# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6041 | 0 | 0.9975 | Gut commensal bacteria show beneficial properties as wildlife probiotics. Probiotics are noninvasive, environmentally friendly alternatives for reducing infectious diseases in wildlife species. Our aim in the present study was to evaluate the potential of gut commensals such as lactic acid bacteria (LAB) as wildlife probiotics. The LAB selected for our analyses were isolated from European badgers (Meles meles), a wildlife reservoir of bovine tuberculosis, and comprised four different genera: Enterococcus, Weissella, Pediococcus, and Lactobacillus. The enterococci displayed a phenotype and genotype that included the production of antibacterial peptides and stimulation of antiviral responses, as well as the presence of virulence and antibiotic resistance genes; Weissella showed antimycobacterial activity owing to their ability to produce lactate and ethanol; and lactobacilli and pediococci modulated proinflammatory phagocytic responses that associate with protection against pathogens, responses that coincide with the presence of immunomodulatory markers in their genomes. Although both lactobacilli and pediococci showed resistance to antibiotics, this was naturally acquired, and almost all isolates demonstrated a phylogenetic relationship with isolates from food and healthy animals. Our results show that LAB display probiotic benefits that depend on the genus, and that lactobacilli and pediococci are probably the most obvious candidates as probiotics against infectious diseases in wildlife because of their food-grade status and ability to modulate protective innate immune responses. | 2020 | 32026493 |
| 3750 | 1 | 0.9975 | Non-faecium non-faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes. | 2024 | 38466110 |
| 4219 | 2 | 0.9974 | Antibiotic resistance and virulence factors in lactobacilli: something to carefully consider. Lactobacilli are a ubiquitous bacteria, that includes many species commonly found as part of the human microbiota, take part in the natural food fermentation processes, are used as probiotics, and in the food sector as starter cultures or bio-protectors. Their wide use is dictated by a long history of safe employ, which has allowed them to be classified as GRAS (General Recognized As Safe) microorganisms by the US Food and Drug Administration (FDA) and QPS (Qualified Presumption of Safety) by the European Food Safety Authority (EFSA, 2007; EFSA, 2021). Despite their classification as safe microorganisms, several studies show that some members of Lactobacillus genus can cause, especially in individuals with previous pathological conditions, problems such as bacteremia, endocarditis, and peritonitis. In other cases, the presence of virulence genes and antibiotic resistance, and its potential transfer to pathogenic microorganisms constitute a risk to be considered. Consequently, their safety status was sometimes questioned, and it is, therefore, essential to carry out appropriate assessments before their use for any purposes. The following review focuses on the state of the art of studies on genes that confer virulence factors, including antibiotic resistance, reported in the literature within the lactobacilli, defining their genetic basis and related functions. | 2022 | 35082060 |
| 3667 | 3 | 0.9974 | An Overview on Streptococcus bovis/Streptococcus equinus Complex Isolates: Identification to the Species/Subspecies Level and Antibiotic Resistance. Streptococcus bovis/Streptococcus equinus complex (SBSEC), a non-enterococcal group D Streptococcus spp. complex, has been described as commensal bacteria in humans and animals, with a fecal carriage rate in humans varying from 5% to over 60%. Among streptococci, SBSEC isolates represent the most antibiotic-resistant species-with variable resistance rates reported for clindamycin, erythromycin, tetracycline, and levofloxacin-and might act as a reservoir of multiple acquired genes. Moreover, reduced susceptibility to penicillin and vancomycin associated with mobile genetic elements have also been detected, although rarely. Since the association of SBSEC bacteremia and colon lesions, infective endocarditis and hepatobiliary diseases has been established, particularly in elderly individuals, an accurate identification of SBSEC isolates to the species and subspecies level, as well as the evaluation of antibiotic resistance, are needed. In this paper, we reviewed the major methods used to identify SBSEC isolates and the antimicrobial resistance rates reported in the scientific literature among SBSEC species. | 2019 | 30678042 |
| 3919 | 4 | 0.9974 | Detection of antibiotic resistance in probiotics of dietary supplements. BACKGROUND: Probiotics are live microorganisms that confer nutrition- and health-promoting benefits if consumed in adequate amounts. Concomitant with the demand for natural approaches to maintaining health is an increase in inclusion of probiotics in food and health products. Since probiotic bacteria act as reservoir for antibiotic resistant determinants, the transfer of these genes to pathogens sharing the same intestinal habitat is thus conceivable considering the fact that dietary supplements contain high amounts of often heterogeneous populations of probiotics. Such events can confer pathogens protection against commonly-used drugs. Despite numerous reports of antibiotic resistant probiotics in food and biological sources, the antibiogram of probiotics from dietary supplements remained elusive. FINDINGS: Here, we screened five commercially available dietary supplements for resistance towards antibiotics of different classes. Probiotics of all batches of products were resistant towards vancomycin while batch-dependent resistance towards streptomycin, aztreonam, gentamycin and/or ciprofloxacin antibiotics was detected for probiotics of brands Bi and Bn, Bg, and L. Isolates of brand Cn was also resistant towards gentamycin, streptomycin and ciprofloxacin antibiotics. Additionally, we also report a discrepancy between the enumerated viable bacteria amounts and the claims of the manufacturers. CONCLUSIONS: This short report has highlighted the present of antibiotic resistance in probiotic bacteria from dietary supplements and therefore serves as a platform for further screenings and for in-depth characterization of the resistant determinants and the molecular machinery that confers the resistance. | 2015 | 26370532 |
| 4775 | 5 | 0.9974 | Safety assessment of dairy microorganisms: the Lactobacillus genus. Lactobacilli are Gram positive rods belonging to the Lactic Acid Bacteria (LAB) group. Their phenotypic traits, such as each species' obligate/facultative, homo/heterofermentation abilities play a crucial role in souring raw milk and in the production of fermented dairy products such as cheese, yoghurt and fermented milk (including probiotics). An up to date safety analysis of these lactobacilli is needed to ensure consumer safety. Lactobacillus genus is a heterogeneous microbial group containing some 135 species and 27 subspecies, whose classification is constantly being reshuffled. With the recent use of advanced molecular methods it has been suggested that the extreme diversity of the Lactobacillus genomes would justify recognition of new subgeneric divisions. A combination of genotypic and phenotypic tests, for example DNA-based techniques and conventional carbohydrate tests, is required to determine species. Pulsed-Field gel Electrophoresis (PFGE) has been successfully applied to strains of dairy origin and is the most discriminatory and reproducible method for differentiating Lactobacillus strains. The bibliographical data support the hypothesis that the ingestion of Lactobacillus is not at all hazardous since lactobacillemia induced by food, particularly fermented dairy products, is extremely rare and only occurs in predisposed patients. Some metabolic features such as the possible production of biogenic amines in fermented products could generate undesirable adverse effects. A minority of starter and adjunct cultures and probiotic Lactobacillus strains may exceptionally show transferable antibiotic resistance. However, this may be underestimated as transferability studies are not systematic. We consider that transferable antibiotic resistance is the only relevant cause for caution and justifies performing antibiotic-susceptibility assays as these strains have the potential to serve as hosts of antibiotic-resistance genes, with the risk of transferring these genes to other bacteria. However, as a general rule, lactobacilli have a high natural resistance to many antibiotics, especially vancomycin, that is not transferable. Safety assessment requirements for Lactobacillus strains of technological interest should be limited to an antibiotic profile and a study to determine whether any antibiotic resistance(s) of medical interest detected is (or are) transferable. This agrees with the recent EFSA proposal suggesting attribution of a QPS status for 32 selected species of lactobacilli. | 2008 | 17889388 |
| 6020 | 6 | 0.9974 | Safety evaluation of Lactococcus lactis IDCC 2301 isolated from homemade cheese. For applications of microorganisms as probiotics in the food industry, safety evaluation has increasingly become important to ensure the health of consumers. Although people have been using various lactic acid bacteria for different purposes, some studies have reported that certain lactic acid bacteria exhibit properties of virulence and produce toxic compounds. Thus, it is necessary to examine the characteristics associated with lactic acid bacteria that are safe for use as probiotics. This research aimed to assess the safety of Lactococcus lactis IDCC 2301 isolated from homemade cheese using in vitro and in vivo assays, including antibiotic resistance, hemolytic activity, toxin production, infectivity, and metabolic activity in immune-compromised animal species. The results demonstrated that the strain was susceptible to nine antibiotics suggested by the European Food Safety Authority (EFSA). Whole-genome analysis revealed that L. lactis IDCC 2301 neither has toxigenic genes nor harbors antibiotic resistance. Moreover, L. lactis IDCC 2301 showed neither hemolytic nor β-glucuronidase activity. Furthermore, none of the D-lactate and biogenic amines were produced by L. lactis IDCC 2301. Finally, it was demonstrated that there was no toxicity and mortality using single-dose oral toxicity tests in rats. These results indicate that L. lactis IDCC 2301 can be safely used as probiotics for human consumption. | 2022 | 35035910 |
| 6067 | 7 | 0.9974 | Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product "lukanka". The present work discusses the technological and new selection criteria that should be included for selecting lactic acid bacteria for production of fermented meat. Lactic acid bacteria isolated from Bulgarian traditional fermented "lulanka" salami was studied regarding some positive technological parameters (growth at different temperature, pH, and proteolytic activity). The presence of genes related to the virulence factors, production of biogenic amines, and vancomycin resistance were presented in low frequency in the studied lactic acid bacteria. On the other hand, production of antimicrobial peptides and high spread of bacteriocin genes were broadly presented. Very strong activity against L. monocytogenes was detected in some of the studied lactic acid bacteria. In addition, the studied strains did not present any antimicrobial activity against tested closely related bacteria such as Lactobacillus spp., Lactococcus spp., Enterococcus spp. or Pediococcus spp. To our knowledge this is the first study on the safety and antimicrobial properties of lactic acid bacteria isolated from Bulgarian lukanka obtained by spontaneous fermentation. | 2017 | 28552660 |
| 3575 | 8 | 0.9973 | Susceptibility of Lactobacillus spp. to antimicrobial agents. Bacteria used as probiotics or in starter cultures may serve as hosts of antibiotic resistance genes, which can be transferred to pathogenic bacteria. Before launching a starter culture or a probiotic product into the market, it is therefore important to verify that the single bacterial isolates (strains) do not contain transferable resistance genes. A study has been undertaken to establish the levels of susceptibility of Lactobacillus spp. to various antimicrobial agents. This is a prerequisite for differentiating putative transferable resistance from natural resistance. A selection of 62 strains has been screened with the use of the Etest (ABBiodisk, Stockholm, Sweden) for their susceptibility to 25 antimicrobial agents. The strains belonged to the following species: Lactobacillus plantarum/pentosus, L. rhamnosus, L. paracasei, L. sakei, L. curvatus and species of the L. acidophilus group: L. johnsonii, L. crispatus, L. gasseri, and L. acidophilus. The results from the Etests have shown that the level of susceptibility to the antimicrobial agents is species-dependent. For the following antimicrobial agents, susceptibility varied several folds between species: vancomycin, teicoplanin, tetracycline, norfloxacin, ciprofloxacin, fusidic acid, and clindamycin. The differences between the species were more subtle for the rest of the tested antimicrobial agents. On the basis of the result, it was possible to suggest minimal inhibition concentrations (MICs) for the individual Lactobacillus species to be used as a microbiological breakpoint when screening strains for transferable resistance genes. | 2003 | 12505455 |
| 4793 | 9 | 0.9973 | Methicillin-Resistant Staphylococcus aureus in the Oral Cavity: Implications for Antibiotic Prophylaxis and Surveillance. The oral cavity harbors a multitude of commensal flora, which may constitute a repository of antibiotic resistance determinants. In the oral cavity, bacteria form biofilms, and this facilitates the acquisition of antibiotic resistance genes through horizontal gene transfer. Recent reports indicate high methicillin-resistant Staphylococcus aureus (MRSA) carriage rates in the oral cavity. Establishment of MRSA in the mouth could be enhanced by the wide usage of antibiotic prophylaxis among at-risk dental procedure candidates. These changes in MRSA epidemiology have important implications for MRSA preventive strategies, clinical practice, as well as the methodological approaches to carriage studies of the organism. | 2020 | 33402829 |
| 4229 | 10 | 0.9973 | Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Over the last 50 years, human life expectancy and quality of life have increased dramatically due to improvements in nutrition and the use of antibiotics in the fight against infectious diseases. However, the heyday of antibiotic treatment is on the wane due to the appearance and spread of resistance among harmful microorganisms. At present, there is great concern that commensal bacterial populations from food and the gastrointestinal tract (GIT) of humans and animals, such as lactic acid bacteria (LAB) and bifidobacteria, could act as a reservoir for antibiotic resistance genes. Resistances could ultimately be transferred to human pathogenic and opportunistic bacteria hampering the treatment of infections. LAB species have traditionally been used as starter cultures in the production of fermented feed and foodstuffs. Further, LAB and bifidobacteria are normal inhabitants of the GIT where they are known to exert health-promoting effects, and selected strains are currently been used as probiotics. Antibiotic resistance genes carried by LAB and bifidobacteria can be transferred to human pathogenic bacteria either during food manufacture or during passage through the GIT. The aim of this review is to address well-stated and recent knowledge on antibiotic resistance in typical LAB and bifidobacteria species. Therefore, the commonest antibiotic resistance profiles, the distinction between intrinsic and atypical resistances, and some of the genetic determinants already discovered will all be discussed. | 2007 | 17418306 |
| 4789 | 11 | 0.9973 | Antimicrobial resistance gene delivery in animal feeds. Avoparcin, a glycopeptide antimicrobial agent related to vancomycin, has been used extensively as a growth promoter in animal feeds for more than 2 decades, and evidence has shown that such use contributed to the development of vancomycin-resistant enterococci. A cluster that includes three genes, vanH, vanA, and vanX, is required for high-level resistance to glycopeptides. In the vancomycin producer Amycolatopsis orientalis C329.2, homologs of these genes are present, suggesting an origin for the cluster. We found substantial bacterial DNA contamination in animal feed-grade avoparcin. Furthermore, nucleotide sequences related to the cluster vanHAX are present in this DNA, suggesting that the prolonged use of avoparcin in agriculture led to the uptake of glycopeptide resistance genes by animal commensal bacteria, which were subsequently transferred to humans. | 2004 | 15200859 |
| 8227 | 12 | 0.9973 | Role of the S-layer proteins of Campylobacter fetus in serum-resistance and antigenic variation: a model of bacterial pathogenesis. Campylobacter fetus are microaerophilic gram-negative bacteria that are pathogens of animals and humans. These organisms possess paracrystalline surface (S-) layers, composed of acidic high molecular weight proteins. C. fetus strains possessing S-layers are resistant to C3b binding, which explains both serum and phagocytosis-resistance. C. fetus strains also can vary the subunit protein size, crystalline structure, and antigenicity of the S-layer it expresses. Therefore, its S-layer permits C. fetus to resist complement and antibodies, two of the key defenses against extracellular pathogens. C. fetus possesses several full-length genes encoding S-layer proteins with both conserved and divergent sequences, which permits gene rearrangement and antigenic variation. | 1993 | 8238090 |
| 4805 | 13 | 0.9973 | Effects of ionophores on Enterococcus faecalis and E. faecium growth in pure and mixed ruminal culture. Enterococcus faecalis and E. faecium are gram-positive human pathogens that can live in the gastrointestinal tract of food animals. Vancomycin-resistant enterococci are an increasing threat to humans as a nosocomial infection, as well as a reservoir of antibiotic resistance genes. Ionophores are feed-grade antimicrobials that are widely used to enhance the ruminal fermentation efficiency via inhibiting gram-positive bacteria by dissipating ion and proton gradients. Some bacteria can become resistant to ionophores, and this has prompted concerns about whether ionophore resistance can enhance antibiotic resistance in intestinal bacteria. Since enterococci are normal members of the ruminant intestinal tract and function as an antibiotic resistance reservoir, the present study investigated whether treatment with the most commonly used ionophores affected the growth of enterococci, and whether ionophore-resistant enterococci developed. Ionophores do inhibit the growth of enterococci in pure culture, but in our study did not alter populations in mixed ruminal bacterial culture. Ionophore-resistant isolates were not isolated during this study from pure or mixed cultures. Our results indicate that the role of ionophores in the dissemination of antibiotic resistance genes through the intestinal Enterococcus spp. appears to be limited. | 2008 | 18370609 |
| 4673 | 14 | 0.9973 | Whole-genome analysis of probiotic product isolates reveals the presence of genes related to antimicrobial resistance, virulence factors, and toxic metabolites, posing potential health risks. BACKGROUND: Safety issues of probiotic products have been reported frequently in recent years. Ten bacterial strains isolated from seven commercial probiotic products on market were evaluated for their safety, by whole-genome analysis. RESULTS: We found that the bacterial species of three probiotic products were incorrectly labeled. Furthermore, six probiotic product isolates (PPS) contained genes for the production of toxic metabolites, while another three strains contained virulence genes, which might pose a potential health risk. In addition, three of them have drug-resistance genes, among which two strains potentially displayed multidrug resistance. One isolate has in silico predicted transferable genes responsible for toxic metabolite production, and they could potentially transfer to human gut microflora or environmental bacteria. Isolates of Lactobacillus rhamnosus and Bifidobacterium animalis subsp. lactis are associated with low risk for human consumption. Based on a comparative genome analysis, we found that the isolated Enterococcus faecium TK-P5D clustered with a well-defined probiotic strain, while E. faecalis TK-P4B clustered with a pathogenic strain. CONCLUSIONS: Our work clearly illustrates that whole-genome analysis is a useful method to evaluate the quality and safety of probiotic products. Regulatory quality control and stringent regulations on probiotic products are needed to ensure safe consumption and protect human health. | 2021 | 33761872 |
| 6070 | 15 | 0.9973 | Probiotic bacteria of wild boar origin intended for piglets - An in vitro study. Using probiotics represents a potential solution to post-weaning diarrheal diseases in piglets on commercial farms. The gastrointestinal tract of wild boars serves as a promising reservoir of novel lactic acid bacteria with suitable probiotic characteristics. In this study, we isolated eight bacterial strains from the intestinal content of wild boars identified as representatives of the species Bifidobacterium apri, Lactobacillus amylovorus, and Ligilactobacillus salivarius. These isolates underwent in vitro analysis and characterisation to assess their biological safety and probiotic properties. Analysis of their full genome sequences revealed the absence of horizontally transferrable genes for antibiotic resistance. However, seven out of eight isolates harboured genes encoding various types of bacteriocins in their genomes, and bacteriocin production was further confirmed by mass spectrometry analysis. Most of the tested strains demonstrated the ability to inhibit the growth of selected pathogenic bacteria, produce exopolysaccharides, and stimulate the expression of interleukin-10 in porcine macrophages. These characteristics deem the isolates characterised in this study as potential candidates for use as probiotics for piglets during the post-weaning period. | 2024 | 39296628 |
| 4784 | 16 | 0.9973 | cfxA expression in oral clinical Capnocytophaga isolates. Capnocytophaga spp. are commensal bacteria involved in oral and systemic diseases, with a variable susceptibility to beta-lactams. The cfxA gene expression level was assessed using quantitative RT-PCR, and reasons of the observed misexpression were discussed, as insertion of foreign genetic material, contributing to dissemination and evolution of antibiotic resistance genes. | 2015 | 26204794 |
| 4221 | 17 | 0.9973 | Antibiotic resistance in probiotic bacteria. Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The main probiotic bacteria are strains belonging to the genera Lactobacillus and Bifidobacterium, although other representatives, such as Bacillus or Escherichia coli strains, have also been used. Lactobacillus and Bifidobacterium are two common inhabitants of the human intestinal microbiota. Also, some species are used in food fermentation processes as starters, or as adjunct cultures in the food industry. With some exceptions, antibiotic resistance in these beneficial microbes does not constitute a safety concern in itself, when mutations or intrinsic resistance mechanisms are responsible for the resistance phenotype. In fact, some probiotic strains with intrinsic antibiotic resistance could be useful for restoring the gut microbiota after antibiotic treatment. However, specific antibiotic resistance determinants carried on mobile genetic elements, such as tetracycline resistance genes, are often detected in the typical probiotic genera, and constitute a reservoir of resistance for potential food or gut pathogens, thus representing a serious safety issue. | 2013 | 23882264 |
| 8468 | 18 | 0.9973 | Development and validation of a species-independent functional gene microarray that targets lactic acid bacteria. During the last few years, genome-related information has become available for many microorganisms, including important food-related bacteria. Lactic acid bacteria (LAB) are important industrially in the production of fermented foods such as dairy products, sausages, sourdoughs, and vegetables. Despite their limited metabolic capacity, LAB contribute considerably to important characteristics of fermented foods, such as flavor and texture. In the present study, a species-independent functional gene microarray was developed that targets 406 genes that play key roles in the production of sugar catabolites, bacteriocins, exopolysaccharides, and aromas, in probiotic and biosafety characteristics, and in the stress response. Also, genes linked to negative traits, such as antibiotic resistance and virulence, are represented. As LAB ecosystems contain a variety of species, there was a more global focus on these specific functional properties. Thus, an algorithm was used to design gene-specific oligonucleotides that preferably hybridize with multiple LAB species, thereby allowing controlled cross-hybridization. For proof of concept, the microarray composed of 2,269 30-mer oligonucleotides focused on LAB species that are prevalent in sourdough ecosystems. Validation hybridizations using DNA and RNA from 18 LAB strains, covering 86% of all the oligonucleotides, showed that there were wide ranges in intensity and high reproducibility between microarrays. | 2009 | 19684161 |
| 4735 | 19 | 0.9972 | Unveiling the Antibiotic Susceptibility and Antimicrobial Potential of Bacteria from Human Breast Milk of Pakistani Women: An Exploratory Study. BACKGROUND: Human life quality and expectancy have increased dramatically over the past 5 decades because of improvements in nutrition and antibiotic's usage fighting against infectious diseases. Yet, it was soon revealed that the microbes adapted to develop resistance to any of the drugs that were used. Recently, there is great concern that commensal bacteria from food and the gastrointestinal tract of humans and animals could act as a reservoir for antibiotic resistance genes. Methodology. This study was intended for evaluating the phenotypic antibiotic resistance/sensitivity profiles of probiotic bacteria from human breast milk and evaluating the inhibitory effect of the probiotic bacteria against both Gram-negative and Gram-positive bacteria. RESULTS: The results point out that some of the isolated bacteria were resistant to diverse antibiotics including gentamycin, imipenem, trimethoprim sulfamethoxazole, and nalidixic acid. Susceptibility profile to certain antibiotics like vancomycin, tetracycline, ofloxacin, chloramphenicol, streptomycin, rifampicin, and bacitracin was also observed. The antimicrobial qualities of cell-free supernatants of some probiotic bacteria inhibited the growth of indicator bacteria. Also, antimicrobial properties of the probiotic bacteria from the present study attributed to the production of organic acid, bacterial adhesion to hydrocarbons (BATH), salt aggregation, coaggregation with pathogens, and bacteriocin production. Some isolated bacteria from human milk displayed higher hydrophobicity in addition to intrinsic probiotic properties like Gram-positive classification, catalase-negative activity, resistance to gastric juice (pH 2), and bile salt (0.3%) concentration. CONCLUSION: This study has added to the data of the antibiotic and antimicrobial activity of some probiotic bacteria from some samples of Pakistani women breast milk. Probiotic bacteria are usually considered to decrease gastrointestinal tract diseases by adhering to the gut epithelial and reducing population of pathogens and in the case of Streptococcus lactarius MB622 and Streptococcus salivarius MB620 in terms of hydrophobicity and exclusion of indicator pathogenic strains. | 2023 | 37377461 |