# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3865 | 0 | 0.9985 | Assessing Transmission of Antimicrobial-Resistant Escherichia coli in Wild Giraffe Contact Networks. There is growing evidence that anthropogenic sources of antibiotics and antimicrobial-resistant bacteria can spill over into natural ecosystems, raising questions about the role wild animals play in the emergence, maintenance, and dispersal of antibiotic resistance genes. In particular, we lack an understanding of how resistance genes circulate within wild animal populations, including whether specific host characteristics, such as social associations, promote interhost transmission of these genes. In this study, we used social network analysis to explore the forces shaping population-level patterns of resistant Escherichia coli in wild giraffe (Giraffa camelopardalis) and assess the relative importance of social contact for the dissemination of resistant E. coli between giraffe. Of 195 giraffe sampled, only 5.1% harbored E. coli isolates resistant to one or more tested antibiotics. Whole-genome sequencing on a subset of resistant isolates revealed a number of acquired resistance genes with linkages to mobile genetic elements. However, we found no evidence that the spread of resistance genes among giraffe was facilitated by interhost associations. Giraffe with lower social degree were more likely to harbor resistant E. coli, but this relationship was likely driven by a correlation between an individual's social connectedness and age. Indeed, resistant E. coli was most frequently detected in socially isolated neonates, indicating that resistant E. coli may have a selective advantage in the gastrointestinal tracts of neonates compared to other age classes. Taken together, these results suggest that the maintenance of antimicrobial-resistant bacteria in wild populations may, in part, be determined by host traits and microbial competition dynamics within the host.IMPORTANCE Antimicrobial resistance represents a significant threat to human health, food security, and the global economy. To fully understand the evolution and dissemination of resistance genes, a complete picture of antimicrobial resistance in all biological compartments, including natural ecosystems, is required. The environment and wild animals may act as reservoirs for anthropogenically derived resistance genes that could be transferrable to clinically relevant bacteria of humans and domestic animals. Our study investigated the possible transmission mechanisms for antimicrobial-resistant bacteria within a wild animal population and, more broadly, contributes to our understanding of how resistance genes are spread and maintained in natural ecosystems. | 2019 | 30413480 |
| 6590 | 1 | 0.9984 | Genomic epidemiology of Escherichia coli: antimicrobial resistance through a One Health lens in sympatric humans, livestock and peri-domestic wildlife in Nairobi, Kenya. BACKGROUND: Livestock systems have been proposed as a reservoir for antimicrobial-resistant (AMR) bacteria and AMR genetic determinants that may infect or colonise humans, yet quantitative evidence regarding their epidemiological role remains lacking. Here, we used a combination of genomics, epidemiology and ecology to investigate patterns of AMR gene carriage in Escherichia coli, regarded as a sentinel organism. METHODS: We conducted a structured epidemiological survey of 99 households across Nairobi, Kenya, and whole genome sequenced E. coli isolates from 311 human, 606 livestock and 399 wildlife faecal samples. We used statistical models to investigate the prevalence of AMR carriage and characterise AMR gene diversity and structure of AMR genes in different host populations across the city. We also investigated household-level risk factors for the exchange of AMR genes between sympatric humans and livestock. RESULTS: We detected 56 unique acquired genes along with 13 point mutations present in variable proportions in human and animal isolates, known to confer resistance to nine antibiotic classes. We find that AMR gene community composition is not associated with host species, but AMR genes were frequently co-located, potentially enabling the acquisition and dispersal of multi-drug resistance in a single step. We find that whilst keeping livestock had no influence on human AMR gene carriage, the potential for AMR transmission across human-livestock interfaces is greatest when manure is poorly disposed of and in larger households. CONCLUSIONS: Findings of widespread carriage of AMR bacteria in human and animal populations, including in long-distance wildlife species, in community settings highlight the value of evidence-based surveillance to address antimicrobial resistance on a global scale. Our genomic analysis provided an in-depth understanding of AMR determinants at the interfaces of One Health sectors that will inform AMR prevention and control. | 2022 | 36482440 |
| 5742 | 2 | 0.9984 | Associations between antimicrobial resistance phenotypes, antimicrobial resistance genes, and virulence genes of fecal Escherichia coli isolates from healthy grow-finish pigs. Escherichia coli often carries linked antimicrobial resistance genes on transmissible genetic elements. Through coselection, antimicrobial use may select for unrelated but linked resistance or virulence genes. This study used unconditional statistical associations to investigate the relationships between antimicrobial resistance phenotypes and antimicrobial resistance genes in 151 E. coli isolates from healthy pigs. Phenotypic resistance to each drug was significantly associated with phenotypic resistance to at least one other drug, and every association found that the probability of observing the outcome resistance was increased by the presence of the predictor resistance. With one exception, each statistical association that was identified between a pair of resistance genes had a corresponding significant association identified between the phenotypes mediated by those genes. This suggests that associations between resistance phenotypes might predict coselection. If this hypothesis is confirmed, evaluation of the associations between resistance phenotypes could improve our knowledge of coselection dynamics and provide a cost-effective way to evaluate existing data until large-scale genotypic data collection becomes feasible. This could enable policy makers and users of antimicrobials to consider coselection in antimicrobial use decisions. This study also considered the unconditional relationships between resistance and virulence genes in E. coli from healthy pigs (aidA-1, eae, elt, estA, estB, fedA1, stx1, and stx2). Positive statistical associations would suggest that antimicrobial use may select for virulence in bacteria that may contaminate food or cause diarrhea in pigs. Fortunately, the odds of detecting a virulence gene were rarely increased by the presence of an antimicrobial resistance gene. This suggests that on-farm antimicrobial use did not select for the examined virulence factors in E. coli carried by this population of healthy pigs. | 2009 | 19139228 |
| 3450 | 3 | 0.9984 | Global Distribution and Diversity of Prevalent Sewage Water Plasmidomes. Sewage water from around the world contains an abundance of short plasmids, several of which harbor antimicrobial resistance genes (ARGs). The global dynamics of plasmid-derived antimicrobial resistance and functions are only starting to be unveiled. Here, we utilized a previously created data set of 159,332 assumed small plasmids from 24 different global sewage samples. The detailed phylogeny, as well as the interplay between their protein domains, ARGs, and predicted bacterial host genera, were investigated to understand sewage plasmidome dynamics globally. A total of 58,429 circular elements carried genes encoding plasmid-related features, and MASH distance analyses showed a high degree of diversity. A single (yet diverse) cluster of 520 predicted Acinetobacter plasmids was predominant among the European sewage water. Our results suggested a prevalence of plasmid-backbone gene combinations over others. This could be related to selected bacterial genera that act as bacterial hosts. These combinations also mirrored the geographical locations of the sewage samples. Our functional domain network analysis identified three groups of plasmids. However, these backbone domains were not exclusive to any given group, and Acinetobacter was the dominant host genus among the theta-replicating plasmids, which contained a reservoir of the macrolide resistance gene pair msr(E) and mph(E). Macrolide resistance genes were the most common in the sewage plasmidomes and were found in the largest number of unique plasmids. While msr(E) and mph(E) were limited to Acinetobacter, erm(B) was disseminated among a range of Firmicutes plasmids, including Staphylococcus and Streptococcus, highlighting a potential reservoir of antibiotic resistance for these pathogens from around the globe. IMPORTANCE Antimicrobial resistance is a global threat to human health, as it inhibits our ability to treat infectious diseases. This study utilizes sewage water plasmidomes to identify plasmid-derived features and highlights antimicrobial resistance genes, particularly macrolide resistance genes, as abundant in sewage water plasmidomes in Firmicutes and Acinetobacter hosts. The emergence of macrolide resistance in these bacteria suggests that macrolide selective pressure exists in sewage water and that the resident bacteria can readily acquire macrolide resistance via small plasmids. | 2022 | 36069451 |
| 3945 | 4 | 0.9983 | Vancomycin-resistant enterococci: why are they here, and where do they come from? Vancomcyin-resistant enterococci (VRE) have emerged as nosocomial pathogens in the past 10 years, causing epidemiological controversy. In the USA, colonisation with VRE is endemic in many hospitals and increasingly causes infection, but colonisation is absent in healthy people. In Europe, outbreaks still happen sporadically, usually with few serious infections, but colonisation seems to be endemic in healthy people and farm animals. Vancomycin use has been much higher in the USA, where emergence of ampicillin-resistant enterococci preceded emergence of VRE, making them very susceptible to the selective effects of antibiotics. In Europe, avoparcin, a vancomycin-like glycopeptide, has been widely used in the agricultural industry, explaining the community reservoir in European animals. Avoparcin has not been used in the USA, which is consistent with the absence of colonisation in healthy people. From the European animal reservoir, VRE and resistance genes have spread to healthy human beings and hospitalised patients. However, certain genogroups of enterococci in both continents seem to be more capable of causing hospital outbreaks, perhaps because of the presence of a specific virulence factor, the variant esp gene. By contrast with the evidence of a direct link between European animal and human reservoirs, the origin of American resistance genes remains to be established. Considering the spread of antibiotic-resistant bacteria and resistance genes, the emergence of VRE has emphasised the non-existence of boundaries between hospitals, between people and animals, between countries, and probably between continents. | 2001 | 11871804 |
| 4213 | 5 | 0.9983 | Fluoroquinolone resistance of Escherichia coli and Salmonella from healthy livestock and poultry in the EU. The potential for transmission of antibiotic-resistant enteric zoonotic bacteria from animals to humans has been a public health concern for several decades. Bacteria carrying antibiotic resistance genes found in the intestinal tract of food animals can contaminate carcasses and may lead to food-borne disease in humans that may not respond to antibiotic treatment. It is consequently important to monitor changes in antimicrobial susceptibility of zoonotic and commensal organism; in this context, there are a number of veterinary monitoring programmes that collect bacteria in food-producing animals at slaughter and determine their susceptibility against antibiotics relevant for human medicine. The data generated are part of the risk analysis for potential food-borne transmission of resistance. There has been much debate about the use of fluoroquinolones in veterinary medicine, and so, this review will consider the fluoroquinolone data from two surveys and compare them to national surveillance programmes. At the outset, it must be pointed out that there is, however, a lack of agreement between several programmes on what is meant by the term 'fluoroquinolone resistance' through use of different definitions of resistance and different resistance breakpoints. An additional aim of this paper is to clarify some of those definitions. Despite the debate about the contribution of antibiotic use in veterinary medicine to the overall resistance development in human pathogens, the data suggest that clinical resistance to fluoroquinolones in Escherichia coli and nontyphoidal Salmonella is generally uncommon, except for a few countries. Ongoing surveillance will continue to monitor the situation and identify whether this situation changes within the respective animal populations. For the benefit of both the epidemiologist and the clinician, it would be strongly advantageous that national monitoring surveys report both percentages of clinical resistance and decreased susceptibility. | 2012 | 22066763 |
| 4542 | 6 | 0.9983 | Phylogenetic intermixing reveals stable fly-mediated circulation of mastitis-associated bacteria in dairy settings. Stomoxys flies are common blood-feeding pests on dairy farms and are suspected carriers of pathogenic bacteria due to their close association with manure and cattle hosts. While prior studies have used amplicon sequencing and culture-dependent methodologies to characterize the composition of the Stomoxys microbiota, little is known about strain-level acquisition of mastitis-causing bacteria from manure by Stomoxys or the functional diversity of Stomoxys-associated taxa. In this study, we address these key knowledge gaps by using whole genome sequencing to provide the first comparative genomic analysis of Stomoxys-derived Escherichia coli, Klebsiella pneumoniae, and Staphylococcaceae isolates. Our results show that fly and manure isolates collected from the same farm system are phylogenetically interspersed, with subsequent pairwise genome alignments revealing near-identical strains and plasmids shared between the two sources. We further identify a phylogenetic clade of Mammaliicoccus sciuri containing known mastitis agents associated with both flies and manure. Functional analysis reveals that this clade is highly enriched in xylose metabolism genes that are rare across other M. sciuri lineages, suggesting potential niche differentiation within the genus. Collectively, our results provide strong evidence for the acquisition of fecal-associated bacteria by adult Stomoxys flies, confirming the link between biting muscid flies and manure habitats. The intermixing of fly and manure isolates in clinically relevant taxonomic groups strongly suggests that flies serve as carriers of opportunistic mastitis-causing or other fecal-borne pathogens and may serve as important vehicles of pathogen dissemination across the dairy farm environment.IMPORTANCEBovine mastitis causes up to $32 billion dollars in losses annually in the global dairy industry. Opportunistic intramammary pathogens can be transmitted through incidental contact with bacteria in environmental reservoirs like manure. However, factors affecting the abundance, persistence, and spread of these bacteria are not well understood. Our research shows that mastitis pathogens are present in the guts of blood-feeding Stomoxys (stable) flies, which develop in cow feces and bite cows. Genomic analysis of isolates from flies, manure, and mastitis cases reveals that strains and antimicrobial resistance genes are shared between these sources. Further analysis of fly gut isolates shows virulence factors and possible niche specialization, identifying fly-associated clades with known mastitis agents from mastitic cows. This strongly suggests that Stomoxys flies play a role in the carriage and circulation of bovine mastitis pathogens from manure in dairy settings. | 2025 | 40748061 |
| 3890 | 7 | 0.9983 | Ecology, more than antibiotics consumption, is the major predictor for the global distribution of aminoglycoside-modifying enzymes. Antibiotic consumption and its abuses have been historically and repeatedly pointed out as the major driver of antibiotic resistance emergence and propagation. However, several examples show that resistance may persist despite substantial reductions in antibiotic use, and that other factors are at stake. Here, we study the temporal, spatial, and ecological distribution patterns of aminoglycoside resistance, by screening more than 160,000 publicly available genomes for 27 clusters of genes encoding aminoglycoside-modifying enzymes (AME genes). We find that AME genes display a very ubiquitous pattern: about 25% of sequenced bacteria carry AME genes. These bacteria were sequenced from all the continents (except Antarctica) and terrestrial biomes, and belong to a wide number of phyla. By focusing on European countries between 1997 and 2018, we show that aminoglycoside consumption has little impact on the prevalence of AME-gene-carrying bacteria, whereas most variation in prevalence is observed among biomes. We further analyze the resemblance of resistome compositions across biomes: soil, wildlife, and human samples appear to be central to understand the exchanges of AME genes between different ecological contexts. Together, these results support the idea that interventional strategies based on reducing antibiotic use should be complemented by a stronger control of exchanges, especially between ecosystems. | 2023 | 36785930 |
| 4563 | 8 | 0.9983 | Prophages as a source of antimicrobial resistance genes in the human microbiome. Prophages-viruses that integrate into bacterial genomes-are ubiquitous in the microbial realm. Prophages contribute significantly to horizontal gene transfer, including the potential spread of antimicrobial resistance (AMR) genes, because they can collect host genes. Understanding their role in the human microbiome is essential for fully understanding AMR dynamics and possible clinical implications. We analysed almost 15,000 bacterial genomes for prophages and AMR genes. The bacteria were isolated from diverse human body sites and geographical regions, and their genomes were retrieved from GenBank. AMR genes were detected in 6.6% of bacterial genomes, with a higher prevalence in people with symptomatic diseases. We found a wide variety of AMR genes combating multiple drug classes. We discovered AMR genes previously associated with plasmids, such as blaOXA-23 in Acinetobacter baumannii prophages or genes found in prophages in species they had not been previously described in, such as mefA-msrD in Gardnerella prophages, suggesting prophage-mediated gene transfer of AMR genes. Prophages encoding AMR genes were found at varying frequencies across body sites and geographical regions, with Asia showing the highest diversity of AMR genes. | 2025 | 40166311 |
| 4999 | 9 | 0.9983 | Dissemination Routes of Carbapenem and Pan-Aminoglycoside Resistance Mechanisms in Hospital and Urban Wastewater Canalizations of Ghana. Wastewater has a major role in antimicrobial resistance (AMR) dynamics and public health. The impact on AMR of wastewater flux at the community-hospital interface in low- and middle-income countries (LMICs) is poorly understood. Therefore, the present study analyzed the epidemiological scenario of resistance genes, mobile genetic elements (MGEs), and bacterial populations in wastewater around the Tamale metropolitan area (Ghana). Wastewater samples were collected from the drainage and canalizations before and after three hospitals and one urban waste treatment plant (UWTP). From all carbapenem/pan-aminoglycoside-resistant bacteria, 36 isolates were selected to determine bacterial species and phenotypical resistance profiles. Nanopore sequencing was used to screen resistance genes and plasmids, whereas, sequence types, resistome and plasmidome contents, pan-genome structures, and resistance gene variants were analyzed with Illumina sequencing. The combination of these sequencing data allowed for the resolution of the resistance gene-carrying platforms. Hospitals and the UWTP collected genetic and bacterial elements from community wastewater and amplified successful resistance gene-bacterium associations, which reached the community canalizations. Uncommon carbapenemase/β-lactamase gene variants, like bla(DIM-1), and novel variants, including bla(VIM-71), bla(CARB-53), and bla(CMY-172), were identified and seem to spread via clonal expansion of environmental Pseudomonas spp. However, bla(NDM-1), bla(CTX-M-15), and armA genes, among others, were associated with MGEs that allowed for their dissemination between environmental and clinical bacterial hosts. In conclusion, untreated hospital wastewater in Ghana is a hot spot for the emergence and spread of genes and gene-plasmid-bacterium associations that accelerate AMR, including to last-resort antibiotics. Urgent actions must be taken in wastewater management in LMICs in order to delay AMR expansion. IMPORTANCE Antimicrobial resistance (AMR) is one the major threats to public health today, especially resistance to last-resort compounds for the treatment of critical infections, such as carbapenems and aminoglycosides. Innumerable works have focused on the clinical ambit of AMR, but studies addressing the impact of wastewater cycles on the emergence and dissemination of resistant bacteria are still limited. The lack of knowledge is even greater when referring to low- and middle-income countries, where there is an absence of accurate sanitary systems. Furthermore, the combination of short- and long-read sequencing has surpassed former technical limitations, allowing the complete characterization of resistance genes, mobile genetic platforms, plasmids, and bacteria. The present study deciphered the multiple elements and routes involved in AMR dynamics in wastewater canalizations and, therefore, in the local population of Tamale, providing the basis to adopt accurate control measures to preserve and promote public health. | 2022 | 35103490 |
| 4603 | 10 | 0.9983 | Genomic basis of antimicrobial resistance in non-toxigenic Clostridium difficile in Southeast Asia. Despite being incapable of causing Clostridium difficile infection, non-toxigenic C. difficile (NTCD) may still be relevant. This study explored the role of NTCD as a reservoir of accessory antimicrobial resistance (AMR) genes in NTCD from Southeast Asia. This region has high rates of antimicrobial use, a high prevalence of NTCD and phenotypic AMR in such strains. More than half of the 28 NTCD strains investigated had at least one accessory AMR gene on mobile genetic elements (MGEs) which were similar to the elements found in other bacteria, including Erysipelothrix rhusiopathiae and Streptococcus suis, both of which are found in the pig gut. Thus, C. difficile may facilitate the movement of AMR genes between different hosts within a wide range of pathogenic bacteria. C. difficile β-lactamases were not located on MGEs and were unlikely to be transferred. Concordance between the MLS(B) resistance genotype and phenotype was low, suggesting multiple resistance mechanisms, many of which remain unknown. On the contrary, there was a high concordance between resistance genotype and phenotype for both fluoroquinolones and rifaximin. From an epidemiological perspective, NTCD populations in Southeast Asia comprised members of evolutionary clades 1 and 4, which are thought to have originated from Europe and Asia, respectively. This population structure reflects the close relationship between the people of the two regions. | 2020 | 33137436 |
| 5744 | 11 | 0.9983 | Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend? Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then. | 2016 | 27506509 |
| 4547 | 12 | 0.9983 | Convergence of resistance and evolutionary responses in Escherichia coli and Salmonella enterica co-inhabiting chicken farms in China. Sharing of genetic elements among different pathogens and commensals inhabiting same hosts and environments has significant implications for antimicrobial resistance (AMR), especially in settings with high antimicrobial exposure. We analysed 661 Escherichia coli and Salmonella enterica isolates collected within and across hosts and environments, in 10 Chinese chicken farms over 2.5 years using data-mining methods. Most isolates within same hosts possessed the same clinically relevant AMR-carrying mobile genetic elements (plasmids: 70.6%, transposons: 78%), which also showed recent common evolution. Supervised machine learning classifiers revealed known and novel AMR-associated mutations and genes underlying resistance to 28 antimicrobials, primarily associated with resistance in E. coli and susceptibility in S. enterica. Many were essential and affected same metabolic processes in both species, albeit with varying degrees of phylogenetic penetration. Multi-modal strategies are crucial to investigate the interplay of mobilome, resistance and metabolism in cohabiting bacteria, especially in ecological settings where community-driven resistance selection occurs. | 2024 | 38182559 |
| 4551 | 13 | 0.9983 | Genomic insights into virulence, antimicrobial resistance, and adaptation acumen of Escherichia coli isolated from an urban environment. Populations of common commensal bacteria such as Escherichia coli undergo genetic changes by the acquisition of certain virulence and antimicrobial resistance (AMR) encoding genetic elements leading to the emergence of pathogenic strains capable of surviving in the previously uninhabited or protected niches. These bacteria are also reported to be prevalent in the environment where they survive by adopting various recombination strategies to counter microflora of the soil and water, under constant selection pressure(s). In this study, we performed molecular characterization, phenotypic AMR analysis, and whole genome sequencing (WGS) of E. coli (n = 37) isolated from soil and surface water representing the urban and peri-urban areas. The primary aim of this study was to understand the genetic architecture and pathogenic acumen exhibited by environmental E. coli. WGS-based analysis entailing resistome and virulome profiling indicated the presence of various virulence (adherence, iron uptake, and toxins) and AMR encoding genes, including bla(NDM-5) in the environmental isolates. A majority of our isolates belonged to phylogroup B1 (73%). A few isolates in our collection were of sequence type(s) (ST) 58 and 224 that could have emerged recently as clonal lineages and might pose risk of infection/transmission. Mobile genetic elements (MGEs) such as plasmids (predominantly) of the IncF family, prophages, pipolins, and insertion elements such as IS1 and IS5 were also observed to exist, which may presumably aid in the propagation of genes encoding resistance against antimicrobial drugs. The observed high prevalence of MGEs associated with multidrug resistance in pathogenic E. coli isolates belonging to the phylogroup B1 underscores the need for extended surveillance to keep track of and prevent the transmission of the bacterium to certain vulnerable human and animal populations. IMPORTANCE: Evolutionary patterns of E. coli bacteria convey that they evolve into highly pathogenic forms by acquiring fitness advantages, such as AMR, and various virulence factors through the horizontal gene transfer (HGT)-mediated acquisition of MGEs. However, limited research on the genetic profiles of environmental E. coli, particularly from India, hinders our understanding of their transition to pathogenic forms and impedes the adoption of a comprehensive approach to address the connection between environmentally dwelling E. coli populations and human and veterinary public health. This study focuses on high-resolution genomic analysis of the environmental E. coli isolates aiming to understand the genetic similarities and differences among isolates from different environmental niches and uncover the survival strategies employed by these bacteria to thrive in their surroundings. Our approach involved molecular characterization of environmental samples using PCR-based DNA fingerprinting and subsequent WGS analysis. This multidisciplinary approach is likely to provide valuable insights into the understanding of any potential spill-over to human and animal populations and locales. Investigating these environmental isolates has significant potential for developing epidemiological strategies against transmission and understanding niche-specific evolutionary patterns. | 2024 | 38376265 |
| 2563 | 14 | 0.9983 | Dissemination of Resistant Escherichia coli Among Wild Birds, Rodents, Flies, and Calves on Dairy Farms. Antimicrobial resistance (AMR) in bacteria in the livestock is a growing problem, partly due to inappropriate use of antimicrobial drugs. Antimicrobial use (AMU) occurs in Swedish dairy farming but is restricted to the treatment of sick animals based on prescription by a veterinary practitioner. Despite these strict rules, calves shedding antimicrobial resistant Enterobacteriaceae have been recorded both in dairy farms and in slaughterhouses. Yet, not much is known how these bacteria disseminate into the local environment around dairy farms. In this study, we collected samples from four animal sources (fecal samples from calves, birds and rodents, and whole flies) and two environmental sources (cow manure drains and manure pits). From the samples, Escherichia coli was isolated and antimicrobial susceptibility testing performed. A subset of isolates was whole genome sequenced to evaluate relatedness between sources and genomic determinants such as antimicrobial resistance genes (ARGs) and the presence of plasmids were assessed. We detected both ARGs, mobile genetic elements and low rates of AMR. In particular, we observed four potential instances of bacterial clonal sharing in two different animal sources. This demonstrates resistant E. coli dissemination potential within the dairy farm, between calves and scavenger animals (rodents and flies). AMR dissemination and the zoonotic AMR risk is generally low in countries with low and restricted AMU. However, we show that interspecies dissemination does occur, and in countries that have little to no AMU restrictions this risk could be under-estimated. | 2022 | 35432261 |
| 6605 | 15 | 0.9983 | Antimicrobial Resistance in African Great Apes. BACKGROUND/OBJECTIVES: Antibiotic-resistant bacteria pose a significant global public health threat that demands serious attention. The proliferation of antimicrobial resistance (AMR) is primarily attributed to the overuse of antibiotics in humans, livestock, and the agro-industry. However, it is worth noting that antibiotic-resistant genes (ARGs) can be found in all ecosystems, even in environments where antibiotics have never been utilized. African great apes (AGAs) are our closest living relatives and are known to be susceptible to many of the same pathogens (and other microorganisms) as humans. AGAs could therefore serve as sentinels for human-induced AMR spread into the environment. They can potentially also serve as reservoirs for AMR. AGAs inhabit a range of environments from remote areas with little anthropogenic impact, over habitats that are co-used by AGAs and humans, to captive settings with close human-animal contacts like zoos and sanctuaries. This provides opportunities to study AMR in relation to human interaction. This review examines the literature on AMR in AGAs, identifying knowledge gaps. RESULTS: Of the 16 articles reviewed, 13 focused on wild AGAs in habitats with different degrees of human presence, 2 compared wild and captive apes, and 1 study tested captive apes alone. Ten studies included humans working with or living close to AGA habitats. Despite different methodologies, all studies detected AMR in AGAs. Resistance to beta-lactams was the most common (36%), followed by resistance to aminoglycosides (22%), tetracyclines (15%), fluoroquinolones (10%), sulphonamides (5%), trimethoprim (5%), macrolide (3%), phenicoles (2%) and fosfomycin (1%). CONCLUSIONS: While several studies suggest a correlation between increased human contact and higher AMR in AGAs, resistance was also found in relatively pristine habitats. While AGAs clearly encounter bacteria resistant to diverse antibiotics, significant gaps remain in understanding the underlying processes. Comparative studies using standardized methods across different sites would enhance our understanding of the origin and distribution of AMR in AGAs. | 2024 | 39766531 |
| 4550 | 16 | 0.9983 | Whole-genome sequencing and gene sharing network analysis powered by machine learning identifies antibiotic resistance sharing between animals, humans and environment in livestock farming. Anthropogenic environments such as those created by intensive farming of livestock, have been proposed to provide ideal selection pressure for the emergence of antimicrobial-resistant Escherichia coli bacteria and antimicrobial resistance genes (ARGs) and spread to humans. Here, we performed a longitudinal study in a large-scale commercial poultry farm in China, collecting E. coli isolates from both farm and slaughterhouse; targeting animals, carcasses, workers and their households and environment. By using whole-genome phylogenetic analysis and network analysis based on single nucleotide polymorphisms (SNPs), we found highly interrelated non-pathogenic and pathogenic E. coli strains with phylogenetic intermixing, and a high prevalence of shared multidrug resistance profiles amongst livestock, human and environment. Through an original data processing pipeline which combines omics, machine learning, gene sharing network and mobile genetic elements analysis, we investigated the resistance to 26 different antimicrobials and identified 361 genes associated to antimicrobial resistance (AMR) phenotypes; 58 of these were known AMR-associated genes and 35 were associated to multidrug resistance. We uncovered an extensive network of genes, correlated to AMR phenotypes, shared among livestock, humans, farm and slaughterhouse environments. We also found several human, livestock and environmental isolates sharing closely related mobile genetic elements carrying ARGs across host species and environments. In a scenario where no consensus exists on how antibiotic use in the livestock may affect antibiotic resistance in the human population, our findings provide novel insights into the broader epidemiology of antimicrobial resistance in livestock farming. Moreover, our original data analysis method has the potential to uncover AMR transmission pathways when applied to the study of other pathogens active in other anthropogenic environments characterised by complex interconnections between host species. | 2022 | 35333870 |
| 3914 | 17 | 0.9983 | Genomic Insights into Drug Resistance and Virulence Platforms, CRISPR-Cas Systems and Phylogeny of Commensal E. coli from Wildlife. Commensal bacteria act as important reservoirs of virulence and resistance genes. However, existing data are generally only focused on the analysis of human or human-related bacterial populations. There is a lack of genomic studies regarding commensal bacteria from hosts less exposed to antibiotics and other selective forces due to human activities, such as wildlife. In the present study, the genomes of thirty-eight E. coli strains from the gut of various wild animals were sequenced. The analysis of their accessory genome yielded a better understanding of the role of the mobilome on inter-bacterial dissemination of mosaic virulence and resistance plasmids. The study of the presence and composition of the CRISPR/Cas systems in E. coli from wild animals showed some viral and plasmid sequences among the spacers, as well as the relationship between CRISPR/Cas and E. coli phylogeny. Further, we constructed a single nucleotide polymorphisms-based core tree with E. coli strains from different sources (humans, livestock, food and extraintestinal environments). Bacteria from humans or highly human-influenced settings exhibit similar genetic patterns in CRISPR-Cas systems, plasmids or virulence/resistance genes-carrying modules. These observations, together with the absence of significant genetic changes in their core genome, suggest an ongoing flow of both mobile elements and E. coli lineages between human and natural ecosystems. | 2021 | 34063152 |
| 4914 | 18 | 0.9983 | The carriage of antibiotic resistance by enteric bacteria from imported tokay geckos (Gekko gecko) destined for the pet trade. The emergence of antibiotic-resistant bacteria is a growing public health concern and has serious implications for both human and veterinary medicine. The nature of the global economy encourages the movement of humans, livestock, produce, and wildlife, as well as their potentially antibiotic-resistant bacteria, across international borders. Humans and livestock can be reservoirs for antibiotic-resistant bacteria; however, little is known about the prevalence of antibiotic-resistant bacteria harbored by wildlife and, to our knowledge, limited data has been reported for wild-caught reptiles that were specifically collected for the pet trade. In the current study, we examined the antibiotic resistance of lactose-positive Enterobacteriaceae isolates from wild-caught Tokay geckos (Gekko gecko) imported from Indonesia for use in the pet trade. In addition, we proposed that the conditions under which wild animals are captured, transported, and handled might affect the shedding or fecal prevalence of antibiotic resistance. In particular we were interested in the effects of density; to address this, we experimentally modified densities of geckos after import and documented changes in antibiotic resistance patterns. The commensal enteric bacteria from Tokay geckos (G. gecko) imported for the pet trade displayed resistance against some antibiotics including: ampicillin, amoxicillin/clavulanic acid, cefoxitin, chloramphenicol, kanamycin and tetracycline. There was no significant difference in the prevalence of antibiotic-resistant bacteria after experimentally mimicking potentially stressful transportation conditions reptiles experience prior to purchase. There were, however, some interesting trends observed when comparing Tokay geckos housed individually and those housed in groups. Understanding the prevalence of antibiotic resistant commensal enteric flora from common pet reptiles is paramount because of the potential for humans exposed to these animals to acquire antibiotic-resistant bacteria and the potential for released pets to disseminate these bacteria to native wildlife. | 2015 | 25461031 |
| 3938 | 19 | 0.9982 | Human health hazards associated with the administration of antimicrobials to slaughter animals. Part II. An assessment of the risks of resistant bacteria in pigs and pork. Risks for the consumer regarding the acquisition of resistant bacteria and/or resistance genes via the consumption of pork are discussed. In general, Salmonella spp. and Escherichia coli that originate from animals do not easily transfer their resistance genes to the resident intestinal flora of humans. The prevalence of resistant E. coli in humans seems more associated with being a vegetarian (odds ratio (OR) 1.89) than with the consumption of meat and meat products. Other risk factors are treatment with antimicrobials (OR 2-5), becoming hospitalized (OR 5.93), or working in a health setting (OR 4.38). In the Netherlands, annually an estimated 45,000 people (0-150,000) become a carrier of resistant E. coli and/or resistance genes that ori ginate from pigs, while an estimated 345,000 persons (175,000-600,000) become a carrier of resistant E. coli and/or resistance genes that originate from hospitals, e.g. other patients. Any problems with resistant Salmonella spp. that stem from pigs are, in fact, an integral part of the total problem of food-borne salmonellosis. Sometimes there are outbreaks of a specific multi-resistant clone of S. typhimurium that causes problems in both farm animals and humans. The probability that in the next 30 years there is no or maximally one outbreak of a specific clone that originates from pig herds is estimated at about 75%. Antimicrobials used as a growth promoter can have a measurable influence on the prevalence of resistant bacteria. The likely chain of events regarding avoparcin and the selection and dissemination of resistance against vancomycin in the enterococci gives the impression that the impact of the use of antimicrobials in animals on the prevalence of resistance in humans is largely determined by whether resistance genes are, or become, located on a self-transferable transposon. Furthermore, consumer health risks of antimicrobials used in slaughter pigs are mainly determined by the selection and dissemination of bacterial resistance and much less by the toxicological properties of any residues in pork. It is also concluded that most of the problems with resistant bacteria in humans are associated with the medical use of antimicrobials, and that the impact of particularly the veterinary use of antimicrobials is limited. However, the impact of antimicrobials used as a feed additive appears to be much greater than that of antimicrobials used for strictly veterinary purposes. The use of antimicrobials as a feed additive should therefore be seriously reconsidered. | 2001 | 11205995 |