ONLINE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
512200.9913Clinical long-read metagenomic sequencing of culture-negative infective endocarditis reveals genomic features and antimicrobial resistance. BACKGROUND: Infective endocarditis (IE) poses significant diagnostic challenges, particularly in blood culture-negative cases where fastidious bacteria evade detection. Metagenomic-based nanopore sequencing enables rapid pathogen detection and provides a new approach for the diagnosis of IE. METHOD: Two cases of blood culture-negative infective endocarditis (IE) were analyzed using nanopore sequencing with an in silico host-depletion approach. Complete genome reconstruction and antimicrobial resistance gene annotation were successfully performed. RESULTS: Within an hour of sequencing, EPI2ME classified nanopore reads, identifying Corynebacterium striatum in IE patient 1 and Granulicatella adiacens in IE patient 2. After 18 h, long-read sequencing successfully reconstructed a single circular genome of C. striatum in IE patient 1, whereas short-read sequencing was used to compare but produced fragmented assemblies. Based on these results, long-read sequencing was exclusively used for IE patient 2, allowing for the complete and accurate assembly of G. adiacens, confirming the presence of these bacteria in the clinical samples. In addition to pathogen identification, antimicrobial resistance (AMR) genes were detected in both genomes. Notably, in C. striatum, regions containing a class 1 integron and multiple novel mobile genetic elements (ISCost1, ISCost2, Tn7838 and Tn7839) were identified, collectively harbouring six AMR genes. This is the first report of such elements in C. striatum, highlighting the potential of nanopore long-read sequencing for comprehensive pathogen characterization in IE cases. CONCLUSIONS: This study highlights the effectiveness of host-depleted, long-read nanopore metagenomics for direct pathogen identification and accurate genome reconstruction, including antimicrobial resistance gene detection. The approach enables same-day diagnostic reporting within a matter of hours. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12879-025-11741-5.202541087996
252510.9912Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans. OBJECTIVES: In this review, we describe surveillance programmes reporting antimicrobial resistance (AMR) and resistance genes in bacterial isolates from livestock and meat and compare them with those relevant for human health. METHODS: Publications on AMR in European countries were assessed. PubMed was reviewed and AMR monitoring programmes were identified from reports retrieved by Internet searches and by contacting national authorities in EU/European Economic Area (EEA) member states. RESULTS: Three types of systems were identified: EU programmes, industry-funded supranational programmes and national surveillance systems. The mandatory EU-financed programme has led to some harmonization in national monitoring and provides relevant information on AMR and extended-spectrum β-lactamase/AmpC- and carbapenemase-producing bacteria. At the national level, AMR surveillance systems in livestock apply heterogeneous sampling, testing and reporting modalities, resulting in results that cannot be compared. Most reports are not publicly available or are written in a local language. The industry-funded monitoring systems undertaken by the Centre Européen d'Etudes pour la Santé Animale (CEESA) examines AMR in bacteria in food-producing animals. CONCLUSIONS: Characterization of AMR genes in livestock is applied heterogeneously among countries. Most antibiotics of human interest are included in animal surveillance, although results are difficult to compare as a result of lack of representativeness of animal samples. We suggest that EU/EEA countries provide better uniform AMR monitoring and reporting in livestock and link them better to surveillance systems in humans. Reducing the delay between data collection and publication is also important to allow prompt identification of new resistance patterns.201828970159
512520.9911Do we still need Illumina sequencing data? Evaluating Oxford Nanopore Technologies R10.4.1 flow cells and the Rapid v14 library prep kit for Gram negative bacteria whole genome assemblies. The best whole genome assemblies are currently built from a combination of highly accurate short-read sequencing data and long-read sequencing data that can bridge repetitive and problematic regions. Oxford Nanopore Technologies (ONT) produce long-read sequencing platforms and they are continually improving their technology to obtain higher quality read data that is approaching the quality obtained from short-read platforms such as Illumina. As these innovations continue, we evaluated how much ONT read coverage produced by the Rapid Barcoding Kit v14 (SQK-RBK114) is necessary to generate high-quality hybrid and long-read-only genome assemblies for a panel of carbapenemase-producing Enterobacterales bacterial isolates. We found that 30× long-read coverage is sufficient if Illumina data are available, and that more (at least 100× long-read coverage is recommended for long-read-only assemblies. Illumina polishing is still improving single nucleotide variants (SNVs) and INDELs in long-read-only assemblies. We also examined if antimicrobial resistance genes could be accurately identified in long-read-only data, and found that Flye assemblies regardless of ONT coverage detected >96% of resistance genes at 100% identity and length. Overall, the Rapid Barcoding Kit v14 and long-read-only assemblies can be an optimal sequencing strategy (i.e., plasmid characterization and AMR detection) but finer-scale analyses (i.e., SNV) still benefit from short-read data.202438354391
224930.9910Tracking Multidrug Resistance in Gram-Negative Bacteria in Alexandria, Egypt (2020-2023): An Integrated Analysis of Patient Data and Diagnostic Tools. BACKGROUND: The rise in carbapenem-resistant Enterobacteriaceae (CRE) in Egypt, particularly in hospital settings, poses a significant public health challenge. This study aims to develop a combined epidemiological surveillance tool utilizing the Microreact online platform (version 269) and molecular microarray technology to track and analyze carbapenem-resistant Escherichia coli strains in Egypt. The objective is to integrate molecular diagnostics and real-time data visualization to better understand the spread and evolution of multidrug-resistant (MDR) bacteria. METHODS: The study analyzed 43 E. coli isolates collected from Egyptian hospitals between 2020 and 2023. Nanopore sequencing and microarray analysis were used to identify carbapenemase genes and other resistance markers, whereas the VITEK2 system was employed for phenotypic antibiotic susceptibility testing. Microreact was used to visualize epidemiological data, mapping the geographic and temporal distribution of resistant strains. RESULTS: We found that 72.09% of the isolates, predominantly from pediatric patients, carried the blaNDM-5 gene, while other carbapenemase genes, including blaOXA-48 and blaVIM, were also detected. The microarray method demonstrated 92.9% diagnostic sensitivity and 87.7% diagnostic specificity compared to whole-genome sequencing. Phenotypic resistance correlated strongly with next-generation sequencing (NGS) genotypic data, achieving 95.6% sensitivity and 95.2% specificity. CONCLUSIONS: This method establishes the utility of combining microarray technology, NGS and real-time data visualization for the surveillance of carbapenem-resistant Enterobacteriaceae, especially E. coli. The high concordance between genotypic and phenotypic data underscores the potential of DNA microarrays as a cost-effective alternative to whole-genome sequencing, especially in resource-limited settings. This integrated approach can enhance public health responses to MDR bacteria in Egypt.202439766575
210240.9909Phenotypic and genotypic landscape of antibiotic resistance through One Health approach in Sri Lanka: A systematic review. OBJECTIVES: Antibiotic resistance (ABR) constitutes a significant burden to economies in developing countries. In the 'One-Health' concept, ABR in human, animals, and environment is interconnected. The aim of this study was to critically appraise literature on ABR in all three domains in One Health, within the Sri Lankan geographical context. METHODS: The protocol was registered with PROSPERO and followed PRISMA 2020 guidelines. A comprehensive electronic literature search was conducted in PubMed, Scopus, Web of Science databases and grey literature via Google Scholar. Out of 298 abstracts, 37 articles were selected following screening. A risk of bias assessment was conducted using Joanna Briggs Institute tools. Following blinded data extraction, descriptive data analysis and narrative synthesis were performed. RESULTS: This review included studies published between 2016-2023. Of the included studies, 17 (45.9%) reported data on samples obtained from humans, 9 (24.3%) from animals, and 6 (16.2%) from environmental sources, two studies (5.4%) from humans and animals, one study on animal and environment; whereas two studies including all three domains. ABR of 32 different bacteria (Gram negative⸺17, Gram positive⸺14) was retrieved; E. coli was the most frequently studied bacteria followed by MRSA and ESBL. For E. coli, a median resistance over 50% was reported for sulfamethoxazole (88.8%), trimethoprim (79.1%), ampicillin (60%) and tetracycline (50.3%) with the highest resistance for erythromycin (98%). Of a total of 21 antibiotic-resistance genes in E. coli, the highest genotypic resistance was for tet-A (48.5%). CONCLUSIONS: A comprehensive description of ABR for a total of 32 bacteria, 62 antibiotics and 46 ABR genes is presented. This review discusses the contemporary ABR landscape in Sri Lanka through the One Health lens, highlighting key methodological and empirical research gaps.202539763328
210150.9908Antibiotic resistance genes circulating in Nigeria: a systematic review and meta-analysis from the One Health perspective. BACKGROUND: The misuse of antibiotics in developing countries has created serious threats to public healthcare systems and reduced treatment options. Multidrug-resistant bacteria harbour antibiotic resistance genes that help them subdue the effectiveness of several available antibiotics. This review aimed to assess antimicrobial resistance genes circulating in Nigeria via a systematic review and meta-analysis. METHODS: A comprehensive literature search was performed using five electronic databases: PubMed, Web of Science, Scopus, Google Search, and African Journals Online (AJOL). Articles related to antibiotic resistance genes in Nigeria, published between January 1, 2015 and October 31, 2024, were included. The Newcastle-Ottawa scale (NOS) was used to assess the risk of bias. The meta-analysis for random effects was performed to determine the proportions and pooled prevalence of the resistance genes from the various One Health domains, as well as heterogeneity in the data, using R software (Version 4.3.3) and the metaprop package. RESULTS: Of the 762 articles retrieved, 56 (humans [n = 33], animals [n = 8], environment [n = 12], human/animal [n = 1], and human/animal/environment [n = 2]) from the six geopolitical zones in Nigeria met the inclusion criteria. The extended-spectrum beta-lactamase (ESBL) gene with the highest pooled prevalence was blaSHV (24.0% [95% CI: 12.0–44.0]), followed by blaCTX-M (23.0% [95% CI: 14.0–37.0]), and the least was blaTEM (18.0% [95% CI: 8.0–37.0]). Among the carbapenemase genes, blaKPC (33.0% [95% CI: 7.0–76.0]) was the most prevalent, followed by blaNDM (21.0% [95% CI: 9.0–41.0]), blaOXA (11.0% [95% CI: 2.0–46.0]) and the least was blaVIM (9.0% [95% CI: 3.0–26.0]). The mecA gene also had a high pooled prevalence (51.0% [95% CI: 14.0–86.0]). The pooled prevalence of the erm, sul, tet, and qnr genes ranged from 19.0% (95% CI: 8.0–38.0) to 27.0% (95% CI: 13.0–47.0). Some antibiotic resistance genes were shared among the three domains. CONCLUSION: This systematic review and meta-analysis has demonstrated the co-existence of antibiotic resistance genes among bacteria causing infection in Nigeria, via the One Health approach. There is a need for future research on the circulation of antibiotic resistance genes in developing countries using internationally approved approaches to track down this menace. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12920-025-02163-y.202540619397
226960.9908Genomic detection of Panton-Valentine Leucocidins encoding genes, virulence factors and distribution of antiseptic resistance determinants among Methicillin-resistant S. aureus isolates from patients attending regional referral hospitals in Tanzania. BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a formidable public scourge causing worldwide mild to severe life-threatening infections. The ability of this strain to swiftly spread, evolve, and acquire resistance genes and virulence factors such as pvl genes has further rendered this strain difficult to treat. Of concern, is a recently recognized ability to resist antiseptic/disinfectant agents used as an essential part of treatment and infection control practices. This study aimed at detecting the presence of pvl genes and determining the distribution of antiseptic resistance genes in Methicillin-resistant Staphylococcus aureus isolates through whole genome sequencing technology. MATERIALS AND METHODS: A descriptive cross-sectional study was conducted across six regional referral hospitals-Dodoma, Songea, Kitete-Kigoma, Morogoro, and Tabora on the mainland, and Mnazi Mmoja from Zanzibar islands counterparts using the archived isolates of Staphylococcus aureus bacteria. The isolates were collected from Inpatients and Outpatients who attended these hospitals from January 2020 to Dec 2021. Bacterial analysis was carried out using classical microbiological techniques and whole genome sequencing (WGS) using the Illumina Nextseq 550 sequencer platform. Several bioinformatic tools were used, KmerFinder 3.2 was used for species identification, MLST 2.0 tool was used for Multilocus Sequence Typing and SCCmecFinder 1.2 was used for SCCmec typing. Virulence genes were detected using virulenceFinder 2.0, while resistance genes were detected by ResFinder 4.1, and phylogenetic relatedness was determined by CSI Phylogeny 1.4 tools. RESULTS: Out of the 80 MRSA isolates analyzed, 11 (14%) were found to harbor LukS-PV and LukF-PV, pvl-encoding genes in their genome; therefore pvl-positive MRSA. The majority (82%) of the MRSA isolates bearing pvl genes were also found to exhibit the antiseptic/disinfectant genes in their genome. Moreover, all (80) sequenced MRSA isolates were found to harbor SCCmec type IV subtype 2B&5. The isolates exhibited 4 different sequence types, ST8, ST88, ST789 and ST121. Notably, the predominant sequence type among the isolates was ST8 72 (90%). CONCLUSION: The notably high rate of antiseptic resistance particularly in the Methicillin-resistant S. aureus strains poses a significant challenge to infection control measures. The fact that some of these virulent strains harbor the LukS-PV and LukF-PV, the pvl encoding genes, highlight the importance of developing effective interventions to combat the spreading of these pathogenic bacterial strains. Certainly, strengthening antimicrobial resistance surveillance and stewardship will ultimately reduce the selection pressure, improve the patient's treatment outcome and public health in Tanzania.202539833938
512870.9908Whole genomes from bacteria collected at diagnostic units around the world 2020. The Two Weeks in the World research project has resulted in a dataset of 3087 clinically relevant bacterial genomes with pertaining metadata, collected from 59 diagnostic units in 35 countries around the world during 2020. A relational database is available with metadata and summary data from selected bioinformatic analysis, such as species prediction and identification of acquired resistance genes.202337717051
512380.9908Ultrafast and Cost-Effective Pathogen Identification and Resistance Gene Detection in a Clinical Setting Using Nanopore Flongle Sequencing. Rapid bacterial identification and antimicrobial resistance gene (ARG) detection are crucial for fast optimization of antibiotic treatment, especially for septic patients where each hour of delayed antibiotic prescription might have lethal consequences. This work investigates whether the Oxford Nanopore Technology's (ONT) Flongle sequencing platform is suitable for real-time sequencing directly from blood cultures to identify bacteria and detect resistance-encoding genes. For the analysis, we used pure bacterial cultures of four clinical isolates of Escherichia coli and Klebsiella pneumoniae and two blood samples spiked with either E. coli or K. pneumoniae that had been cultured overnight. We sequenced both the whole genome and plasmids isolated from these bacteria using two different sequencing kits. Generally, Flongle data allow rapid bacterial ID and resistome detection based on the first 1,000-3,000 generated sequences (10 min to 3 h from the sequencing start), albeit ARG variant identification did not always correspond to ONT MinION and Illumina sequencing-based data. Flongle data are sufficient for 99.9% genome coverage within at most 20,000 (clinical isolates) or 50,000 (positive blood cultures) sequences generated. The SQK-LSK110 Ligation kit resulted in higher genome coverage and more accurate bacterial identification than the SQK-RBK004 Rapid Barcode kit.202235369431
582890.9907Target-enriched sequencing enables accurate identification of bloodstream infections in whole blood. Bloodstream infections are within the top ten causes of death globally, with a mortality rate of up to 70%. Gold standard blood culture testing is time-consuming, resulting in delayed, but accurate, treatment. Molecular methods, such as RT-qPCR, have limited targets in one run. We present a new Ampliseq detection system (ADS) combining target amplification and next-generation sequencing for accurate identification of bacteria, fungi, and antimicrobial resistance determinants directly from blood samples. In this study, we included removal of human genomic DNA during nucleic acid extraction, optimized the target sequence set and drug resistance genes, performed antimicrobial resistance profiling of clinical isolates, and evaluated mock specimens and clinical samples by ADS. ADS successfully identified pathogens at the species-level in 36 h, from nucleic acid extraction to results. Besides pathogen identification, ADS can also present drug resistance profiles. ADS enabled detection of all bacteria and accurate identification of 47 pathogens. In 20 spiked samples and 8 clinical specimens, ADS detected at least 92.81% of reads mapped to pathogens. ADS also showed consistency with the three culture-negative samples, and correctly identified pathogens in four of five culture-positive clinical blood specimens. This Ampliseq-based technology promises broad coverage and accurate pathogen identification, helping clinicians to accurately diagnose and treat bloodstream infections.202234915067
5192100.9907Genome Sequencing Analysis of a Rare Case of Blood Infection Caused by Flavonifractor plautii. BACKGROUND Flavonifractor plautii belongs to the clostridium family, which can lead to local infections as well as the bloodstream infections. Flavonifractor plautii caused infection is rarely few in the clinic. To understand better Flavonifractor plautii, we investigated the drug sensitivity and perform genome sequencing of Flavonifractor plautii isolated from blood samples in China and explored the drug resistance and pathogenic mechanism of the bacteria. CASE REPORT The Epsilometer test method was used to detect the sensitivity of flavonoid bacteria to antimicrobial agents. PacBio sequencing technology was employed to sequence the whole genome of Flavonifractor plautii, and gene prediction and functional annotation were also analyzed. Flavonifractor plautii displayed sensitivity to most drugs but resistance to fluoroquinolones and tetracycline, potentially mediated by tet (W/N/W). The total genome size of Flavonifractor plautii was 4,573,303 bp, and the GC content was 59.78%. Genome prediction identified 4,506 open reading frames, including 9 ribosomal RNAs and 66 transfer RNAs. It was detected that the main virulence factor-coding genes of the bacteria were the capsule, polar flagella and FbpABC, which may be associated with bacterial movement, adhesion, and biofilm formation. CONCLUSIONS The results of whole-genome sequencing could provide relevant information about the drug resistance mechanism and pathogenic mechanism of bacteria and offer a basis for clinical diagnosis and treatment.202438881048
9076110.9906ResiDB: An automated database manager for sequence data. The amount of publicly available DNA sequence data is drastically increasing, making it a tedious task to create sequence databases necessary for the design of diagnostic assays. The selection of appropriate sequences is especially challenging in genes affected by frequent point mutations such as antibiotic resistance genes. To overcome this issue, we have designed the webtool resiDB, a rapid and user-friendly sequence database manager for bacteria, fungi, viruses, protozoa, invertebrates, plants, archaea, environmental and whole genome shotgun sequence data. It automatically identifies and curates sequence clusters to create custom sequence databases based on user-defined input sequences. A collection of helpful visualization tools gives the user the opportunity to easily access, evaluate, edit, and download the newly created database. Consequently, researchers do no longer have to manually manage sequence data retrieval, deal with hardware limitations, and run multiple independent software tools, each having its own requirements, input and output formats. Our tool was developed within the H2020 project FAPIC aiming to develop a single diagnostic assay targeting all sepsis-relevant pathogens and antibiotic resistance mechanisms. ResiDB is freely accessible to all users through https://residb.ait.ac.at/.202133495705
849120.9906Bacterial Genomics for National Antimicrobial Resistance Surveillance in Cambodia. BACKGROUND: Antimicrobial resistance (AMR) surveillance in low- and middle-income countries (LMICs) often relies on poorly resourced laboratory processes. Centralized sequencing was combined with cloud-based, open-source bioinformatics solutions for national AMR surveillance in Cambodia. METHODS: Blood cultures growing gram-negative bacteria were collected at 6 Cambodian hospitals (January 2021 to October 2022). Isolates were obtained from pure plate growth and shotgun DNA sequencing performed in country. Using public nucleotide and protein databases, reads were aligned for pathogen identification and AMR gene characterization. Multilocus sequence typing was performed on whole-genome assemblies and haplotype clusters compared against published genomes. RESULTS: Genes associated with acquired resistance to fluoroquinolones were identified in 59%, trimethoprim/sulfamethoxazole in 45%, and aminoglycosides in 52% of 715 isolates. Extended-spectrum β-lactamase encoding genes were identified in 34% isolates, most commonly blaCTX-M-15, blaCTX-M-27, and blaCTX-M-55 in Escherichia coli sequence types 131 and 1193. Carbapenemase genes were identified in 12% isolates, most commonly blaOXA-23, blaNDM-1, blaOXA-58, and blaOXA-66 in Acinetobacter species. Phylogenetic analysis revealed clonal strains of Acinetobacter baumannii, representing suspected nosocomial outbreaks, and genetic clusters of quinolone-resistant typhoidal Salmonella and extended-spectrum β-lactamase E. coli cases suggesting community transmission. CONCLUSIONS: With accessible sequencing platforms and bioinformatics solutions, bacterial genomics can supplement AMR surveillance in LMICs.202539163245
1825130.9906Free online genome analyses reveal multiple strains in the beginning of a hospital outbreak of Enterobacter hormaechei carrying bla (OXA-436) carbapenemase gene. Free online tools for bacterial genome analyses are available for local infection surveillance at hospitals. The tools do not require bioinformatic expertise and provide rapid actionable results. Within half a year carbapenemase producing Enterobacter cloacae was reported in clinical samples from three patients who had been hospitalized at the same ward. The aim of this outbreak investigation was to characterize and compare genomes of the isolated bacteria in order to determine molecular evidence of hospital transmission. The three isolates and two isolates reported as susceptible to carbapenems were locally analyzed by whole genome sequencing (WGS). Draft genome assembly, species identification, phylogenetic analyses, typing, resistance gene determination, and plasmid analyses were carried out using free online tools from the Center for Genomic Epidemiology (CGE). Genome analyses identified all three suspected outbreak isolates as E. hormaechei carrying bla (OXA-436) gene. Two of the suspected outbreak isolates were closely related, while one was substantially different from them. Horizontal transfer of plasmid may have taken place in the ward. Detailed knowledge on the genomic composition of bacteria in suspected hospital outbreaks can be obtained by free online tools and may reveal transfer of resistance genes between different strains in addition to dissemination of specific clones.202236003132
5194140.9906Evaluation of the CosmosID Bioinformatics Platform for Prosthetic Joint-Associated Sonicate Fluid Shotgun Metagenomic Data Analysis. We previously demonstrated that shotgun metagenomic sequencing can detect bacteria in sonicate fluid, providing a diagnosis of prosthetic joint infection (PJI). A limitation of the approach that we used is that data analysis was time-consuming and specialized bioinformatics expertise was required, both of which are barriers to routine clinical use. Fortunately, automated commercial analytic platforms that can interpret shotgun metagenomic data are emerging. In this study, we evaluated the CosmosID bioinformatics platform using shotgun metagenomic sequencing data derived from 408 sonicate fluid samples from our prior study with the goal of evaluating the platform vis-à-vis bacterial detection and antibiotic resistance gene detection for predicting staphylococcal antibacterial susceptibility. Samples were divided into a derivation set and a validation set, each consisting of 204 samples; results from the derivation set were used to establish cutoffs, which were then tested in the validation set for identifying pathogens and predicting staphylococcal antibacterial resistance. Metagenomic analysis detected bacteria in 94.8% (109/115) of sonicate fluid culture-positive PJIs and 37.8% (37/98) of sonicate fluid culture-negative PJIs. Metagenomic analysis showed sensitivities ranging from 65.7 to 85.0% for predicting staphylococcal antibacterial resistance. In conclusion, the CosmosID platform has the potential to provide fast, reliable bacterial detection and identification from metagenomic shotgun sequencing data derived from sonicate fluid for the diagnosis of PJI. Strategies for metagenomic detection of antibiotic resistance genes for predicting staphylococcal antibacterial resistance need further development.201930429253
5777150.9906Rapid Detection of Antimicrobial Resistance Genes in Critically Ill Children Using a Custom TaqMan Array Card. Bacteria are identified in only 22% of critically ill children with respiratory infections treated with antimicrobial therapy. Once an organism is isolated, antimicrobial susceptibility results (phenotypic testing) can take another day. A rapid diagnostic test identifying antimicrobial resistance (AMR) genes could help clinicians make earlier, informed antimicrobial decisions. Here we aimed to validate a custom AMR gene TaqMan Array Card (AMR-TAC) for the first time and assess its feasibility as a screening tool in critically ill children. An AMR-TAC was developed using a combination of commercial and bespoke targets capable of detecting 23 AMR genes. This was validated using isolates with known phenotypic resistance. The card was then tested on lower respiratory tract and faecal samples obtained from mechanically ventilated children in a single-centre observational study of respiratory infection. There were 82 children with samples available, with a median age of 1.2 years. Major comorbidity was present in 29 (35%) children. A bacterial respiratory pathogen was identified in 13/82 (16%) of children, of which 4/13 (31%) had phenotypic AMR. One AMR gene was detected in 49/82 (60%), and multiple AMR genes were detected in 14/82 (17%) children. Most AMR gene detections were not associated with the identification of phenotypic AMR. AMR genes are commonly detected in samples collected from mechanically ventilated children with suspected respiratory infections. AMR-TAC may have a role as an adjunct test in selected children in whom there is a high suspicion of antimicrobial treatment failure.202338136735
2599160.9905Evaluation of whole-genome sequencing protocols for detection of antimicrobial resistance, virulence factors and mobile genetic elements in antimicrobial-resistant bacteria. Introduction. Antimicrobial resistance (AMR) poses a critical threat to global health, underscoring the need for rapid and accurate diagnostic tools. Methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae (ESBL-Kp) are listed among the World Health Organization's priority pathogens.Hypothesis. A rapid nanopore-based protocol can accurately and efficiently detect AMR genes, virulence factors (VFs) and mobile genetic elements (MGEs) in MRSA and ESBL-Kp, offering performance comparable to or superior to traditional sequencing methods.Aim. Evaluate whole-genome sequencing (WGS) protocols for detecting AMR genes, VFs and MGEs in MRSA and ESBL-Kp, to identify the most accurate and efficient tool for pathogen profiling.Methodology. Five distinct WGS protocols, including a rapid nanopore-based protocol (ONT20h) and four slower sequencing methods, were evaluated for their effectiveness in detecting genetic markers. The protocols' performances were compared across AMR genes, VFs and MGEs. Additionally, phenotypic antimicrobial susceptibility testing was performed to assess concordance with the genomic findings.Results. Compared to four slower sequencing protocols, the rapid nanopore-based protocol (ONT20h) demonstrated comparable or superior performance in AMR gene detection and equivalent VF identification. Although MGE detection varied among protocols, ONT20h showed a high level of agreement with phenotypic antimicrobial susceptibility testing.Conclusion. The findings highlight the potential of rapid WGS as a valuable tool for clinical microbiology, enabling timely implementation of infection control measures and informed therapeutic decisions. However, further studies are required to optimize the clinical application of this technology, considering costs, availability of bioinformatics tools and quality of reference databases.202540105741
2523170.9905Antibiotic resistance and virulence of bacteria in spices: a systematic review. BACKGROUND: Spices, widely valued for their flavor, color, and antioxidant properties, are increasingly used in culinary and food industries. Despite their benefits, spices may act as carriers for antibiotic-resistant and potentially pathogenic bacteria, posing a threat to food safety and public health. METHODS: This systematic review followed the PRISMA 2020 guidelines. A comprehensive search of six databases (Web of Science, PubMed, Scopus, Cochrane Library, Google Scholar, and Embase) was conducted for English-language articles from inception to 2023, focusing on bacterial contamination, antibiotic resistance, and virulence in spices. Inclusion was limited to peer-reviewed articles, and methodological quality was assessed using the JBI checklist. RESULTS: Of the 3,458 initially identified articles, 16 met the inclusion criteria. Most studies originated from Asia (n = 5) and the Americas (n = 4). Bacteria commonly isolated from spices included Bacillus cereus, Escherichia coli, Salmonella spp., and Staphylococcus aureus. High resistance levels were observed against ampicillin (83.3%) and penicillin (82.1%), while most isolates were susceptible to polymyxin B and cephalothin. Resistance genes such as bla, tetK, and ermB were frequently detected, along with virulence genes like nheA, hblC, cytK, and tpeL. CONCLUSION: Spices may serve as reservoirs for multidrug-resistant and virulent bacteria. Improved handling, processing, and decontamination practices are essential to mitigate foodborne risks and curb the spread of antimicrobial resistance. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s42522-025-00172-6.202541088443
927180.9905Prevalence of carbapenemase-producing organisms at the Kidney Center of Rawalpindi (Pakistan) and evaluation of an advanced molecular microarray-based carbapenemase assay. AIM: A DNA microarray-based assay for the detection of antimicrobial resistance (AMR) genes was used to study carbapenemase-producing organisms at the Kidney Center of Rawalpindi, Pakistan. METHODS: The evaluation of this assay was performed using 97 reference strains with confirmed AMR genes. Testing of 7857 clinical samples identified 425 Gram-negative bacteria out of which 82 appeared carbapenem resistant. These isolates were analyzed using VITEK-2 for phenotyping and the described AMR assay for genotyping. RESULTS: The most prevalent carbapenemase gene was blaNDM and in 12 isolates we detected two carbapenemase genes (e.g., blaNDM/blaOXA-48). CONCLUSION: Our prevalence data from Pakistan show that - as in other parts of the world - carbapenemase-producing organisms with different underlying resistance mechanisms are emerging, and this warrants intensified and constant surveillance.201829938540
5124190.9905Oxford nanopore long-read sequencing enables the generation of complete bacterial and plasmid genomes without short-read sequencing. INTRODUCTION: Genome-based analysis is crucial in monitoring antibiotic-resistant bacteria (ARB)and antibiotic-resistance genes (ARGs). Short-read sequencing is typically used to obtain incomplete draft genomes, while long-read sequencing can obtain genomes of multidrug resistance (MDR) plasmids and track the transmission of plasmid-borne antimicrobial resistance genes in bacteria. However, long-read sequencing suffers from low-accuracy base calling, and short-read sequencing is often required to improve genome accuracy. This increases costs and turnaround time. METHODS: In this study, a novel ONT sequencing method is described, which uses the latest ONT chemistry with improved accuracy to assemble genomes of MDR strains and plasmids from long-read sequencing data only. Three strains of Salmonella carrying MDR plasmids were sequenced using the ONT SQK-LSK114 kit with flow cell R10.4.1, and de novo genome assembly was performed with average read accuracy (Q > 10) of 98.9%. RESULTS AND DISCUSSION: For a 5-Mb-long bacterial genome, finished genome sequences with accuracy of >99.99% could be obtained at 75× sequencing coverage depth using Flye and Medaka software. Thus, this new ONT method greatly improves base-calling accuracy, allowing for the de novo assembly of high-quality finished bacterial or plasmid genomes without the need for short-read sequencing. This saves both money and time and supports the application of ONT data in critical genome-based epidemiological analyses. The novel ONT approach described in this study can take the place of traditional combination genome assembly based on short- and long-read sequencing, enabling pangenomic analyses based on high-quality complete bacterial and plasmid genomes to monitor the spread of antibiotic-resistant bacteria and antibiotic resistance genes.202337256057