ORGANISMS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
912300.9963Antibiotic resistance of bacteria in biofilms. Bacteria that adhere to implanted medical devices or damaged tissue can encase themselves in a hydrated matrix of polysaccharide and protein, and form a slimy layer known as a biofilm. Antibiotic resistance of bacteria in the biofilm mode of growth contributes to the chronicity of infections such as those associated with implanted medical devices. The mechanisms of resistance in biofilms are different from the now familiar plasmids, transposons, and mutations that confer innate resistance to individual bacterial cells. In biofilms, resistance seems to depend on multicellular strategies. We summarise the features of biofilm infections, review emerging mechanisms of resistance, and discuss potential therapies.200111463434
816410.9960Antibiotic Resistance - A Cause for Reemergence of Infections. This article can rightly be called 'the rise of the microbial phoenix'; for, all the microbial infections whose doomsday was predicted with the discovery of antibiotics, have thumbed their noses at mankind and reemerged phoenix like. The hubris generated by Sir Alexander Fleming's discovery of Penicillin in 1928, exemplified best by the comment by William H Stewart, the US Surgeon General in 1967, "It is time to close the books on infectious diseases" has been replaced by the realisation that the threat of antibiotic resistance is, in the words of the Chief Medical Officer of England, Dame Sally Davies, "just as important and deadly as climate change and international terrorism". Antimicrobial resistance threatens to negate all the major medical advances of the last century because antimicrobial use is linked to many other fields like organ transplantation and cancer chemotherapy. Antibiotic resistance genes have been there since ancient times in response to naturally occurring antibiotics. Modern medicine has only driven further evolution of antimicrobial resistance by use, misuse, overuse and abuse of antibiotics. Resistant bacteria proliferate by natural selection when their drug sensitive comrades are removed by antibiotics. In this article the authors discuss the various causes of antimicrobial resistance and dwell in some detail on antibiotic resistance in gram-positive and gram-negative organisms. Finally they stress on the important role clinicians have in limiting the development and spread of antimicrobial resistance.202032026301
917320.9960Bacterial defences: mechanisms, evolution and antimicrobial resistance. Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.202337095190
919530.9959Complement-resistance mechanisms of bacteria. Despite more than a century of parallel research on bacteria and the complement system, relatively little is known of the mechanisms whereby pathogenic bacteria can escape complement-related opsonophagocytosis and direct killing. It is likely that pathogenicity in bacteria has arisen more accidentally than in viruses, and on the basis of selection from natural mutants rather than by outright stealing or copying of genetic codes from the host. In this review we will discuss complement resistance as one of the features that makes a bacterium a pathogen.199910816084
952540.9958Is there a serious risk of resistance development to azoles among fungi due to the widespread use and long-term application of azole antifungals in medicine? It is well known that development of antibiotic resistance in bacteria is not a matter of if but of when. Recently, azoles have been recommended for long-term prophylaxis of invasive fungal infections; hence, it could be argued that fungi also will become resistant to these agents. However, fungi are different from bacteria in several critical points. Bacteria display several resistance mechanisms: alteration of the target, limited access to the target and modification/inactivation of the antibacterial compound. In fungi some mechanisms of resistance to azoles are also known; with azoles for example, alterations of the 14alpha-demethylase target, as well as efflux pumps. It has been observed that these phenotypes develop in yeast populations either due to mutations or to selection processes. However, enzymes which destroy azoles are not found. Furthermore, a horizontal transfer of genes coding resistance traits does not occur in fungi, which means that an explosive expansion of resistances is unlikely to occur, especially in moulds. Indeed, in epidemiologic studies on human and environmental isolates there is convincing evidence that azole resistance is quite uncommon.200818325827
958850.9958Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Due to a constant attack by phage, bacteria in the environment have evolved diverse mechanisms to defend themselves. Several reviews on phage resistance mechanisms have been published elsewhere. Thanks to the advancement of molecular techniques, several new phage resistance mechanisms were recently identified. For the practical phage therapy, the emergence of phage-resistant bacteria could be an obstacle. However, unlike antibiotic, phages could evolve a mechanism to counter-adapt against phage-resistant bacteria. In this review, we summarized the most recent studies of the phage-bacteria arm race with the perspective of future applications of phages as antimicrobial agents.201930680434
823860.9957Resistance to enediyne antitumor antibiotics by CalC self-sacrifice. Antibiotic self-resistance mechanisms, which include drug elimination, drug modification, target modification, and drug sequestration, contribute substantially to the growing problem of antibiotic resistance among pathogenic bacteria. Enediynes are among the most potent naturally occurring antibiotics, yet the mechanism of resistance to these toxins has remained a mystery. We characterize an enediyne self-resistance protein that reveals a self-sacrificing paradigm for resistance to highly reactive antibiotics, and thus another opportunity for nonpathogenic or pathogenic bacteria to evade extremely potent small molecules.200312970566
818370.9956Modification of arthropod vector competence via symbiotic bacteria. Some of the world's most devastating diseases are transmitted by arthropod vectors. Attempts to control these arthropods are currently being challenged by the widespread appearance of insecticide resistance. It is therefore desirable to develop alternative strategies to complement existing methods of vector control. In this review, Charles Beard, Scott O'Neill, Robert Tesh, Frank Richards and Serap Aksoy present an approach for introducing foreign genes into insects in order to confer refractoriness to vector populations, ie. the inability to transmit disease-causing agents. This approach aims to express foreign anti-parasitic or anti-viral gene products in symbiotic bacteria harbored by insects. The potential use of naturally occurring symbiont-based mechanisms in the spread of such refractory phenotypes is also discussed.199315463748
959280.9956Antimicrobial drug resistance mechanisms among Mollicutes. Representatives of the Mollicutes class are the smallest, wall-less bacteria capable of independent reproduction. They are widespread in nature, most are commensals, and some are pathogens of humans, animals and plants. They are also the main contaminants of cell cultures and vaccine preparations. Despite limited biosynthetic capabilities, they are highly adaptable and capable of surviving under various stress and extreme conditions, including antimicrobial selective pressure. This review describes current understanding of antibiotic resistance (ABR) mechanisms in Mollicutes. Protective mechanisms in these bacteria include point mutations, which may include non-target genes, and unique gene exchange mechanisms, contributing to transfer of ABR genes. Better understanding of the mechanisms of emergence and dissemination of ABR in Mollicutes is crucial to control these hypermutable bacteria and prevent the occurrence of highly ABR strains.202133264670
413590.9956Bacterial monopolists: the bundling and dissemination of antimicrobial resistance genes in gram-positive bacteria. Antibiotic resistance is the unavoidable result of our placing selective pressure on the microbial community. Advances in molecular biology techniques in the past 2 decades have allowed us to greatly improve our understanding of the mechanisms by which resistance emerges and disseminates among human pathogenic bacteria. Gram-positive bacteria employ a diverse array of elements, including plasmids, transposons, insertion sequences, and bacteriophages, to disseminate resistance. An understanding of these mechanisms and their prevalence can improve our ability to treat clinical infections in hospitalized patients, as well as to predict and control the spread of resistant bacteria in the nosocomial environment.200011017827
795100.9956Multidrug resistance in Gram-negative bacteria. Broadly specific, so-called multidrug, efflux mechanisms are now known to contribute significantly to intrinsic and acquired multidrug resistance in a number of Gram-negative bacteria, and the boom in bacterial genomics has confirmed the distribution of these systems in all bacteria. This broad distribution of multidrug transporters lends a certain credibility to suggestions that they play a housekeeping role in the cell, beyond any contributions they may make to antimicrobial efflux and resistance. In many instances, these transporters are dispensable, arguing against their carrying out essential cellular functions; nevertheless, the multiplicity of these broadly specific export systems within a given microorganism, often with overlapping substrate specificity, may explain the dispensability of individual exporters. Whatever their intended function, however, their conservation in so many organisms highlights their probable general importance in antimicrobial resistance, particularly in Gram-negative bacteria whose outer membranes work synergistically with many of these export systems to promote drug exclusion.200111587924
8235110.9956The bacterial defense system MADS interacts with CRISPR-Cas to limit phage infection and escape. The constant arms race between bacteria and their parasites has resulted in a large diversity of bacterial defenses, with many bacteria carrying multiple systems. Here, we report the discovery of a phylogenetically widespread defense system, coined methylation-associated defense system (MADS), which is distributed across gram-positive and gram-negative bacteria. MADS interacts with a CRISPR-Cas system in its native host to provide robust and durable resistance against phages. While phages can acquire epigenetic-mediated resistance against MADS, co-existence of MADS and a CRISPR-Cas system limits escape emergence. MADS comprises eight genes with predicted nuclease, ATPase, kinase, and methyltransferase domains, most of which are essential for either self/non-self discrimination, DNA restriction, or both. The complex genetic architecture of MADS and MADS-like systems, relative to other prokaryotic defenses, points toward highly elaborate mechanisms of sensing infections, defense activation, and/or interference.202439094583
9526120.9956Will resistance in fungi emerge on a scale similar to that seen in bacteria? Growing numbers of patients receive azoles as prophylaxis or treatment for invasive fungal infections, begging the question of whether emergence of resistance will occur, as has been seen with bacteria. This review examines resistance pathways shared by bacteria and fungi, including alteration and overproduction of drug targets, changes in biosynthetic pathways, and enhanced drug efflux, and assesses whether such commonalities predict increased resistance to azoles. Important differences exist between the two kingdoms, including little, if any, horizontal transfer of extrachromosomal material across fungal species and a longer fungal generation time, thereby slowing vertical transfer of mutant traits. Further, no enzymatic modulation or inactivation of azoles has been reported in fungi. The newer broad-spectrum azoles posaconazole and voriconazole are active against the vast majority of yeasts and moulds and are likely to prevent the emergence of inherently resistant strains. Therefore, the likelihood for an explosion of fungal resistance is relatively low.200818204870
9153130.9955Mycoplasma Contamination of Cell Cultures: Vesicular Traffic in Bacteria and Control over Infectious Agents. Cell cultures are subject to contamination either with cells of other cultures or with microorganisms, including fungi, viruses, and bacteria. Mycoplasma contamination of cell cultures is of particular importance. Since cell cultures are used for the production of vaccines and physiologically active compounds, designing a system for controlling contaminants becomes topical for fundamental science and biotechnological production. The discovery of extracellular membrane vesicles in mycoplasmas makes it necessary to take into consideration the bacterial vesicular traffic in systems designed for controlling infectious agents. The extracellular vesicles of bacteria mediate the traffic of proteins and genes, participate in cell-to-cell interactions, as well as in the pathogenesis and development of resistance to antibiotics. The present review discusses the features of mycoplasmas, their extracellular vesicles, and the interaction between contaminants and eukaryotic cells. Furthermore, it provides an analysis of the problems associated with modern methods of diagnosis and eradication of mycoplasma contamination from cell cultures and prospects for their solution.201425349713
9586140.9955Antibiotic resistance. Through billions of years of evolution, microbes have developed myriad defense mechanisms designed to ensure their survival. This protection is readily transferred to their fellow life forms via transposable elements. Despite very early warnings, humans have chosen to abuse the gift of antibiotics and have created a situation where all microorganisms are resistant to some antibiotics and some microorganisms are resistant to all antibiotics. When antibiotics are used, six events may occur with only one being beneficial: when the antibiotic aids the host defenses to gain control and eliminate the infection. Alternatively, the antibiotic may cause toxicity or allergy, initiate a superinfection with resistant bacteria, promote microbial chromosomal mutations to resistance, encourage resistance gene transfer to susceptible species, or promote the expression of dormant resistance genes.200314664456
9489150.9955The origins of antibiotic resistance. Antibiotics remain one of our most important pharmacological tools for the control of infectious disease. However, unlike most other drugs, the use of antibiotics selects for resistant organisms and erodes their clinical utility. Resistance can emerge within populations of bacteria by mutation and be retained by subsequent selection or by the acquisition of resistance elements laterally from other organisms. The source of these resistance genes is only now being understood. The evidence supports a large bacterial resistome-the collection of all resistance genes and their precursors in both pathogenic and nonpathogenic bacteria. These genes have arisen by various means including self-protection in the case of antibiotic producers, transport of small molecules for various reasons including nutrition and detoxification of noxious chemicals, and to accomplish other goals, such as metabolism, and demonstrate serendipitous selectivity for antibiotics. Regardless of their origins, resistance genes can rapidly move through bacterial populations and emerge in pathogenic bacteria. Understanding the processes that contribute to the evolution and selection of resistance is essential to mange current stocks of antibiotics and develop new ones.201223090593
4250160.9955Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Gram-negative bacteria are responsible for a large proportion of antimicrobial-resistant infections in humans and animals. Among this class of bacteria are also some of the most successful environmental organisms. Part of this success is their adaptability to a variety of different niches, their intrinsic resistance to antimicrobial drugs and their ability to rapidly acquire resistance mechanisms. These mechanisms of resistance are not exclusive and the interplay of several mechanisms causes high levels of resistance. In this review, we explore the molecular mechanisms underlying resistance in Gram-negative organisms and how these different mechanisms enable them to survive many different stress conditions.201728258229
9114170.9955Bacterial Resistance to Antimicrobial Agents. Bacterial pathogens as causative agents of infection constitute an alarming concern in the public health sector. In particular, bacteria with resistance to multiple antimicrobial agents can confound chemotherapeutic efficacy towards infectious diseases. Multidrug-resistant bacteria harbor various molecular and cellular mechanisms for antimicrobial resistance. These antimicrobial resistance mechanisms include active antimicrobial efflux, reduced drug entry into cells of pathogens, enzymatic metabolism of antimicrobial agents to inactive products, biofilm formation, altered drug targets, and protection of antimicrobial targets. These microbial systems represent suitable focuses for investigation to establish the means for their circumvention and to reestablish therapeutic effectiveness. This review briefly summarizes the various antimicrobial resistance mechanisms that are harbored within infectious bacteria.202134067579
9464180.9955Why is antibiotic resistance a deadly emerging disease? Evolution of bacteria towards resistance to antimicrobial agents, including multidrug resistance, is unavoidable because it represents a particular aspect of the general evolution of bacteria that is unstoppable. Therefore, the only means of dealing with this situation is to delay the emergence and subsequent dissemination of resistant bacteria or resistance genes. In this review, we will consider the biochemical mechanisms and the genetics that bacteria use to offset antibiotic selective pressure. The data provided are mainly, if not exclusively, taken from the work carried out in the laboratory, although there are numerous other examples in the literature.201626806259
9478190.9955General principles of antibiotic resistance in bacteria. Given the impact of antibiotic resistance on human health, its study is of great interest from a clinical view- point. In addition, antibiotic resistance is one of the few examples of evolution that can be studied in real time. Knowing the general principles involved in the acquisition of antibiotic resistance is therefore of interest to clinicians, evolutionary biologists and ecologists. The origin of antibiotic resistance genes now possessed by human pathogens can be traced back to environmental microorganisms. Consequently, a full understanding of the evolution of antibiotic resistance requires the study of natural environments as well as clinical ecosystems. Updated information on the evolutionary mechanisms behind resistance, indicates that ecological connectivity, founder effect and fitness costs are important bottle- necks that modulate the transfer of resistance from environmental microorganisms to pathogens.201424847651