# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8798 | 0 | 0.9851 | Estrogen mimics induce genes encoding chemical efflux proteins in gram-negative bacteria. Escherichia coli and Pseudomonas aeruginosa are gram-negative bacteria found in wastewater and biosolids. Spanning the inner and outer membrane are resistance-nodulation-cell division superfamily (RND) efflux pumps responsible for detoxification of the cell, typically in response to antibiotics and other toxicity inducing substrates. Here, we show that estrogenic endocrine disruptors, common wastewater pollutants, induce genes encoding chemical efflux proteins. Bacteria were exposed to environmental concentrations of the synthetic estrogen 17α-ethynylestradiol, the surfactant nonylphenol, and the plasticizer bisphenol-A, and analyzed for RND gene expression via q-PCR. Results showed that the genes acrB and yhiV were over-expressed in response to the three chemicals in E. coli, and support previous findings that these two transporters export hormones. P. aeruginosa contains 12 RND efflux pumps, which were differentially expressed in response to the three chemicals: 17α-ethynylestradiol, bisphenol-A, and nonylphenol up-regulated mexD and mexF, while nonylphenol and bisphenol-A positively affected transcription of mexK, mexW, and triC. Gene expression via q-PCR of RND genes may be used to predict the interaction of estrogen mimics with RND genes. One bacterial response to estrogen mimic exposure is to induce gene expression of chemical efflux proteins, which leads to the expulsion of the contaminant from the cell. | 2015 | 25754012 |
| 8799 | 1 | 0.9849 | The membrane-active polyaminoisoprenyl compound NV716 re-sensitizes Pseudomonas aeruginosa to antibiotics and reduces bacterial virulence. Pseudomonas aeruginosa is intrinsically resistant to many antibiotics due to the impermeability of its outer membrane and to the constitutive expression of efflux pumps. Here, we show that the polyaminoisoprenyl compound NV716 at sub-MIC concentrations re-sensitizes P. aeruginosa to abandoned antibiotics by binding to the lipopolysaccharides (LPS) of the outer membrane, permeabilizing this membrane and increasing antibiotic accumulation inside the bacteria. It also prevents selection of resistance to antibiotics and increases their activity against biofilms. No stable resistance could be selected to NV716-itself after serial passages with subinhibitory concentrations, but the transcriptome of the resulting daughter cells shows an upregulation of genes involved in the synthesis of lipid A and LPS, and a downregulation of quorum sensing-related genes. Accordingly, NV716 also reduces motility, virulence factors production, and biofilm formation. NV716 shows a unique and highly promising profile of activity when used alone or in combination with antibiotics against P. aeruginosa, combining in a single molecule anti-virulence and potentiator effects. Additional work is required to more thoroughly understand the various functions of NV716. | 2022 | 36008485 |
| 730 | 2 | 0.9842 | How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. Bacterial pathogens regulate the expression of virulence factors in response to environmental signals. In the case of salmonellae, many virulence factors are regulated via PhoP/PhoQ, a two-component signal transduction system that is repressed by magnesium and calcium in vitro. PhoP/PhoQ-activated genes promote intracellular survival within macrophages, whereas PhoP-repressed genes promote entrance into epithelial cells and macrophages by macropinocytosis and stimulate epithelial cell cytokine production. PhoP-activated genes include those that alter the cell envelope through structural alterations of lipopolysaccharide and lipid A, the bioactive component of lipopolysaccharide. PhoP-activated changes in the bacterial envelope likely promote intracellular survival by increasing resistance to host cationic antimicrobial peptides and decreasing host cell cytokine production. | 1999 | 10081503 |
| 603 | 3 | 0.9840 | Transcriptomic Analysis Reveals Adaptive Responses of an Enterobacteriaceae Strain LSJC7 to Arsenic Exposure. Arsenic (As) resistance determinant ars operon is present in many bacteria and has been demonstrated to enhance As(V) resistance of bacteria. However, whole molecular mechanism adaptations of bacteria in response to As(V) stress remain largely unknown. In this study, transcriptional profiles of Enterobacteriaceae strain LSJC7 responding to As(V) stress were analyzed using RNA-seq and qRT-PCR. As expected, genes involved in As(V) uptake were down-regulated, those involved in As(V) reduction and As(III) efflux were up-regulated, which avoided cellular As accumulation. Reactive oxygen species and nitric oxide (NO) were induced, which caused cellular damages including DNA, protein, and Fe-S cluster damage in LSJC7. The expression of specific genes encoding transcriptional regulators, such as nsrR and soxRS were also induced. NsrR and SoxRS modulated many critical metabolic activities in As(V) stressed LSJC7 cells, including reactive species scavenging and repairing damaged DNA, proteins, and Fe-S clusters. Therefore, besides As uptake, reduction, and efflux; oxidative stress defense and damage repair were the main cellular adaptive responses of LSJC7 to As(V) stress. | 2016 | 27199962 |
| 9018 | 4 | 0.9840 | Transcriptome analysis of heat resistance regulated by quorum sensing system in Glaesserella parasuis. The ability of bacteria to resist heat shock allows them to adapt to different environments. In addition, heat shock resistance is known for their virulence. Our previous study showed that the AI-2/luxS quorum sensing system affects the growth characteristics, biofilm formation, and virulence of Glaesserella parasuis. The resistance of quorum sensing system deficient G. parasuis to heat shock was obviously weaker than that of wild type strain. However, the regulatory mechanism of this phenotype remains unclear. To illustrate the regulatory mechanism by which the quorum sensing system provides resistance to heat shock, the transcriptomes of wild type (GPS2), ΔluxS, and luxS complemented (C-luxS) strains were analyzed. Four hundred forty-four differentially expressed genes were identified in quorum sensing system deficient G. parasuis, which participated in multiple regulatory pathways. Furthermore, we found that G. parasuis regulates the expression of rseA, rpoE, rseB, degS, clpP, and htrA genes to resist heat shock via the quorum sensing system. We further confirmed that rseA and rpoE genes exerted an opposite regulatory effect on heat shock resistance. In conclusion, the findings of this study provide a novel insight into how the quorum sensing system affects the transcriptome of G. parasuis and regulates its heat shock resistance property. | 2022 | 36033895 |
| 668 | 5 | 0.9839 | c-di-GMP regulates the resistance of Pseudomonas aeruginosa to heat shock and aminoglycoside antibiotics by targeting the σ factor RpoH. Cyclic di-GMP (c-di-GMP) is a second messenger molecule that is widely distributed in bacteria and plays various physiologically important regulatory roles through interactions with a variety of effector molecules. Sigma (σ) factors are the predominant transcription factors involved in transcription regulation in bacteria. While c-di-GMP has been shown to bind to a range of transcription factors, c-di-GMP-binding σ factors have never been reported before. In a c-di-GMP/σ factors binding screen, we identified the σ factor RpoH as a c-di-GMP-responsive transcription factor in Pseudomonas aeruginosa PAO1. We further show that the binding of c-di-GMP to RpoH inhibits binding of RpoH to the promoters of its target genes such as asrA and dnaK, thereby downregulating the expression of these genes and reducing the resistance of P. aeruginosa to heat shock and aminoglycoside antibiotics. RpoH from Escherichia coli, Burkholderia thailandensis and Agrobacterium tumefaciens are also capable of binding c-di-GMP, suggesting that c-di-GMP-mediated control of the activity of RpoH is conserved in members of Proteobacteria. | 2026 | 41005124 |
| 716 | 6 | 0.9837 | Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. Indole has been proposed to act as an extracellular signal molecule influencing biofilm formation in a range of bacteria. For this study, the role of indole in Vibrio cholerae biofilm formation was examined. It was shown that indole activates genes involved in vibrio polysaccharide (VPS) production, which is essential for V. cholerae biofilm formation. In addition to activating these genes, it was determined using microarrays that indole influences the expression of many other genes, including those involved in motility, protozoan grazing resistance, iron utilization, and ion transport. A transposon mutagenesis screen revealed additional components of the indole-VPS regulatory circuitry. The indole signaling cascade includes the DksA protein along with known regulators of VPS production, VpsR and CdgA. A working model is presented in which global control of gene expression by indole is coordinated through sigma(54) and associated transcriptional regulators. | 2009 | 19329638 |
| 726 | 7 | 0.9837 | Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors. Extracytoplasmic function (ECF) sigma factors are a subfamily of σ(70) sigma factors that activate genes involved in stress-response functions. In many bacteria, ECF sigma factors regulate resistance to antimicrobial compounds. This review will summarize the ECF sigma factors that regulate antimicrobial resistance in model organisms and clinically relevant pathogens. | 2017 | 28153747 |
| 583 | 8 | 0.9837 | MarR family proteins sense sulfane sulfur in bacteria. Members of the multiple antibiotic resistance regulator (MarR) protein family are ubiquitous in bacteria and play critical roles in regulating cellular metabolism and antibiotic resistance. MarR family proteins function as repressors, and their interactions with modulators induce the expression of controlled genes. The previously characterized modulators are insufficient to explain the activities of certain MarR family proteins. However, recently, several MarR family proteins have been reported to sense sulfane sulfur, including zero-valent sulfur, persulfide (R-SSH), and polysulfide (R-SnH, n ≥ 2). Sulfane sulfur is a common cellular component in bacteria whose levels vary during bacterial growth. The changing levels of sulfane sulfur affect the expression of many MarR-controlled genes. Sulfane sulfur reacts with the cysteine thiols of MarR family proteins, causing the formation of protein thiol persulfide, disulfide bonds, and other modifications. Several MarR family proteins that respond to reactive oxygen species (ROS) also sense sulfane sulfur, as both sulfane sulfur and ROS induce the formation of disulfide bonds. This review focused on MarR family proteins that sense sulfane sulfur. However, the sensing mechanisms reviewed here may also apply to other proteins that detect sulfane sulfur, which is emerging as a modulator of gene regulation. | 2024 | 38948149 |
| 197 | 9 | 0.9836 | The Interaction of Klebsiella pneumoniae With Lipid Rafts-Associated Cholesterol Increases Macrophage-Mediated Phagocytosis Due to Down Regulation of the Capsule Polysaccharide. Klebsiella pneumoniae successfully colonizes host tissues by recognizing and interacting with cholesterol present on membrane-associated lipid rafts. In this study, we evaluated the role of cholesterol in the expression of capsule polysaccharide genes of K. pneumoniae and its implication in resistance to phagocytosis. Our data revealed that exogenous cholesterol added to K. pneumoniae increases macrophage-mediated phagocytosis. To explain this event, the expression of capsular galF, wzi, and manC genes was determined in the presence of cholesterol. Down-regulation of these capsular genes occurred leading to increased susceptibility to phagocytosis by macrophages. In contrast, depletion of cholesterol from macrophage membranes led to enhanced expression of galF, wzi, and manC genes and to capsule production resulting in resistance to macrophage-mediated phagocytosis. Cholesterol-mediated repression of capsular genes was dependent on the RcsA and H-NS global regulators. Finally, cholesterol also down-regulated the expression of genes responsible for LPS core oligosaccharides production and OMPs. Our results suggest that cholesterol plays an important role for the host by reducing the anti-phagocytic properties of the K. pneumoniae capsule facilitating bacterial engulfment by macrophages during the bacteria-eukaryotic cell interaction mediated by lipid rafts. | 2019 | 31380298 |
| 604 | 10 | 0.9835 | Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon--a review. The soxRS regulon of Escherichia coli coordinates the induction of at least twelve genes in response to superoxide or nitric oxide. This review describes recent progress in understanding the signal transduction and transcriptional control mechanisms that activate the soxRS regulon, and some aspects of the physiological functions of this system. The SoxS protein represents a growing family of transcription activators that stimulate genes for resistance to oxidative stress and antibiotics. SoxR is an unusual transcription factor whose activity in vitro can be switched off by the removal of [2Fe-2S] centers, and activated by their reinsertion. The activated form of SoxR remodels the structure of the soxS promoter to activate transcription. When the soxRS system is activated, bacteria gain resistance to oxidants, antibiotics and immune cells that generate nitric oxide. The latter features could increase the success (virulence) of some bacterial infections. | 1996 | 8955629 |
| 8802 | 11 | 0.9835 | The Transcription Factor CsgD Contributes to Engineered Escherichia coli Resistance by Regulating Biofilm Formation and Stress Responses. The high cell density, immobilization and stability of biofilms are ideal characteristics for bacteria in resisting antibiotic therapy. CsgD is a transcription activating factor that regulates the synthesis of curly fimbriae and cellulose in Escherichia coli, thereby enhancing bacterial adhesion and promoting biofilm formation. To investigate the role of CsgD in biofilm formation and stress resistance in bacteria, the csgD deletion mutant ΔcsgD was successfully constructed from the engineered strain E. coli BL21(DE3) using the CRISPR/Cas9 gene-editing system. The results demonstrated that the biofilm of ΔcsgD decreased by 70.07% (p < 0.05). Additionally, the mobility and adhesion of ΔcsgD were inhibited due to the decrease in curly fimbriae and extracellular polymeric substances. Furthermore, ΔcsgD exhibited a significantly decreased resistance to acid, alkali and osmotic stress conditions (p < 0.05). RNA-Seq results revealed 491 differentially expressed genes between the parent strain and ΔcsgD, with enrichment primarily observed in metabolism-related processes as well as cell membrane structure and catalytic activity categories. Moreover, CsgD influenced the expression of biofilm and stress response genes pgaA, motB, fimA, fimC, iraP, ompA, osmC, sufE and elaB, indicating that the CsgD participated in the resistance of E. coli by regulating the expression of biofilm and stress response. In brief, the transcription factor CsgD plays a key role in the stress resistance of E. coli, and is a potential target for treating and controlling biofilm. | 2023 | 37761984 |
| 8803 | 12 | 0.9834 | Effects of chlorogenic acid-grafted-chitosan on biofilms, oxidative stress, quorum sensing and c-di-GMP in Pseudomonas fluorescens. This study determined the inhibitory mechanism as well as anti-biofilm activity of chlorogenic acid-grafted-chitosan (CS-g-CA) against Pseudomonas fluorescens (P. fluorescens) in terms of biofilm content, oxidative stress, quorum sensing and cyclic diguanosine monophosphate (c-di-GMP) concentration, and detected the changes in the expression levels of related genes by quantitative real-time PCR (qRT-PCR). Results indicated that treatment with sub-concentrations of CS-g-CA for P. fluorescens led to reduce the biofilm size of large colonies, decrease the content of biofilm and extracellular polymers, weaken the motility and adhesion of P. fluorescens. Moreover, CS-g-CA resulted in higher ROS levels, diminished catalase activity (CAT), and increased superoxide dismutase (SOD) in P. fluorescens. CS-g-CA reduced the production of quorum-sensing signaling molecules (AHLs) and the concentration of c-di-GMP in bacteria. Genes for flagellar synthesis (flgA), the resistance to stress (rpoS and hfq), and pde (phosphodiesterases that degrade c-di-GMP) were significantly down-regulated as determined by RT-PCR. Overall, CS-g-CA leads to the accumulation of ROS in bacteria via P. fluorescens environmental resistance genes and decreases the activity of enzymes in the bacterial antioxidant system, and interferes with the production and reception of quorum-sensing signaling molecules and the synthesis of c-di-GMP in P. fluorescens, which regulates the generation of biofilms. | 2024 | 38852716 |
| 808 | 13 | 0.9834 | Exposure of Legionella pneumophila to low-shear modeled microgravity: impact on stress response, membrane lipid composition, pathogenicity to macrophages and interrelated genes expression. Here, we studied the effect of low-shear modeled microgravity (LSMMG) on cross stress resistance (heat, acid, and oxidative), fatty acid content, and pathogenicity along with alteration in expression of stress-/virulence-associated genes in Legionella pneumophila. The stress resistance analysis result indicated that bacteria cultivated under LSMMG environments showed higher resistance with elevated D-values at 55 °C and in 1 mM of hydrogen peroxide (H(2)O(2)) conditions compared to normal gravity (NG)-grown bacteria. On the other hand, there was no significant difference in tolerance (p < 0.05) toward simulated gastric fluid (pH-2.5) acid conditions. In fatty acid analysis, our result showed that a total amount of saturated and cyclic fatty acids was increased in LSMMG-grown cells; as a consequence, they might possess low membrane fluidity. An upregulated expression level was noticed for stress-related genes (hslV, htrA, grpE, groL, htpG, clpB, clpX, dnaJ, dnaK, rpoH, rpoE, rpoS, kaiB, kaiC, lpp1114, ahpC1, ahpC2, ahpD, grlA, and gst) under LSMMG conditions. The reduced virulence (less intracellular bacteria and less % of induce apoptosis in RAW 264.7 macrophages) of L. pneumophila under LSMMG conditions may be because of downregulation related genes (dotA, dotB, dotC, dotD, dotG, dotH, dotL, dotM, dotN, icmK, icmB, icmS, icmT, icmW, ladC, rtxA, letA, rpoN, fleQ, fleR, and fliA). In the LSMMG group, the expression of inflammation-related factors, such as IL-1α, TNF-α, IL-6, and IL-8, was observed to be reduced in infected macrophages. Also, scanning electron microscopy (SEM) analysis showed less number of LSMMG-cultivated bacteria attached to the host macrophages compared to NG. Thus, our study provides understandings about the changes in lipid composition and different genes expression due to LSMMG conditions, which apparently influence the alterations of L. pneumophila' stress/virulence response. | 2024 | 38305908 |
| 8797 | 14 | 0.9833 | Presence of quorum-sensing systems associated with multidrug resistance and biofilm formation in Bacteroides fragilis. Bacteroides fragilis constitutes 1-2% of the natural microbiota of the human digestive tract and is the predominant anaerobic opportunistic pathogen in gastrointestinal infections. Most bacteria use quorum sensing (QS) to monitor cell density in relation to other cells and their environment. In Gram-negative bacteria, the LuxRI system is common. The luxR gene encodes a transcriptional activator inducible by type I acyl-homoserine lactone autoinducers (e.g., N-[3-oxohexanoyl] homoserine lactone and hexanoyl homoserine lactone [C6-HSL]). This study investigated the presence of QS system(s) in B. fragilis. The genome of American-type culture collection strain no. ATCC25285 was searched for QS genes. The strain was grown to late exponential phase in the presence or absence of synthetic C6-HSL and C8-HSL or natural homoserine lactones from cell-free supernatants from spent growth cultures of other bacteria. Growth, susceptibility to antimicrobial agents, efflux pump gene (bmeB) expression, and biofilm formation were measured. Nine luxR and no luxI orthologues were found. C6-HSL and supernatants from Yersinia enterocolitica, Vibrio cholerae, and Pseudomonas aeruginosa caused a significant (1) reduction in cellular density and (2) increases in expression of four putative luxR genes, bmeB3, bmeB6, bmeB7, and bmeB10, resistance to various antibiotics, which was reduced by carbonyl cyanide-m-chlorophenyl hydrazone (CCCP, an uncoupler that dissipates the transmembrane proton gradient, which is also the driving force of resistance nodulation division efflux pumps) and (3) increase in biofilm formation. Susceptibility of ATCC25285 to C6-HSL was also reduced by CCCP. These data suggest that (1) B. fragilis contains putative luxR orthologues, which could respond to exogenous homoserine lactones and modulate biofilm formation, bmeB efflux pump expression, and susceptibility to antibiotics, and (2) BmeB efflux pumps could transport homoserine lactones. | 2008 | 18188535 |
| 731 | 15 | 0.9833 | Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Bacterial pathogenesis requires proteins that sense host microenvironments and respond by regulating virulence gene transcription. For Salmonellae, one such regulatory system is PhoP-PhoQ, which regulates genes required for intracellular survival and resistance to cationic peptides. Analysis by mass spectrometry revealed that Salmonella typhimurium PhoP-PhoQ regulated structural modifications of lipid A, the host signaling portion of lipopolysaccharide (LPS), by the addition of aminoarabinose and 2-hydroxymyristate. Structurally modified lipid A altered LPS-mediated expression of the adhesion molecule E-selectin by endothelial cells and tumor necrosis factor-alpha expression by adherent monocytes. Thus, altered responses to environmentally induced lipid A structural modifications may represent a mechanism for bacteria to gain advantage within host tissues. | 1997 | 9092473 |
| 732 | 16 | 0.9833 | Extracellular ATP is an environmental cue in bacteria. In animals and plants, extracellular ATP (eATP) functions as a signal and regulates the immune response. During inflammation, intestinal bacteria are exposed to elevated eATP originating from the mucosa. However, whether bacteria respond to eATP is unclear. Here, we show that non-pathogenic Escherichia coli responds to eATP by modifying its transcriptional and metabolic landscapes. A genome-scale promoter library showed that the response is dependent on time, concentration, and medium and ATP specific. Second messengers and genes related to metabolism, biofilm formation, and envelope stress were regulated downstream of eATP. Metabolomics confirmed that eATP triggers enrichment of compounds with bioactive properties in the host or bacteria. Combined genome-scale modeling revealed modifications to global metabolic and biomass building blocks. Consequently, eATP altered the sensitivity to antibiotics and antimicrobial peptides. Finally, in pathogens, eATP controlled virulence factor expression. Our results indicate that eATP is an environmental cue in prokaryotes, which broadly regulates physiology, antimicrobial resistance, and virulence. | 2025 | 41071676 |
| 329 | 17 | 0.9833 | Effect of NlpE overproduction on multidrug resistance in Escherichia coli. NlpE, an outer membrane lipoprotein, functions during envelope stress responses in Gram-negative bacteria. In this study, we report that overproduction of NlpE increases multidrug and copper resistance through activation of the genes encoding the AcrD and MdtABC multidrug efflux pumps in Escherichia coli. | 2010 | 20211889 |
| 8481 | 18 | 0.9833 | Universal stress proteins contribute Edwardsiella piscicida adversity resistance and pathogenicity and promote blocking host immune response. Universal stress proteins (Usps) exist ubiquitously in bacteria and other organisms. Usps play an important role in adaptation of bacteria to a variety of environmental stresses. There is increasing evidence that Usps facilitate pathogens to adapt host environment and are involved in pathogenicity. Edwardsiella piscicida (formerly included in E. tarda) is a severe fish pathogen and infects various important economic fish including tilapia (Oreochromis niloticus). In E. piscicida, a number of systems and factors that are involved in stress resistance and pathogenesis were identified. However, the function of Usps in E. piscicida is totally unknown. In this study, we examined the expressions of 13 usp genes in E. piscicida and found that most of these usp genes were up-regulated expression under high temperature, oxidative stress, acid stress, and host serum stress. Particularly, among these usp genes, usp13, exhibited dramatically high expression level upon several stress conditions. To investigate the biological role of usp13, a markerless usp13 in-frame mutant strain, TX01Δusp13, was constructed. Compared to the wild type TX01, TX01Δusp13 exhibited markedly compromised tolerance to high temperature, hydrogen peroxide, and low pH. Deletion of usp13 significantly retarded bacterial biofilm growth and decreased resistance against serum killing. Pathogenicity analysis showed that the inactivation of usp13 significantly impaired the ability of E. piscicida to invade into host cell and infect host tissue. Introduction of a trans-expressed usp13 gene restored the lost virulence of TX01Δusp13. In support of these results, host immune response induced by TX01 and TX01Δusp13 was examined, and the results showed reactive oxygen species (ROS) levels in TX01Δusp13-infected macrophages were significantly higher than those in TX01-infected cells. The expression level of several cytokines (IL-6, IL-8, IL-10, TNF-α, and CC2) in TX01Δusp13-infected fish was significantly higher than that in TX01-infected fish. These results suggested that the deletion of usp13 attenuated the ability of bacteria to overcome the host immune response to pathogen infection. Taken together, our study indicated Usp13 of E. piscicida was not only important participant in adversity resistance, but also was essential for E. piscicida pathogenicity and contributed to block host immune response to pathogen infection. | 2019 | 31654767 |
| 9020 | 19 | 0.9833 | Transcriptome Analysis Reveals the Resistance Mechanism of Pseudomonas aeruginosa to Tachyplesin I. BACKGROUND: Tachyplesin I is a cationic antimicrobial peptide with a typical cyclic antiparallel β-sheet structure. We previously demonstrated that long-term continuous exposure to increased concentration of tachyplesin I can induce resistant Gram-negative bacteria. However, no significant information is available about the resistance mechanism of Pseudomonas aeruginosa (P. aeruginosa) to tachyplesin I. MATERIALS AND METHODS: In this study, the global gene expression profiling of P. aeruginosa strain PA-99 and P. aeruginosa CGMCC1.2620 (PA1.2620) was conducted using transcriptome sequencing. For this purpose, outer membrane permeability and outer membrane proteins (OMPs) were further analyzed. RESULTS: Transcriptome sequencing detected 672 upregulated and 787 downregulated genes, covering Clusters of Orthologous Groups (COGs) of P. aeruginosa strain PA-99 compared with PA1.2620. Totally, 749 differentially expressed genes (DEGs) were assigned to 98 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and among them, a two-component regulatory system, a beta-lactam resistance system, etc. were involved in some known genes resistant to drugs. Additionally, we further attempted to indicate whether the resistance mechanism of P. aeruginosa to tachyplesin I was associated with the changes of outer membrane permeability and OMPs. CONCLUSION: Our results indicated that P. aeruginosa resistant to tachyplesin I was mainly related to reduced entry of tachyplesin I into the bacterial cell due to overexpression of efflux pump, in addition to a decrease of outer membrane permeability. Our findings were also validated by pathway enrichment analysis and quantitative reverse transcription polymerase chain reaction (RT-qPCR). This study may provide a promising guidance for understanding the resistance mechanism of P. aeruginosa to tachyplesin I. | 2020 | 32021330 |