# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5125 | 0 | 0.9773 | Do we still need Illumina sequencing data? Evaluating Oxford Nanopore Technologies R10.4.1 flow cells and the Rapid v14 library prep kit for Gram negative bacteria whole genome assemblies. The best whole genome assemblies are currently built from a combination of highly accurate short-read sequencing data and long-read sequencing data that can bridge repetitive and problematic regions. Oxford Nanopore Technologies (ONT) produce long-read sequencing platforms and they are continually improving their technology to obtain higher quality read data that is approaching the quality obtained from short-read platforms such as Illumina. As these innovations continue, we evaluated how much ONT read coverage produced by the Rapid Barcoding Kit v14 (SQK-RBK114) is necessary to generate high-quality hybrid and long-read-only genome assemblies for a panel of carbapenemase-producing Enterobacterales bacterial isolates. We found that 30× long-read coverage is sufficient if Illumina data are available, and that more (at least 100× long-read coverage is recommended for long-read-only assemblies. Illumina polishing is still improving single nucleotide variants (SNVs) and INDELs in long-read-only assemblies. We also examined if antimicrobial resistance genes could be accurately identified in long-read-only data, and found that Flye assemblies regardless of ONT coverage detected >96% of resistance genes at 100% identity and length. Overall, the Rapid Barcoding Kit v14 and long-read-only assemblies can be an optimal sequencing strategy (i.e., plasmid characterization and AMR detection) but finer-scale analyses (i.e., SNV) still benefit from short-read data. | 2024 | 38354391 |
| 5123 | 1 | 0.9754 | Ultrafast and Cost-Effective Pathogen Identification and Resistance Gene Detection in a Clinical Setting Using Nanopore Flongle Sequencing. Rapid bacterial identification and antimicrobial resistance gene (ARG) detection are crucial for fast optimization of antibiotic treatment, especially for septic patients where each hour of delayed antibiotic prescription might have lethal consequences. This work investigates whether the Oxford Nanopore Technology's (ONT) Flongle sequencing platform is suitable for real-time sequencing directly from blood cultures to identify bacteria and detect resistance-encoding genes. For the analysis, we used pure bacterial cultures of four clinical isolates of Escherichia coli and Klebsiella pneumoniae and two blood samples spiked with either E. coli or K. pneumoniae that had been cultured overnight. We sequenced both the whole genome and plasmids isolated from these bacteria using two different sequencing kits. Generally, Flongle data allow rapid bacterial ID and resistome detection based on the first 1,000-3,000 generated sequences (10 min to 3 h from the sequencing start), albeit ARG variant identification did not always correspond to ONT MinION and Illumina sequencing-based data. Flongle data are sufficient for 99.9% genome coverage within at most 20,000 (clinical isolates) or 50,000 (positive blood cultures) sequences generated. The SQK-LSK110 Ligation kit resulted in higher genome coverage and more accurate bacterial identification than the SQK-RBK004 Rapid Barcode kit. | 2022 | 35369431 |
| 5124 | 2 | 0.9750 | Oxford nanopore long-read sequencing enables the generation of complete bacterial and plasmid genomes without short-read sequencing. INTRODUCTION: Genome-based analysis is crucial in monitoring antibiotic-resistant bacteria (ARB)and antibiotic-resistance genes (ARGs). Short-read sequencing is typically used to obtain incomplete draft genomes, while long-read sequencing can obtain genomes of multidrug resistance (MDR) plasmids and track the transmission of plasmid-borne antimicrobial resistance genes in bacteria. However, long-read sequencing suffers from low-accuracy base calling, and short-read sequencing is often required to improve genome accuracy. This increases costs and turnaround time. METHODS: In this study, a novel ONT sequencing method is described, which uses the latest ONT chemistry with improved accuracy to assemble genomes of MDR strains and plasmids from long-read sequencing data only. Three strains of Salmonella carrying MDR plasmids were sequenced using the ONT SQK-LSK114 kit with flow cell R10.4.1, and de novo genome assembly was performed with average read accuracy (Q > 10) of 98.9%. RESULTS AND DISCUSSION: For a 5-Mb-long bacterial genome, finished genome sequences with accuracy of >99.99% could be obtained at 75× sequencing coverage depth using Flye and Medaka software. Thus, this new ONT method greatly improves base-calling accuracy, allowing for the de novo assembly of high-quality finished bacterial or plasmid genomes without the need for short-read sequencing. This saves both money and time and supports the application of ONT data in critical genome-based epidemiological analyses. The novel ONT approach described in this study can take the place of traditional combination genome assembly based on short- and long-read sequencing, enabling pangenomic analyses based on high-quality complete bacterial and plasmid genomes to monitor the spread of antibiotic-resistant bacteria and antibiotic resistance genes. | 2023 | 37256057 |
| 5236 | 3 | 0.9746 | Genome characterization of a multi-drug resistant Escherichia coli strain, L1PEag1, isolated from commercial cape gooseberry fruits (Physalis peruviana L.). INTRODUCTION: Foodborne infections, which are frequently linked to bacterial contamination, are a serious concern to public health on a global scale. Whether agricultural farming practices help spread genes linked to antibiotic resistance in bacteria associated with humans or animals is a controversial question. METHODS: This study applied a long-read Oxford Nanopore MinION-based sequencing to obtain the complete genome sequence of a multi-drug resistant Escherichia coli strain (L1PEag1), isolated from commercial cape gooseberry fruits (Physalis peruviana L.) in Ecuador. Using different genome analysis tools, the serotype, Multi Locus Sequence Typing (MLST), virulence genes, and antimicrobial resistance (AMR) genes of the L1PEag1 isolate were determined. Additionally, in vitro assays were performed to demonstrate functional genes. RESULTS: The complete genome sequence of the L1PEag1 isolate was assembled into a circular chromosome of 4825.722 Kbp and one plasmid of 3.561 Kbp. The L1PEag1 isolate belongs to the B2 phylogroup, sequence type ST1170, and O1:H4 serotype based on in silico genome analysis. The genome contains 4,473 genes, 88 tRNA, 8 5S rRNA, 7 16S rRNA, and 7 23S rRNA. The average GC content is 50.58%. The specific annotation consisted of 4,439 and 3,723 genes annotated with KEEG and COG respectively, 3 intact prophage regions, 23 genomic islands (GIs), and 4 insertion sequences (ISs) of the ISAs1 and IS630 families. The L1PEag1 isolate carries 25 virulence genes, and 4 perfect and 51 strict antibiotic resistant gene (ARG) regions based on VirulenceFinder and RGI annotation. Besides, the in vitro antibiotic profile indicated resistance to kanamycin (K30), azithromycin (AZM15), clindamycin (DA2), novobiocin (NV30), amikacin (AMK30), and other antibiotics. The L1PEag1 isolate was predicted as a human pathogen, matching 464 protein families (0.934 likelihood). CONCLUSION: Our work emphasizes the necessity of monitoring environmental antibiotic resistance, particularly in commercial settings to contribute to develop early mitigation techniques for dealing with resistance diffusion. | 2024 | 39104589 |
| 1387 | 4 | 0.9746 | Whole-Genome Characterisation of ESBL-Producing E. coli Isolated from Drinking Water and Dog Faeces from Rural Andean Households in Peru. E. coli that produce extended-spectrum β-lactamases (ESBLs) are major multidrug-resistant bacteria. In Peru, only a few reports have characterised the whole genome of ESBL enterobacteria. We aimed to confirm the identity and antimicrobial resistance (AMR) profile of two ESBL isolates from dog faeces and drinking water of rural Andean households and determine serotype, phylogroup, sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their plasmids. To confirm the identity and AMR profiles, we used the VITEK(®)2 system. Whole-genome sequencing (WGS) and bioinformatics analysis were performed subsequently. Both isolates were identified as E. coli, with serotypes -:H46 and O9:H10, phylogroups E and A, and ST/CC 5259/- and 227/10, respectively. The isolates were ESBL-producing, carbapenem-resistant, and not harbouring carbapenemase-encoding genes. Isolate 1143 ST5259 harboured the astA gene, encoding the EAST(1) heat-stable toxin. Both genomes carried ESBL genes (bla(EC-15), bla(CTX-M-8), and bla(CTX-M-55)). Nine plasmids were detected, namely IncR, IncFIC(FII), IncI, IncFIB(AP001918), Col(pHAD28), IncFII, IncFII(pHN7A8), IncI1, and IncFIB(AP001918). Finding these potentially pathogenic bacteria is worrisome given their sources and highlights the importance of One-Health research efforts in remote Andean communities. | 2022 | 35625336 |
| 5122 | 5 | 0.9744 | Clinical long-read metagenomic sequencing of culture-negative infective endocarditis reveals genomic features and antimicrobial resistance. BACKGROUND: Infective endocarditis (IE) poses significant diagnostic challenges, particularly in blood culture-negative cases where fastidious bacteria evade detection. Metagenomic-based nanopore sequencing enables rapid pathogen detection and provides a new approach for the diagnosis of IE. METHOD: Two cases of blood culture-negative infective endocarditis (IE) were analyzed using nanopore sequencing with an in silico host-depletion approach. Complete genome reconstruction and antimicrobial resistance gene annotation were successfully performed. RESULTS: Within an hour of sequencing, EPI2ME classified nanopore reads, identifying Corynebacterium striatum in IE patient 1 and Granulicatella adiacens in IE patient 2. After 18 h, long-read sequencing successfully reconstructed a single circular genome of C. striatum in IE patient 1, whereas short-read sequencing was used to compare but produced fragmented assemblies. Based on these results, long-read sequencing was exclusively used for IE patient 2, allowing for the complete and accurate assembly of G. adiacens, confirming the presence of these bacteria in the clinical samples. In addition to pathogen identification, antimicrobial resistance (AMR) genes were detected in both genomes. Notably, in C. striatum, regions containing a class 1 integron and multiple novel mobile genetic elements (ISCost1, ISCost2, Tn7838 and Tn7839) were identified, collectively harbouring six AMR genes. This is the first report of such elements in C. striatum, highlighting the potential of nanopore long-read sequencing for comprehensive pathogen characterization in IE cases. CONCLUSIONS: This study highlights the effectiveness of host-depleted, long-read nanopore metagenomics for direct pathogen identification and accurate genome reconstruction, including antimicrobial resistance gene detection. The approach enables same-day diagnostic reporting within a matter of hours. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12879-025-11741-5. | 2025 | 41087996 |
| 5235 | 6 | 0.9744 | Draft genome sequences of rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 carrying mobile colistin resistance gene mcr-9 isolated from wastewater in South Africa. OBJECTIVES: Antimicrobial-resistant bacteria of the order Enterobacterales are emerging threats to global public and animal health, leading to morbidity and mortality. The emergence of antimicrobial-resistant, livestock-associated pathogens is a great public health concern. The genera Enterobacter and Lelliottia are ubiquitous, facultatively anaerobic, motile, non-spore-forming, rod-shaped Gram-negative bacteria belonging to the Enterobacteriaceae family and include pathogens of public health importance. Here, we report the first draft genome sequences of a rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 in Africa. METHODS: The bacteria were isolated from environmental wastewater samples. Bacteria were cultured on nutrient agar, and the pure cultures were subjected to whole-genome sequencing. Genomic DNA was sequenced using an Illumina MiSeq platform. Generated reads were trimmed and subjected to de novo assembly. The assembled contigs were analysed for virulence genes, antimicrobial resistance genes, and extra-chromosomal plasmids, and multilocus sequence typing was performed. To compare the sequenced strains with other, previously sequenced E. kobei and L. nimipressuralis strains, available raw read sequences were downloaded, and all sequence files were treated identically to generate core genome bootstrapped maximum likelihood phylogenetic trees. RESULTS: Whole-genome sequencing analyses identified strain MEZLN61 as L. nimipressuralis and strains MEZEK193 and MEZEK194 as E. kobei. MEZEK193 and MEZEK194 carried genes encoding resistance to fosfomycin (fosA), beta-lactam antibiotics (bla(ACT-9)), and colistin (mcr-9). Additionally, MEZEK193 harboured nine different virulence genes, while MEZEK194 harboured eleven different virulence genes. The phenotypic analysis showed that L. nimipressuralis strain MEZLN61 was susceptible to colistin (2 μg/mL), while E. kobei MEZEK193 (64 μg/mL) and MEZEK194 (32 μg/mL) were resistant to colistin. CONCLUSION: The genome sequences of strains L. nimipressuralis MEZLN6, E. kobei MEZEK193, and E. kobei MEZEK194 will serve as a reference point for molecular epidemiological studies of L. nimipressuralis and E. kobei in Africa. In addition, this study provides an in-depth analysis of the genomic structure and offers important information that helps clarify the pathogenesis and antimicrobial resistance of L. nimipressuralis and E. kobei. The detection of mcr-9, which is associated with very low-level colistin resistance in Enterobacter species, is alarming and may indicate the undetected dissemination of mcr genes in bacteria of the order Enterobacterales. Continuous monitoring and surveillance of the prevalence of mcr genes and their associated phenotypic changes in clinically important pathogens and environmentally associated bacteria is necessary to control and prevent the spread of colistin resistance. | 2023 | 36948496 |
| 1386 | 7 | 0.9740 | ESBL/pAmpC-producing Enterobacterales in common leopard geckos (Eublepharis macularius) and central bearded dragons (Pogona vitticeps) from Portugal. Common leopard geckos (Eublepharis macularius) and central bearded dragon (Pogona vitticeps) are widely kept as pets but can harbor pathogenic bacteria, including antimicrobial-resistant (AMR) bacteria. This study aimed to research the frequency of β-lactamase-producing Enterobacterales in these two reptile species. A total of 132 samples were collected from the oral and cloacal cavities of healthy common leopard geckos and central bearded dragons in the Lisbon area, Portugal. Antimicrobial resistance was assessed for third-generation cephalosporin (3GC)-resistant Enterobacterales. The results revealed that 3GC-resistant Enterobacterales were observed in 17.9% (n = 14/78) of the reptiles. The most commonly identified species were: Citrobacter freundii and Klebsiella aerogenes. Furthermore, some isolates produced extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases (AmpC) encoding genes such as bla (CMY-2), bla (CTX-M-15,) and bla (TEM-1). These findings emphasize the potential role of these reptiles in the spread of AMR bacteria, particularly in urban settings where human- animal interactions are frequent. Given the zoonotic risks, this study emphasizes the importance of continued surveillance and responsible antimicrobial use in both veterinary and human medicine to mitigate the spread of AMR bacteria. | 2025 | 40370835 |
| 2216 | 8 | 0.9738 | Ultrafast detection of β-lactamase resistance in Klebsiella pneumoniae from blood culture by nanopore sequencing. Aim: This study aimed to assess the ultra-fast method using MinION™ sequencing for rapid identification of β-lactamase-producing Klebsiella pneumoniae clinical isolates from positive blood cultures. Methods: Spiked-blood positive blood cultures were extracted using the ultra-fast method and automated DNA extraction for MinION sequencing. Raw reads were analyzed for β-lactamase resistance genes. Multilocus sequence typing and β-lactamase variant characterization were performed after assembly. Results: The ultra-fast method identified clinically relevant β-lactamase resistance genes in less than 1 h. Multilocus sequence typing and β-lactamase variant characterization required 3-6 h. Sequencing quality showed no direct correlation with pore number or DNA concentration. Conclusion: Nanopore sequencing, specifically the ultra-fast method, is promising for the rapid diagnosis of bloodstream infections, facilitating timely identification of multidrug-resistant bacteria in clinical samples. | 2023 | 37850345 |
| 849 | 9 | 0.9735 | Bacterial Genomics for National Antimicrobial Resistance Surveillance in Cambodia. BACKGROUND: Antimicrobial resistance (AMR) surveillance in low- and middle-income countries (LMICs) often relies on poorly resourced laboratory processes. Centralized sequencing was combined with cloud-based, open-source bioinformatics solutions for national AMR surveillance in Cambodia. METHODS: Blood cultures growing gram-negative bacteria were collected at 6 Cambodian hospitals (January 2021 to October 2022). Isolates were obtained from pure plate growth and shotgun DNA sequencing performed in country. Using public nucleotide and protein databases, reads were aligned for pathogen identification and AMR gene characterization. Multilocus sequence typing was performed on whole-genome assemblies and haplotype clusters compared against published genomes. RESULTS: Genes associated with acquired resistance to fluoroquinolones were identified in 59%, trimethoprim/sulfamethoxazole in 45%, and aminoglycosides in 52% of 715 isolates. Extended-spectrum β-lactamase encoding genes were identified in 34% isolates, most commonly blaCTX-M-15, blaCTX-M-27, and blaCTX-M-55 in Escherichia coli sequence types 131 and 1193. Carbapenemase genes were identified in 12% isolates, most commonly blaOXA-23, blaNDM-1, blaOXA-58, and blaOXA-66 in Acinetobacter species. Phylogenetic analysis revealed clonal strains of Acinetobacter baumannii, representing suspected nosocomial outbreaks, and genetic clusters of quinolone-resistant typhoidal Salmonella and extended-spectrum β-lactamase E. coli cases suggesting community transmission. CONCLUSIONS: With accessible sequencing platforms and bioinformatics solutions, bacterial genomics can supplement AMR surveillance in LMICs. | 2025 | 39163245 |
| 2599 | 10 | 0.9735 | Evaluation of whole-genome sequencing protocols for detection of antimicrobial resistance, virulence factors and mobile genetic elements in antimicrobial-resistant bacteria. Introduction. Antimicrobial resistance (AMR) poses a critical threat to global health, underscoring the need for rapid and accurate diagnostic tools. Methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae (ESBL-Kp) are listed among the World Health Organization's priority pathogens.Hypothesis. A rapid nanopore-based protocol can accurately and efficiently detect AMR genes, virulence factors (VFs) and mobile genetic elements (MGEs) in MRSA and ESBL-Kp, offering performance comparable to or superior to traditional sequencing methods.Aim. Evaluate whole-genome sequencing (WGS) protocols for detecting AMR genes, VFs and MGEs in MRSA and ESBL-Kp, to identify the most accurate and efficient tool for pathogen profiling.Methodology. Five distinct WGS protocols, including a rapid nanopore-based protocol (ONT20h) and four slower sequencing methods, were evaluated for their effectiveness in detecting genetic markers. The protocols' performances were compared across AMR genes, VFs and MGEs. Additionally, phenotypic antimicrobial susceptibility testing was performed to assess concordance with the genomic findings.Results. Compared to four slower sequencing protocols, the rapid nanopore-based protocol (ONT20h) demonstrated comparable or superior performance in AMR gene detection and equivalent VF identification. Although MGE detection varied among protocols, ONT20h showed a high level of agreement with phenotypic antimicrobial susceptibility testing.Conclusion. The findings highlight the potential of rapid WGS as a valuable tool for clinical microbiology, enabling timely implementation of infection control measures and informed therapeutic decisions. However, further studies are required to optimize the clinical application of this technology, considering costs, availability of bioinformatics tools and quality of reference databases. | 2025 | 40105741 |
| 847 | 11 | 0.9735 | Genome-based characterization of Escherichia coli causing bloodstream infection through next-generation sequencing. Escherichia coli are one of the commonest bacteria causing bloodstream infection (BSI). The aim of the research was to identify the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance of E. coli isolated from bloodstream infection hospitalized patients in Cipto Mangunkusumo National Hospital Jakarta. We used whole genome sequencing methods rather than the conventional one, to characterized the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance (AMR) of E. coli. The composition of E. coli sequence types (ST) was as follows: ST131 (n = 5), ST38 (n = 3), ST405 (n = 3), ST69 (n = 3), and other STs (ST1057, ST127, ST167, ST3033, ST349, ST40, ST58, ST6630). Enteroaggregative E. coli (EAEC) and Extra-intestinal pathogenic E. coli (ExPEC) groups were found dominant in our samples. Twenty isolates carried virulence genes for host cells adherence and 15 for genes that encourage E. coli immune evasion by enhancing survival in serum. ESBL-genes were present in 17 E. coli isolates. Other AMR genes also encoded resistance against aminoglycosides, quinolones, chloramphenicol, macrolides and trimethoprim. The phylogeny analysis showed that phylogroup D is dominated and followed by phylogroup B2. The E. coli isolated from 22 patients in Cipto Mangunkusumo National Hospital Jakarta showed high diversity in serotypes, sequence types, virulence genes, and AMR genes. Based on this finding, routinely screening all bacterial isolates in health care facilities can improve clinical significance. By using Whole Genome Sequencing for laboratory-based surveillance can be a valuable early warning system for emerging pathogens and resistance mechanisms. | 2020 | 33362261 |
| 5126 | 12 | 0.9735 | Blanket antimicrobial resistance gene database with structural information, BOARDS, provides insights on historical landscape of resistance prevalence and effects of mutations in enzyme structure. Antimicrobial resistance (AMR) in pathogenic bacteria poses a significant threat to public health, yet there is still a need for development in the tools to deeply understand AMR genes based on genetic or structural information. In this study, we present an interactive web database named Blanket Overarching Antimicrobial-Resistance gene Database with Structural information (BOARDS, sbml.unist.ac.kr), a database that comprehensively includes 3,943 reported AMR gene information for 1,997 extended spectrum beta-lactamase (ESBL) and 1,946 other genes as well as a total of 27,395 predicted protein structures. These structures, which include both wild-type AMR genes and their mutants, were derived from 80,094 publicly available whole-genome sequences. In addition, we developed the rapid analysis and detection tool of antimicrobial-resistance (RADAR), a one-stop analysis pipeline to detect AMR genes across whole-genome sequencing (WGSs). By integrating BOARDS and RADAR, the AMR prevalence landscape for eight multi-drug resistant pathogens was reconstructed, leading to unexpected findings such as the pre-existence of the MCR genes before their official reports. Enzymatic structure prediction-based analysis revealed that the occurrence of mutations found in some ESBL genes was found to be closely related to the binding affinities with their antibiotic substrates. Overall, BOARDS can play a significant role in performing in-depth analysis on AMR.IMPORTANCEWhile the increasing antibiotic resistance (AMR) in pathogen has been a burden on public health, effective tools for deep understanding of AMR based on genetic or structural information remain limited. In this study, a blanket overarching antimicrobial-resistance gene database with structure information (BOARDS)-a web-based database that comprehensively collected AMR gene data with predictive protein structural information was constructed. Additionally, we report the development of a RADAR pipeline that can analyze whole-genome sequences as well. BOARDS, which includes sequence and structural information, has shown the historical landscape and prevalence of the AMR genes and can provide insight into single-nucleotide polymorphism effects on antibiotic degrading enzymes within protein structures. | 2024 | 38085058 |
| 1882 | 13 | 0.9734 | Genomic Characterization of Multidrug-Resistant Pathogenic Enteric Bacteria from Healthy Children in Osun State, Nigeria. Antimicrobial resistance (AMR) is responsible for the spread and persistence of bacterial infections. Surveillance of AMR in healthy individuals is usually not considered, though these individuals serve as reservoirs for continuous disease transmission. Therefore, it is essential to conduct epidemiological surveillance of AMR in healthy individuals to fully understand the dynamics of AMR transmission in Nigeria. Thirteen multidrug-resistant Citrobacter spp., Enterobacter spp., Klebsiella pneumoniae, and Escherichia coli isolated from stool samples of healthy children were subjected to whole genome sequencing (WGS) using Illumina and Oxford nanopore sequencing platforms. A bioinformatics analysis revealed antimicrobial resistance genes such as the pmrB_Y358N gene responsible for colistin resistance detected in E. coli ST219, virulence genes such as senB, and ybtP&Q, and plasmids in the isolates sequenced. All isolates harbored more than three plasmid replicons of either the Col and/or Inc type. Plasmid reconstruction revealed an integrated tetA gene, a toxin production caa gene in two E. coli isolates, and a cusC gene in K. quasivariicola ST3879, which induces neonatal meningitis. The global spread of AMR pathogenic enteric bacteria is of concern, and surveillance should be extended to healthy individuals, especially children. WGS for epidemiological surveillance will improve the detection of AMR pathogens for management and control. | 2024 | 38543556 |
| 2525 | 14 | 0.9734 | Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans. OBJECTIVES: In this review, we describe surveillance programmes reporting antimicrobial resistance (AMR) and resistance genes in bacterial isolates from livestock and meat and compare them with those relevant for human health. METHODS: Publications on AMR in European countries were assessed. PubMed was reviewed and AMR monitoring programmes were identified from reports retrieved by Internet searches and by contacting national authorities in EU/European Economic Area (EEA) member states. RESULTS: Three types of systems were identified: EU programmes, industry-funded supranational programmes and national surveillance systems. The mandatory EU-financed programme has led to some harmonization in national monitoring and provides relevant information on AMR and extended-spectrum β-lactamase/AmpC- and carbapenemase-producing bacteria. At the national level, AMR surveillance systems in livestock apply heterogeneous sampling, testing and reporting modalities, resulting in results that cannot be compared. Most reports are not publicly available or are written in a local language. The industry-funded monitoring systems undertaken by the Centre Européen d'Etudes pour la Santé Animale (CEESA) examines AMR in bacteria in food-producing animals. CONCLUSIONS: Characterization of AMR genes in livestock is applied heterogeneously among countries. Most antibiotics of human interest are included in animal surveillance, although results are difficult to compare as a result of lack of representativeness of animal samples. We suggest that EU/EEA countries provide better uniform AMR monitoring and reporting in livestock and link them better to surveillance systems in humans. Reducing the delay between data collection and publication is also important to allow prompt identification of new resistance patterns. | 2018 | 28970159 |
| 3068 | 15 | 0.9733 | Metagenomic profiling of pigeon faecal microbiota: insights into microbial diversity, pathogens, and antimicrobial resistance genes. Rock pigeon (Columba livia) droppings harbour diverse microorganisms, including potential pathogens. This study utilised shotgun metagenomic sequencing to analyse pigeon faecal microbiota and identify potential pathogens. Fresh faecal samples (273) were collected within Universiti Tunku Abdul Rahman Kampar campus, Malaysia. Total genome and viral genomes were extracted and sequenced using the Illumina NovaSeq 6000 platform. Taxonomic assignment, antimicrobial resistance (AMR) gene detection, and viral genome assembly were conducted using the CZ ID platform. The microbial diversity was predominated by bacteria, followed by eukaryotic viruses and fungi, with no archaea were detected. Pseudomonadota (84.44%) and Bacillota (15.26%) were the predominant bacterial phyla, with Pseudomonadota being 5.5 times more abundant, indicating potential enteric-like issues within the pigeon flocks. Approximately 5.11% of the bacterial community (comprising 38 species), was identified as potential pathogens, could primarily cause human enteric and respiratory infections. Nineteen AMR genes were detected, primarily associated with pathogenic Shigella, Salmonella, and Klebsiella. The presence of AMR genes and possible co-circulation among pathogenic bacteria impose the risk of emergence of multidrug-resistant bacteria. Nine avian virus species were detected. The predominant DNA virus, pigeon circovirus (73.23%) could cause immunosuppression, predisposing pigeons to secondary infections by E. coli, K. pneumoniae, and rotaviruses. The predominant RNA virus, rotaviruses (80.43%) could cause enteric diseases in both humans and birds. The fungal community comprised Kazachstania (94.11%) and Trichosporon (3.56%), with K. bovina and T. asahii identified as human pathogens. This study highlights the compelling need for effective pigeon control in dining areas, ventilation systems, and healthcare facilities. | 2025 | 40833454 |
| 1496 | 16 | 0.9733 | Plasmid-Mediated Co-Occurrence of mcr-1.1 in Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli Isolated From the Indigenous Seminomadic Community in Malaysia. The growing prevalence of commensal antibiotic resistant Escherichia coli poses a significant concern for the global spread of antibiotic resistance. Stool samples (n = 35) from a seminomadic indigenous community in Malaysia, the Jehai, were screened for multidrug-resistant bacteria, specifically the extended-spectrum β-lactamase (ESBL) producers. Subsequently, whole-genome sequencing was used to provide genomic insights into eight ESBL-producing E. coli that colonised eight individuals. The ESBL E. coli isolates carry resistance genes from various antibiotic classes such as the β-lactams (bla (TEM), bla (CTX-M-15) and bla (CTX-M-55)), quinolones (gyrA, qnrS and qnrS1) and aminoglycosides (aph(3')-Ia, aph(6)-Id and aac(3)-IId). Three concerning convergence of ESBL, colistin and metal resistance determinants, with three plasmids from H-type lineage harbouring bla (CTX-M) and mcr-1.1 genes were identified. Using the Oxford Nanopore Technology (ONT) Native Barcoding Kit (SQK-NBD114.24) in conjunction with the R10.4.1 flow cell, which achieved an average read accuracy (Q > 10) of 99.84%, we further characterised the mcr-1.1-bearing plasmids, ranging in size from 25 to 28 kb, from three strains of E. coli. This report represents the first whole genome analysis of multidrug-resistant bacteria, specifically those resistant to colistin, found within the indigenous population in Malaysia. It strongly indicates that the pertinent issue of colistin resistance in the country is far more significant than previously estimated. | 2024 | 40303148 |
| 1996 | 17 | 0.9733 | Conjugation of plasmid harboring bla (NDM-1) in a clinical Providencia rettgeri strain through the formation of a fusion plasmid. Providencia rettgeri has recently gained increased importance owing to the New Delhi metallo-β-lactamase (NDM) and other β-lactamases produced by its clinical isolates. These enzymes reduce the efficiency of antimicrobial therapy. Herein, we reported the findings of whole-genome sequence analysis and a comprehensive pan-genome analysis performed on a multidrug-resistant P. rettgeri 18004577 clinical strain recovered from the urine of a hospitalized patient in Shandong, China, in 2018. Providencia rettgeri 18004577 was found to have a genome assembly size of 4.6 Mb with a G + C content of 41%; a circular plasmid p18004577_NDM of 273.3 Kb, harboring an accessory multidrug-resistant region; and a circular, stable IncT plasmid p18004577_Rts of 146.2 Kb. Additionally, various resistance genes were identified in its genome, including bla (NDM-1), bla (OXA-10), bla (PER-4), aph(3')-VI, ant(2'')-Ia, ant(3')-Ia, sul1, catB8, catA1, mph(E), and tet. Conjugation experiments and whole-genome sequencing revealed that the bla (NDM-1) gene could be transferred to the transconjugant via the formation of pJ18004577_NDM, a novel hybrid plasmid. Based on the genetic comparison, the main possible formation process for pJ18004577_NDM was the insertion of the [ΔISKox2-IS26-ΔISKox2]-aph(3')-VI-bla (NDM-1) translocatable unit module from p18004577_NDM into plasmid p18004577_Rts in the Russian doll insertion structure (ΔISKox2-IS26-ΔISKox2), which played a role similar to that of IS26 using the "copy-in" route in the mobilization of [aph(3')-VI]-bla (NDM-1). The array, multiplicity, and diversity of the resistance and virulence genes in this strain necessitate stringent infection control, antibiotic stewardship, and periodic resistance surveillance/monitoring policies to preempt further horizontal and vertical spread of the resistance genes. Roary analysis based on 30 P. rettgeri strains pan genome identified 415 core, 756 soft core, 5,744 shell, and 12,967 cloud genes, highlighting the "close" nature of P. rettgeri pan-genome. After a comprehensive pan-genome analysis, representative biological information was revealed that included phylogenetic distances, presence or absence of genes across the P. rettgeri bacteria clade, and functional distribution of proteins. Moreover, pan-genome analysis has been shown to be an effective approach to better understand P. rettgeri bacteria because it helps develop various tailored therapeutic strategies based on their biological similarities and differences. | 2022 | 36687647 |
| 1737 | 18 | 0.9732 | Isolation and Characterisation of Human-Derived bla(KPC-3)-Producing Salmonella enterica Serovar Rissen in 2018. In this study, we describe a Salmonella enterica serovar (S.) Rissen strain with a reduced susceptibility to meropenem, isolated from a urinary infection in an 89-year-old woman in 2018 during activity surveillance in Italy (Enter-Net Italia). The genomic characteristics, pathogenicity, and antimicrobial resistance mechanisms were investigated via a genomic approach. Antimicrobial susceptibility testing revealed a "susceptible, increased exposure" phenotype to meropenem in the S. Rissen strain (4_29_19). Whole-genome sequencing (WGS) was performed using both the NovaSeq 6000 S4 PE150 XP platform (Illumina, San Diego, CA, USA) and MinION (Oxford Nanopore). The S. Rissen 4_29_19 strain harboured two plasmids: a pKpQIL-like plasmid carrying the bla(KPC-3) resistance gene in a Tn4401a transposon (pKPC_4_29_19), and a ColE-like plasmid (p4_4_29_19) without resistance genes, highly prevalent among Enterobacterales. Comparative analysis revealed that the pKPC_4_29_19 plasmid was highly related to the pKpQIL reference plasmid (GU595196), with 57% coverage and 99.96% identity, but lacking a region of about 30 kb, involving the FIIK(2) replicon region and the entire transfer locus, causing the loss of its ability to conjugate. To our knowledge, this is the first time that a pKpQIL-like plasmid, carrying bla(KPC-3), highly diffused in Klebsiella pneumoniae strains, has been identified in a Salmonella strain in our country. The acquisition of bla(KPC) genes by Salmonella spp. is extremely rare, and is reported only sporadically. In zoonotic bacteria isolated from humans, the presence of a carbapenem resistance gene carried by mobile genetic elements, usually described in healthcare-associated infection bacteria, represents an important concern for public health. | 2023 | 37760674 |
| 5205 | 19 | 0.9730 | Antimicrobial resistance and virulence factors of Klebsiella quasipneumoniae, the novel sequence types (ST) 7979 and 7980 from Indonesia. Klebsiella pneumoniae is a human pathogen of global concern. The more recently described pathogen, K. quasipneumoniae, shares similar morphological characteristics with K. pneumoniae and is commonly misidentified as this species using conventional laboratory techniques. This study investigates the molecular characteristics of four phenotype-identified K. pneumoniae isolates obtained from hospital wastewater in Jakarta, Indonesia. Whole-genome sequencing (WGS) and the Average Nucleotide Identity (ANI) showed that these isolates were eventually identified as K. quasipneumoniae subsp. quasipneumoniae, a closely related species of K. pneumoniae. These isolates of novel ST7979 and ST7980 strains are classified as multi-drug resistant (MDR) bacteria and harbor many antibiotic-resistance genes. Interestingly, the novel ST7980 strain is carbapenem non-susceptible and harbors the sul1 gene and the heat-stable enterotoxin gene, astA. The ST7979 strains have KL55 capsular type and O3b type, whereas the ST7980 strains have KL107 and O12 types. Our finding highlights the significance of identifying the K. quasipneumoniae strain utilizing a genomic platform. Additionally, routine surveillance is needed to monitor the hospital wastewater and avoid the spread of multidrug-resistant bacteria. | 2025 | 40609771 |