of xylem parenchyma cells, we show that resistances to Xoo conferred by dominant MR genes and recessive MR genes resulted in different types of programmed cell death (PCD). Three dominant MR genes Xa1, Xa4, and Xa21 and two recessive MR genes xa5 and xa13 that encode very different proteins were used in this study. We observed that Xa1-, Xa4-, and Xa21-mediated resistances to Xoo were associated mainly with autophagy-like cell death featured by the formation of autophagosome-like bodies in the xylem parenchyma cells. In contrast, the xa5- and xa13-mediated resistances to Xoo were associated mainly with vacuolar-mediated cell death characterized by tonoplast disruption of the xylem parenchyma cells. Application of autophagy inhibitor 3-methyladenine partially compromised Xa1-, Xa4-, and Xa21-mediated resistances, as did Na(2)HPO(4) alkaline solution to xa5- and xa13-mediated resistances. These results suggest that autophagy-like cell death is a feature of the dominant MR gene-mediated resistance to Xoo and vacuolar-mediated cell death is a characteristic of the recessive MR gene-mediated resistance.201830519255
51110.9062A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Although allelic diversity of genes has been reported to play important roles in different physiological processes, information on allelic diversity of defense-responsive genes in host-pathogen interactions is limited. Here, we report that a pair of allelic genes, OsWRKY45-1 and OsWRKY45-2, which encode proteins with a 10-amino acid difference, play opposite roles in rice (Oryza sativa) resistance against bacterial pathogens. Bacterial blight caused by Xanthomonas oryzae pv oryzae (Xoo), bacterial streak caused by Xanthomonas oryzae pv oryzicola (Xoc), and fungal blast caused by Magnaporthe grisea are devastating diseases of rice worldwide. OsWRKY45-1-overexpressing plants showed increased susceptibility and OsWRKY45-1-knockout plants showed enhanced resistance to Xoo and Xoc. In contrast, OsWRKY45-2-overexpressing plants showed enhanced resistance and OsWRKY45-2-suppressing plants showed increased susceptibility to Xoo and Xoc. Interestingly, both OsWRKY45-1- and OsWRKY45-2-overexpressing plants showed enhanced resistance to M. grisea. OsWRKY45-1-regulated Xoo resistance was accompanied by increased accumulation of salicylic acid and jasmonic acid and induced expression of a subset of defense-responsive genes, while OsWRKY45-2-regulated Xoo resistance was accompanied by increased accumulation of jasmonic acid but not salicylic acid and induced expression of another subset of defense-responsive genes. These results suggest that both OsWRKY45-1 and OsWRKY45-2 are positive regulators in rice resistance against M. grisea, but the former is a negative regulator and the latter is a positive regulator in rice resistance against Xoo and Xoc. The opposite roles of the two allelic genes in rice-Xoo interaction appear to be due to their mediation of different defense signaling pathways.200919700558
47120.9059LTP3 contributes to disease susceptibility in Arabidopsis by enhancing abscisic acid (ABA) biosynthesis. Several plant lipid transfer proteins (LTPs) act positively in plant disease resistance. Here, we show that LTP3 (At5g59320), a pathogen and abscisic acid (ABA)-induced gene, negatively regulates plant immunity in Arabidopsis. The overexpression of LTP3 (LTP3-OX) led to an enhanced susceptibility to virulent bacteria and compromised resistance to avirulent bacteria. On infection of LTP3-OX plants with Pseudomonas syringae pv. tomato, genes involved in ABA biosynthesis, NCED3 and AAO3, were highly induced, whereas salicylic acid (SA)-related genes, ICS1 and PR1, were down-regulated. Accordingly, in LTP3-OX plants, we observed increased ABA levels and decreased SA levels relative to the wild-type. We also showed that the LTP3 overexpression-mediated enhanced susceptibility was partially dependent on AAO3. Interestingly, loss of function of LTP3 (ltp3-1) did not affect ABA pathways, but resulted in PR1 gene induction and elevated SA levels, suggesting that LTP3 can negatively regulate SA in an ABA-independent manner. However, a double mutant consisting of ltp3-1 and silent LTP4 (ltp3/ltp4) showed reduced susceptibility to Pseudomonas and down-regulation of ABA biosynthesis genes, suggesting that LTP3 acts in a redundant manner with its closest homologue LTP4 by modulating the ABA pathway. Taken together, our data show that LTP3 is a novel negative regulator of plant immunity which acts through the manipulation of the ABA-SA balance.201626123657
605130.9058Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. The extreme radiation resistance of Deinococcus bacteria requires the radiation-stimulated cleavage of protein DdrO by a specific metalloprotease called IrrE. DdrO is the repressor of a predicted radiation/desiccation response (RDR) regulon, composed of radiation-induced genes having a conserved DNA motif (RDRM) in their promoter regions. Here, we showed that addition of zinc ions to purified apo-IrrE, and short exposure of Deinococcus cells to zinc ions, resulted in cleavage of DdrO in vitro and in vivo, respectively. Binding of IrrE to RDRM-containing DNA or interaction of IrrE with DNA-bound DdrO was not observed. The data are in line with IrrE being a zinc peptidase, and indicate that increased zinc availability, caused by oxidative stress, triggers the in vivo cleavage of DdrO unbound to DNA. Transcriptomics and proteomics of Deinococcus deserti confirmed the IrrE-dependent regulation of predicted RDR regulon genes and also revealed additional members of this regulon. Comparative analysis showed that the RDR regulon is largely well conserved in Deinococcus species, but also showed diversity in the regulon composition. Notably, several RDR genes with an important role in radiation resistance in Deinococcus radiodurans, for example pprA, are not conserved in some other radiation-resistant Deinococcus species.201728397370
90140.9058Non-host defense response in a novel Arabidopsis-Xanthomonas citri subsp. citri pathosystem. Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is one of the most destructive diseases of citrus. Progress of breeding citrus canker-resistant varieties is modest due to limited resistant germplasm resources and lack of candidate genes for genetic manipulation. The objective of this study is to establish a novel heterologous pathosystem between Xcc and the well-established model plant Arabidopsis thaliana for defense mechanism dissection and resistance gene identification. Our results indicate that Xcc bacteria neither grow nor decline in Arabidopsis, but induce multiple defense responses including callose deposition, reactive oxygen species and salicylic aicd (SA) production, and defense gene expression, indicating that Xcc activates non-host resistance in Arabidopsis. Moreover, Xcc-induced defense gene expression is suppressed or attenuated in several well-characterized SA signaling mutants including eds1, pad4, eds5, sid2, and npr1. Interestingly, resistance to Xcc is compromised only in eds1, pad4, and eds5, but not in sid2 and npr1. However, combining sid2 and npr1 in the sid2npr1 double mutant compromises resistance to Xcc, suggesting genetic interactions likely exist between SID2 and NPR1 in the non-host resistance against Xcc in Arabidopsis. These results demonstrate that the SA signaling pathway plays a critical role in regulating non-host defense against Xcc in Arabidopsis and suggest that the SA signaling pathway genes may hold great potential for breeding citrus canker-resistant varieties through modern gene transfer technology.201222299054
97150.9057Universal gene co-expression network reveals receptor-like protein genes involved in broad-spectrum resistance in pepper (Capsicum annuum L.). Receptor-like proteins (RLPs) on plant cells have been implicated in immune responses and developmental processes. Although hundreds of RLP genes have been identified in plants, only a few RLPs have been functionally characterized in a limited number of plant species. Here, we identified RLPs in the pepper (Capsicum annuum) genome and performed comparative transcriptomics coupled with the analysis of conserved gene co-expression networks (GCNs) to reveal the role of core RLP regulators in pepper-pathogen interactions. A total of 102 RNA-seq datasets of pepper plants infected with four pathogens were used to construct CaRLP-targeted GCNs (CaRLP-GCNs). Resistance-responsive CaRLP-GCNs were merged to construct a universal GCN. Fourteen hub CaRLPs, tightly connected with defense-related gene clusters, were identified in eight modules. Based on the CaRLP-GCNs, we evaluated whether hub CaRLPs in the universal GCN are involved in the biotic stress response. Of the nine hub CaRLPs tested by virus-induced gene silencing, three genes (CaRLP264, CaRLP277, and CaRLP351) showed defense suppression with less hypersensitive response-like cell death in race-specific and non-host resistance response to viruses and bacteria, respectively, and consistently enhanced susceptibility to Ralstonia solanacearum and/or Phytophthora capsici. These data suggest that key CaRLPs are involved in the defense response to multiple biotic stresses and can be used to engineer a plant with broad-spectrum resistance. Together, our data show that generating a universal GCN using comprehensive transcriptome datasets can provide important clues to uncover genes involved in various biological processes.202235043174
52160.9057NHL25 and NHL3, two NDR1/HIN1-1ike genes in Arabidopsis thaliana with potential role(s) in plant defense. The Arabidopsis genome contains 28 genes with sequence homology to the Arabidopsis NDR1 gene and the tobacco HIN1 gene. Expression analysis of eight of these genes identified two (NHL25 and NHL3 for NDR1/HIN1-like) that show pathogen-dependent mRNA accumulation. Transcripts did not accumulate during infection with virulent Pseudomonas syringae pv. tomato DC3000 but did accumulate specifically when the bacteria carried any of the four avirulence genes avrRpm1, avrRpt2, avrB, or avrRps4. Furthermore, expression of avrRpt2 in plants containing the corresponding resistance gene, RPS2, was sufficient to induce transcript accumulation. However, during infection with an avirulent oomycete, Peronospora parasitica isolate Cala-2, only NHL25 expression was reproducibly induced. Salicylic acid (SA) treatment can induce expression of NHL25 and NHL3. Studies performed on nahG plants showed that, during interaction with avirulent bacteria, only the expression of NHL25 but not that of NHL3 was affected. This suggests involvement of separate SA-dependent and SA-independent pathways, respectively, in the transcriptional activation of these genes. Bacteria-induced gene expression was not abolished in ethylene- (etrl-3 and ein2-1) and jasmonate- (coil-1) insensitive mutants or in mutants impaired in disease resistance (ndr1-1 and pad4-1). Interestingly, NHL3 transcripts accumulated after infiltration with the avirulent hrcC mutant of Pseudomonas syringae pv. tomato DC3000 and nonhost bacteria but not with the virulent Pseudomonas syringae pv. tomato DC3000, suggesting that virulent bacteria may suppress NHL3 expression during pathogenesis. Hence, the expression patterns and sequence homology to NDR1 and HIN1 suggest one or more potential roles for these genes in plant resistance.200212059109
8762170.9057Resistance Genes and their Interactions with Bacterial Blight/Leaf Streak Pathogens (Xanthomonas oryzae) in Rice (Oryza sativa L.)-an Updated Review. Rice (Oryza sativa L.) is a staple food crop, feeding more than 50% of the world's population. Diseases caused by bacterial, fungal, and viral pathogens constantly threaten the rice production and lead to enormous yield losses. Bacterial blight (BB) and bacterial leaf streak (BLS), caused respectively by gram-negative bacteria Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), are two important diseases affecting rice production worldwide. Due to the economic importance, extensive genetic and genomic studies have been conducted to elucidate the molecular mechanism of rice response to Xoo and Xoc in the last two decades. A series of resistance (R) genes and their cognate avirulence and virulence effector genes have been characterized. Here, we summarize the recent advances in studies on interactions between rice and the two pathogens through these R genes or their products and effectors. Breeding strategies to develop varieties with durable and broad-spectrum resistance to Xanthomonas oryzae based on the published studies are also discussed.202031915945
62180.9056Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. The Arabidopsis genes EDS1 and NDR1 were shown previously by mutational analysis to encode essential components of race-specific disease resistance. Here, we examined the relative requirements for EDS1 and NDR1 by a broad spectrum of Resistance (R) genes present in three Arabidopsis accessions (Columbia, Landsberg-erecta, and Wassilewskija). We show that there is a strong requirement for EDS1 by a subset of R loci (RPP2, RPP4, RPP5, RPP21, and RPS4), conferring resistance to the biotrophic oomycete Peronospora parasitica, and to Pseudomonas bacteria expressing the avirulence gene avrRps4. The requirement for NDR1 by these EDS1-dependent R loci is either weak or not measurable. Conversely, three NDR1-dependent R loci, RPS2, RPM1, and RPS5, operate independently of EDS1. Another RPP locus, RPP8, exhibits no strong exclusive requirement for EDS1 or NDR1 in isolate-specific resistance to P. parasitica, although resistance is compromised weakly by eds1. Similarly, resistance conditioned by two EDS1-dependent RPP genes, RPP4 and RPP5, is impaired partially by ndr1, implicating a degree of pathway cross-talk. Our results provide compelling evidence for the preferential utilization of either signaling component by particular R genes and thus define at least two disease resistance pathways. The data also suggest that strong dependence on EDS1 or NDR1 is governed by R protein structural type rather than pathogen class.19989707643
59190.9054Plant Ribosomal Proteins, RPL12 and RPL19, Play a Role in Nonhost Disease Resistance against Bacterial Pathogens. Characterizing the molecular mechanism involved in nonhost disease resistance is important to understand the adaptations of plant-pathogen interactions. In this study, virus-induced gene silencing (VIGS)-based forward genetics screen was utilized to identify genes involved in nonhost resistance in Nicotiana benthamiana. Genes encoding ribosomal proteins, RPL12 and RPL19, were identified in the screening. These genes when silenced in N. benthamiana caused a delay in nonhost bacteria induced hypersensitive response (HR) with concurrent increase in nonhost bacterial multiplication. Arabidopsis mutants of AtRPL12 and AtRPL19 also compromised nonhost resistance. The studies on NbRPL12 and NbRPL19 double silenced plants suggested that both RPL12 and RPL19 act in the same pathway to confer nonhost resistance. Our work suggests a role for RPL12 and RPL19 in nonhost disease resistance in N. benthamiana and Arabidopsis. In addition, we show that these genes also play a minor role in basal resistance against virulent pathogens.201526779226