OMPA - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
248800.9908Antibiotic resistance, putative virulence factors and curli fimbrination among Cronobacter species. This study aimed to investigate antibiotic resistance and putative virulence factors among Cronobacter sakazakii isolated from powdered infant formula and other sources. The following 9 cultures (CR1-9) were collected from our culture collection: C. sakazakii and 3 Cronobacter species: C. sakazakii ATCC® 29544™, C. muytjensii ATCC® 51329™, C. turicensis E866 were used in this study. Isolates were subjected to antibiotic susceptibility and the following virulence factors (protease, DNase, haemolysin, gelatinase, motility and biofilm formation) using phenotypic methods. All the bacteria were able to form biofilm on agar at 37 °C and were resistant to ampicillin, erythromycin, fosfomycin and sulphamethoxazole. It was observed from this study that tested strains formed weak and strong biofilm with violet dry and rough (rdar), brown dry and rough (bdar), red mucoid and smooth (rmas) colony morphotypes on Congo red agar. Rdar expresses curli and fimbriae, while bdar expresses curli. Both biofilm colony morphotypes are commonly found in Enterobacteriaceae including Salmonella species. This study also reveals a new colony morphotypes in Cronobacter species. Conclusively, there was correlation between putative virulence factors and antibiotic resistance among the tested bacteria. Further study on virulence and antibiotic resistance genes is hereby encouraged.201931404630
247910.9904Down-regulatory effects of green coffee extract on las I and las R virulence-associated genes in Pseudomonas aeruginosa. BACKGROUND: Antibiotic resistant strains of Pseudomonas aeruginosa are the cause of Gram negative nosocomial infections especially among the immunosuppressed patients. The bacteria contains las I and las R genes that play very important roles in the pathogenesis and mechanisms of aggression. These genes can be influenced by the quorum sensing (QS) system and such mechanism is becoming clinically important worldwide. This study aimed to investigate the preventive effects of green coffee extract (GCE) on the expression of pathogenesis-related genes, las I and las R in P. aeruginosa. METHODS: A total of fifty four P. aeruginosa strains were isolated out of 100 clinical samples collected from the infectious wards in different hospitals (Tehran province) using conventional microscopic and biochemical methods. Susceptibility of the isolates to different antibiotics, GCE and chlorogenic acid were elucidated. Multiplex polymerase chain reaction (PCR) and real-time PCR were performed to detect and quantify the expression levels of las I and las R genes. The presence of chlorogenic acid in GCE was confirmed by HPLC. RESULTS: Antibiotic susceptibility tests revealed multidrug resistance among the clinical isolates of those 40 strains were resistant to ciprofloxacin (74.07%), 43 to ceftazidime (79.26%), 29 to amikacin (53.7%), 42 to ampicillin (77.77%), 17 to colistin (31.48%), 40 to gentamicin (74.77%), and 50 to piperacillin (92.59%). PCR outcomes exhibited that the frequency of las I and las R genes were 100% in resistant and sensitive strains isolated from clinical and standard strains of P. aeruginosa (ATCC 15449). Real-time PCR analyses revealed that GCE significantly prevented the expression of las I and las R genes in P. aeruginosa. GCE at concentration level as low as 2.5 mg/mL could prevent the expression of lasI and lasR genes in P. aeruginosa clinical isolates. CONCLUSION: The presence and expression levels of las I and las R genes in P. aeruginosa isolates were investigated when the bacteria was exposed to GCE. Our results tend to suggest that genes involved in pathogenesis of:Pseudomonas aeruginosa are down regulated by quorum sensing effect of chlorogenic acid and therefore GCE could be useful as an adjuvant in combating multidrug resistance strains of Pseudomonas aeruginosa.201931187452
517020.9897Synergistic effect of imp/ostA and msbA in hydrophobic drug resistance of Helicobacter pylori. BACKGROUND: Contamination of endoscopy equipment by Helicobacter pylori (H. pylori) frequently occurs after endoscopic examination of H. pylori-infected patients. In the hospital, manual pre-cleaning and soaking in glutaraldehyde is an important process to disinfect endoscopes. However, this might not be sufficient to remove H. pylori completely, and some glutaraldehyde-resistant bacteria might survive and be passed to the next patient undergoing endoscopic examination through unidentified mechanisms. We identified an Imp/OstA protein associated with glutaraldehyde resistance in a clinical strain, NTUH-C1, from our previous study. To better understand and manage the problem of glutaraldehyde resistance, we further investigated its mechanism. RESULTS: The minimal inhibitory concentrations (MICs) of glutaraldehyde andexpression of imp/ostA RNA in 11 clinical isolates from the National Taiwan University Hospital were determined. After glutaraldehyde treatment, RNA expression in the strains with the MICs of 4-10 microg/ml was higher than that in strains with the MICs of 1-3 microg/ml. We examined the full-genome expression of strain NTUH-S1 after glutaraldehyde treatment using a microarray and found that 40 genes were upregulated and 31 genes were downregulated. Among the upregulated genes, imp/ostA and msbA, two putative lipopolysaccharide biogenesis genes, were selected for further characterization. The sensitivity to glutaraldehyde or hydrophobic drugs increased in both of imp/ostA and msbA single mutants. The imp/ostA and msbA double mutant was also hypersensitive to these chemicals. The lipopolysaccharide contents decreased in individual imp/ostA and msbA mutants and dramatically reduced in the imp/ostA and msbA double mutant. Outer membrane permeability assay demonstrated that the imp/ostA and msbA double mutation resulted in the increase of outer membrane permeability. Ethidium bromide accumulation assay demonstrated that MsbA was involved in efflux of hydrophobic drugs. CONCLUSION: The expression levels of imp/ostA and msbA were correlated with glutaraldehyde resistance in clinical isolates after glutaraldehyde treatment. Imp/OstA and MsbA play a synergistic role in hydrophobic drugs resistance and lipopolysaccharide biogenesis in H. pylori.200919594901
575230.9897Cefoxitin inhibits the formation of biofilm involved in antimicrobial resistance MDR Escherichia coli. The study investigates the relationship between biofilm formation and antibiotic resistance in Escherichia coli (E. coli) isolated from calves. Using biochemical and molecular methods, we identified the isolates and assessed their biofilm-forming ability through an improved crystal violet staining method. The minimum inhibitory concentrations (MICs) of 18 antibiotics against the isolates were determined using the broth microdilution method. The impact of cefoxitin on biofilm formation was analyzed using laser scanning confocal microscopy (LSCM). Additionally, qRT-PCR was employed to evaluate the expression levels of biofilm-related genes (luxS, motA, fliA, pfs, and csgD) in response to varying cefoxitin concentrations. Results indicated a significant correlation between antimicrobial resistance (AMR) and biofilm formation ability. Cefoxitin effectively reduced biofilm formation of multidrug-resistant E. coli isolates at 1/2 and 1 MIC, with enhanced inhibition at higher concentrations. The QS-related genes luxS, pfs, motA, and fliA were downregulated, leading to decreased csgD expression. At 1/2 MIC, csgD expression was significantly reduced. In conclusion, cefoxitin inhibits biofilm formation in multidrug-resistant E. coli by down-regulating key genes, offering a potential strategy to mitigate resistance and control infections in calves caused by biofilm-positive E. coli isolates.202540122078
636940.9895Association of furanone C-30 with biofilm formation & antibiotic resistance in Pseudomonas aeruginosa. BACKGROUND & OBJECTIVES: Pseudomonas aeruginosa is an opportunistic pathogen that can cause nosocomial bloodstream infections in humans. This study was aimed to explore the association of furanone C-30 with biofilm formation, quorum sensing (QS) system and antibiotic resistance in P. aeruginosa. METHODS: An in vitro model of P. aeruginosa bacterial biofilm was established using the standard P. aeruginosa strain (PAO-1). After treatment with 2.5 and 5 μg/ml of furanone C-30, the change of biofilm morphology of PAO-1 was observed, and the expression levels of QS-regulated virulence genes (lasB, rhlA and phzA2), QS receptor genes (lasR, rhlR and pqsR) as well as QS signal molecule synthase genes (lasI, rhlI, pqsE and pqsH) were determined. Besides, the AmpC expression was quantified in planktonic and mature biofilm induced by antibiotics. RESULTS: Furanone C-30 treatment significantly inhibited biofilm formation in a dose-dependent manner. With the increase of furanone C-30 concentration, the expression levels of lasB, rhlA, phzA2, pqsR, lasI, rhlI pqsE and pqsH significantly decreased in mature biofilm bacteria while the expression levels of lasR and rhlR markedly increased. The AmpC expression was significantly decreased in both planktonic and biofilm bacteria induced by imipenem and ceftazidime. INTERPRETATION & CONCLUSIONS: Furanone C-30 may inhibit biofilm formation and antibiotic resistance in P. aeruginosa through regulating QS genes. The inhibitory effect of furanone C-30 on las system appeared to be stronger than that on rhl system. Further studies need to be done with different strains of P. aeruginosa to confirm our findings.201829998876
133150.9894Serotypes, antibiotic resistance, and virulence genes of Salmonella in children with diarrhea. BACKGROUND: Salmonella is an important foodborne pathogen that causes acute diarrhea in humans worldwide. This study analyzed the relationships of serotypes and antibiotic resistance with virulence genes of Salmonella isolated from children with salmonellosis. METHODS: Serological typing was performed using the slide-agglutination method. The Kirby-Bauer disk diffusion method was used to test antibiotic susceptibility. Twenty virulence genes were detected by PCR. RESULTS: Salmonella Typhimurium (21 isolates, 34.43%) and S Enteritidis (12 isolates, 19.67%) were the predominant species among the 61 isolates. Ampicillin resistance was most common (63.93%), and among the cephalosporins, resistance was most often found to cefotaxime, a third-generation cephalosporin (19.67%). Among the 20 virulence genes, prgH, ssrB, and pagC were detected in all Salmonella isolates. In S Typhimurium, the detection rates of hilA, sipB, marT, mgtC, sopB, pagN, nlpI, bapA, oafA, and tolC were high. In S Enteritidis, the detection rates of icmF, spvB, spvR, and pefA were high. Nitrofurantoin resistance was negatively correlated with the virulence gene bapA (P = .005) and was positively correlated with icmF, spvB, spvR, and pefA (P = .012, .008, .002, and .005, respectively), The P values between all other virulence genes and antibiotic resistance were >.05. CONCLUSION: Salmonella Typhimurium and S Enteritidis were the main serotypes in children with diarrhea in Hangzhou, China. Salmonella exhibited a high level of resistance to common antibiotics, and a high rate of bacteria carrying virulence genes was observed. However, no significant correlation was found between virulence genes and resistance to common antibiotics.202032797660
233760.9893Klebsiella pneumoniae susceptibility to biocides and its association with cepA, qacΔE and qacE efflux pump genes and antibiotic resistance. BACKGROUND: Although antiseptics are some of the most widely used antibacterials in hospitals, there is very little information on reduced susceptibility to these biocides and its relationship with resistance to antibiotics. AIM: To determine the relationship between reduced susceptibility to biocides and the carriage of antiseptic resistance genes, cepA, qacΔE and qacE, as well as identifying the role of efflux pumps in conferring reduced susceptibility. METHODS: Susceptibility was assessed for five biocides: chlorhexidine, benzalkonium chloride, Trigene, MediHex-4, Mediscrub; and for 11 antibiotics against 64 isolates of Klebsiella pneumoniae. Susceptibility to all compounds was tested by the agar double dilution method (DDM) and the effect of efflux pumps on biocides determined by repeating the susceptibility studies in the presence of the efflux pump inhibitor carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The presence of the cepA, qacΔE and qacE genes was identified by polymerase chain reaction. FINDINGS: The bacteria were not widely antibiotic resistant though a few showed reduced susceptibility to cefoxitin, chloramphenicol and rifampicin and later-generation cephalosporins but not to carbapenems. Biocide susceptibility, tested by DDM, showed that 50, 49 and 53 strains had reduced susceptibility to chlorhexidine, Trigene and benzalkonium chloride, respectively. The antiseptic resistance genes cepA, qacΔE and qacE were found in 56, 34 and one isolates respectively and their effects as efflux pumps were determined by CCCP (10 mg/L), which decreased the minimum inhibitory concentrations (MICs) of chlorhexidine and Medihex-4 by 2-128-fold but had no impact on the MICs of benzalkonium chloride, Trigene and Mediscrub. CONCLUSION: There was a close link between carriage of efflux pump genes, cepA, qacΔE and qacE genes and reduced biocide susceptibility, but not antibiotic resistance, in K. pneumoniae clinical isolates.201222498639
220870.9893Evaluation of the relatedness between the biofilm-associated genes and antimicrobial resistance among Acinetobacter baumannii isolates in the southwest Iran. BACKGROUND AND OBJECTIVES: Increasing antimicrobial resistance among Acinetobacter baumannii (A. baumannii) strains poses a significant challenge, particularly in intensive care units (ICUs) where these bacteria are common causes of hospital infections. Biofilm production is recognized as a key mechanism contributing to this resistance. This study aims to explore the relationship between biofilm production, the presence of biofilm-associated genes, and antibiotic resistance patterns in A. baumannii isolates obtained from ICU patients. MATERIALS AND METHODS: We collected 100 A. baumannii isolates from ICU patients at Nemazee Hospital in Shiraz, Iran. Antimicrobial susceptibility testing (AST) was performed using the Kirby-Bauer disk diffusion method, and biofilm production potential was assessed through the tissue culture plate (TCP) method. Additionally, we investigated eleven biofilm-related genes (ompA, bap, csuE, epsA, bla (per-1) , bfmS, pgaB, csgA, fimH, ptk, and kpsMII) in all isolates using polymerase chain reaction (PCR). The REP-PCR technique was utilized to analyze the genetic relatedness of the isolates (Fig. 4). RESULTS: All isolates displayed multi-drug resistance, with the highest resistance rates observed against ceftazidime, cefotaxime, and trimethoprim/sulfamethoxazole (100%). Gentamicin and amikacin showed the lowest resistance rates at 70% and 84%, respectively. A total of 98% of the isolates were capable of biofilm production, with 32% categorized as strong biofilm producers. The most frequently detected biofilm-associated genes included csuE (99%), bfmS (98%), ompA (97%), and pgaB (89%). CONCLUSION: Biofilm production significantly contributes to the prevalence of multi-drug resistant A. baumannii strains. It is essential to implement effective antimicrobial stewardship and develop innovative anti-biofilm strategies to address this global health issue.202540330064
904080.9892Gene expression changes linked to antimicrobial resistance, oxidative stress, iron depletion and retained motility are observed when Burkholderia cenocepacia grows in cystic fibrosis sputum. BACKGROUND: Bacteria from the Burkholderia cepacia complex (Bcc) are the only group of cystic fibrosis (CF) respiratory pathogens that may cause death by an invasive infection known as cepacia syndrome. Their large genome (> 7000 genes) and multiple pathways encoding the same putative functions make virulence factor identification difficult in these bacteria. METHODS: A novel microarray was designed to the genome of Burkholderia cenocepacia J2315 and transcriptomics used to identify genes that were differentially regulated when the pathogen was grown in a CF sputum-based infection model. Sputum samples from CF individuals infected with the same B. cenocepacia strain as genome isolate were used, hence, other than a dilution into a minimal growth medium (used as the control condition), no further treatment of the sputum was carried out. RESULTS: A total of 723 coding sequences were significantly altered, with 287 upregulated and 436 downregulated; the microarray-observed expression was validated by quantitative PCR on five selected genes. B. cenocepacia genes with putative functions in antimicrobial resistance, iron uptake, protection against reactive oxygen and nitrogen species, secretion and motility were among the most altered in sputum. Novel upregulated genes included: a transmembrane ferric reductase (BCAL0270) implicated in iron metabolism, a novel protease (BCAL0849) that may play a role in host tissue destruction, an organic hydroperoxide resistance gene (BCAM2753), an oxidoreductase (BCAL1107) and a nitrite/sulfite reductase (BCAM1676) that may play roles in resistance to the host defenses. The assumptions of growth under iron-depletion and oxidative stress formulated from the microarray data were tested and confirmed by independent growth of B. cenocepacia under each respective environmental condition. CONCLUSION: Overall, our first full transcriptomic analysis of B. cenocepacia demonstrated the pathogen alters expression of over 10% of the 7176 genes within its genome when it grows in CF sputum. Novel genetic pathways involved in responses to antimicrobial resistance, oxidative stress, and iron metabolism were revealed by the microarray analysis. Virulence factors such as the cable pilus and Cenocepacia Pathogenicity Island were unaltered in expression. However, B. cenocepacia sustained or increased expression of motility-associated genes in sputum, maintaining a potentially invasive phenotype associated with cepacia syndrome.200818801206
577490.9891The correlation between the presence of quorum sensing, toxin-antitoxin system genes and MIC values with ability of biofilm formation in clinical isolates of Pseudomonas aeruginosa. INTRODUCTION: Pseudomonas aeruginosa is a Gram-negative bacterium that considered as important opportunistic human pathogen. One of the mechanisms that help bacteria to tolerate survival in adverse conditions and resistance to antibiotics is biofilm formation through quorum sensing (QS) signals and toxin-antitoxin (TA) systems. QS and TA are two systems that have important roles in biofilm formation. QS is a global regulatory mechanism that enable bacteria to communicate with each other by production of auto inducers (AI) molecules in population. Because of importance biofilm formation in P. aeruginosa infections, here, we studied frequency of QS and TA genes among clinical isolates of P. aeruginosa with ability of biofilm formation. MATERIALS AND METHODS: One hundred and forty clinical isolates of P. aeruginosa were collected from Tehran and Ilam hospitals. The isolates were identified by biochemical tests. Biofilm formation was evaluated by microplate method. After DNA extraction by boiling method, the frequency of QS genes (lasIR, rhlIR), and TA genes (mazEF, relBE, hipBA, ccdAB and mqsR) were analyzed by PCR. RESULTS: Our results showed that maximum resistance is related to aztreonam (72.85%) antibiotic. Most of isolates were able to produce biofilm (87.15%) and the majority of them formed strong biofilm (56.42%). PCR results showed that frequency of mazEF, relBE, hipBA, ccdAB, mqsR, lasIR and rhlIR genes were 85.71, 100, 1.42, 100, 57.14, 93.57 and 83.57 percent, respectively. CONCLUSION: Clinical isolates of P. aeruginosa had high ability to form biofilm, and QS and TA system genes among these isolates were very high (except hipBA genes). There are significaut correlation between biofilm for mation and present of QS and TA system genes.201425870745
2487100.9891Clinical cases, drug resistance, and virulence genes profiling in Uropathogenic Escherichia coli. Uropathogenic Escherichia coli (UPEC) as the most important bacterial agent of urinary tract infections (UTIs) encompasses a wide treasure of virulence genes and factors. In due to this default, the aim of this research was to detect and identify some important virulence genes including cnf1, upaH, hlyA, ibeA, and cdtB in isolated UPEC pathotypes. In this research, clinical samples of urine were collected in Shahr-e-Qods, Tehran, Iran. The UPEC pathotypes were confirmed by standard biochemical tests. The DNAs of isolated bacteria were extracted. The genes of cnf1, upaH, hlyA, ibeA, and cdtB were run for multiplex PCR and gel electrophoresis. Furthermore, the antibiogram was done for the isolated UPEC strains by 11 common antibiotics. In accordance with the results, the virulence genes of cnf1, upaH, hlyA, ibeA, and cdtB were respectively recognized in 100%, 51.2%, 38.4%, 9.3%, and 0% of isolated UPEC pathotypes. In consequence, the final virulence gene profiling of the isolated UPEC strains was patterned as cnf1, cnf1-upaH, cnf1-upaH-hlyA, and cnf1-upaH-hlyA-ibeA. The chi-square tests showed no significant correlations between virulence gene profile and UTIs, between virulence gene profile and antibiotic resistance, and between virulence genes and different types of UTIs. The cnf1 virulence gene contributes in the occurrence of all types of UTIs. In contrast to cnf1, the cdtB gene was absent in the isolated UPEC strains in this investigation. The most ineffective antibiotics were recognized as Penicillin, Tetracycline, and Nalidixic acid, respectively, while Streptomycin, Chloramphenicol, and Ciprofloxacin are the best options for UTIs treatment.202031950434
2478110.9891Study on the resistance mechanism via outer membrane protein OprD2 and metal β-lactamase expression in the cell wall of Pseudomonas aeruginosa. The aim of the present study was to evaluate the imipenem-resistant mechanism via the outer membrane protein (OMP) OprD2 and metal β-lactamase expression in the cell wall of Pseudomonas aeruginosa. The Pseudomonas aeruginosa was clinically separated and validated by VITEK-2 full-automatic bacteria analyzer. Drug resistance, sensitive antibiotics and minimum inhibitory concentration (MIC) were tested using the drug sensitivity analysis system. The phenotype positive strains of MBL genes were screened using the Kirby-Bauer diffusion method by adding metal ion-chelating agent EDTA on the imipenem susceptibility paper. IMP-1, VIM-1 and SPM metaloenzyme genes were tested by polymerase chain reaction (PCR)-telomeric repeat amplification protocol (TRAP). The OMP OprD2 genes were tested by PCR-TRAP, and the protein expression was tested using western blot analysis. The location of OMP OprD2 was confirmed using the sodium salicylate inhibition test. The results showed that 80 portions (40%) of MBL-positive strains were screened out of 200 specimens. Imipenem-resistant Pseudomonas aeruginosa (IRPA) and MIC values were significantly higher than quality control bacteria and control bacteria (P<0.05). A total of 35 cases with IMP-1 positive, 20 with VIM-1 positive, 16 with SPM positive, 5 with 2 positive genes and 4 with 3 positive genes were screened among MBL positive strains. A total of 150 portions (75%) of OprD2 deficiencies were screened from 200 specimens. The standard strains and sensitive strains showed OprD2 protein bands at 45 kDa while no OprD2 protein bands appeared in OprD2 deficiency strains. It was in accordance with gene detection. In conclusion, OMP OprD2 deficiency and MBL phenotype positivity may be important mechanisms of IRPA.201627882088
2486120.9891Virulence-associated genes and antimicrobial resistance patterns in bacteria isolated from pregnant and nonpregnant women with urinary tract infections: the risk of neonatal sepsis. Uropathogenic Escherichia coli (UPEC) is classified as the major causative agent of urinary tract infections (UTIs). UPEC virulence and antibiotic resistance can lead to complications in pregnant women and (or) newborns. Therefore, the aim of this study was to determine the etiological agents of UTIs, as well as to identify genes related to virulence factors in bacteria isolated from pregnant and nonpregnant women. A total of 4506 urine samples were collected from pregnant and nonpregnant women. Urine cultures were performed, and PCR was used to identify phylogroups and virulence-related genes. Antibiotic resistance profiles were determined. The incidence of UTIs was 6.9% (pregnant women, n = 206 and nonpregnant women, n = 57), and UPEC belonging to phylogroup A was the most prevalent. The presence of genes related to capsular protection, adhesins, iron acquisition, and serum protection in UPEC was associated with not being pregnant, while the presence of genes related to adhesins was associated with pregnancy. Bacteria isolated from nonpregnant women were more resistant to antibiotics; 36.5% were multidrug resistant, and 34.9% were extensively drug resistant. Finally, UTIs were associated with neonatal sepsis risk, particularly in pregnant women who underwent cesarean section while having a UTI caused by E. coli. In conclusion, UPEC isolated from nonpregnant women carried more virulence factors than those isolated from pregnant women, and maternal UTIs were associated with neonatal sepsis risk.202337815047
1701130.9891Type VI secretion system (T6SS) in Klebsiella pneumoniae, relation to antibiotic resistance and biofilm formation. BACKGROUND AND OBJECTIVES: The type VI secretion system (T6SS) was identified as a novel virulence factor in many Gram-negative bacteria. This study aimed to investigate the frequency of the T6SS genes in Klebsiella pneumoniae-causing different nosocomial infections, and to study the association between T6SS, antibiotic resistance, and biofilm formation in the isolated bacteria. MATERIALS AND METHODS: A total of fifty-six non-repetitive K. pneumoniae isolates were collected from different inpatients admitted at Sohag University Hospital from September 2022 to March 2023. Samples were cultured, colonies were identified, and antimicrobial sensitivity was done by VITEK® 2 Compact. Biofilm formation was checked using Congo red agar method. T6SS genes, and capsular serotypes were detected by PCR. RESULTS: Fifty-six K. pneumoniae isolates were obtained in culture. 38 isolates (67.86%) produced biofilm and 44 (78.57%) were positive for T6SS in PCR. There was a significant association between the presence of T6SS and resistance to the following antibiotics: meropenem, ciprofloxacin, and levofloxacin. All biofilm-forming bacteria had T6SS, with significant differences towards T6SS -positive bacteria. There was no significant association between T6SS, and the presence of certain capsular types. CONCLUSION: The T6SS-positive K. pneumoniae has greater antibiotic resistance, and biofilm-forming ability which is considered a potential pathogenicity of this emerging gene cluster.202337941882
1333140.9890Virulence-encoding genes related to extraintestinal pathogenic E. coli and multidrug resistant pattern of strains isolated from neonatal calves with different severity scores of umbilical infections. Umbilical infections in calves comprise a major cause of neonatal mortality and have been related to a variety of microorganisms. E. coli is an opportunistic enteropathogen characterized by a diversity of virulence factors (VF). Nonetheless, the gene profiles that encode VF associated with umbilical infections in calves and their effect on the clinical severity remains unclear. In this scenario, microbial identification (with an emphasis on E. coli), was carried out among 150 neonatal calves (≤30 days of age) with umbilical infections, where the omphalopathies were clinically scored as mild, moderate, or severe. Also, a panel of 16 virulence-encoding genes related to extraintestinal pathogenic E. coli (ExPEC) were investigated, i.e., fimbriae/adhesins (sfa/focDEa, papA, papC, afaBC), toxins (hlyA, sat, cnf1, cdt), siderophores (iroN, irp2, iucD, ireA), invasins (ibeA), and serum resistance (ompT, traT, kpsMT II). Bacteria and yeasts isolates were identified using mass spectrometry. Bacteria, yeasts, and fungi were isolated in 94.7% (142/150) of neonatal calves sampled. E. coli was the agent most frequently isolated (59/150 = 39.3%), in pure culture (27/59 = 45.8%) and combined infections (32/59 = 54.2%), although a great variety (n = 83) of other species of microorganisms were identified. Clinical severity scores of 1, 2, and 3 were observed in 32.2% (19/59), 23.7% (14/59), and 44.1% (26/59) of E. coli infections, respectively. The ExPEC genes detected were related to serum resistance (traT, 42/59 = 72.2%; ompT, 35/59 = 59.3%, kpsMTII, 10/59 = 17%), invasins (ibeA, 11/59 = 18.6%), siderophores (iucD, 9/59 = 15.3%; iroN, 8/59 = 13.6%), and adhesins/fimbriae (papA, 8/59 = 13.6%; papC, 15/59 = 9.6%). The presence of each virulence gene was not associated with the case's clinical score. Among all isolates, 89.8% (53/59) showed in vitro resistance to sulfamethoxazole/trimethoprim and 59.3% to ampicillin (35/59), while 94.1% (55/59) revealed a multidrug resistant profile. Great complexity of bacteria, yeast, and fungi species was identified, reinforcing the umbilical infections of neonatal calves as a polymicrobial disorder. The high occurrence of E. coli (39.3%) highlights the role of this pathogen in the etiology of umbilical infections in calves. Furthermore, a panel of ExPEC genes was investigated for the first time among calves that were clinically scored for case severity. The high prevalence of traT and ompT indicates that these serum resistance-related genes could be used as biomarkers for further investigations of ExPEC isolates from umbilical infections. Our results contribute to the etiological investigation, clinical severity scoring, antimicrobial resistance pattern, and virulence-related to ExPEC genes involved in umbilical infections of neonatal calves.202336427660
2467150.9890Whole-genome sequencing of multidrug-resistant Klebsiella pneumoniae with capsular serotype K2 isolates from mink in China. BACKGROUND: Klebsiella pneumoniae is a zoonotic opportunistic pathogen, and also one of the common pathogenic bacteria causing mink pneumonia. The aim of this study was to get a better understanding of the whole-genome of multi-drug resistant Klebsiella pneumoniae with K2 serotype in China. This study for the first time to analyze Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, resistance and virulence genes of Klebsiella pneumoniae in mink. RESULTS: The isolate was Klebsiella pneumoniae with serotype K2 and ST6189 by PCR method. The string test was positive and showed high mucus phenotype. There was one plasmid with IncFIB replicons in the genome. The virulence factors including capsule, lipopolysaccharide, adhesin, iron uptake system, urease, secretory system, regulatory gene (rcsA, rcsB), determinants of pili adhesion, enolase and magnesium ion absorption related genes. The strain was multi-drug resistant. A total of 26  resistance genes, including beta-lactam, aminoglycosides, tetracycline, fluoroquinolones, sulfonamides, amide alcohols, macrolides, rifampicin, fosfomycin, vancomycin, diaminopyrimidines and polymyxin. Multidrug-resistant efflux protein AcrA, AcrB, TolC, were predicted in the strain. CONCLUSION: It was the first to identify that serotype K2 K. pneumonia with ST6189 isolated from mink in China. The finding indicated that hypervirulent and multi-drug resistant K. pneumoniae was exist in Chinese mink. The whole-genome of K. pneumoniae isolates have importance in mink farming practice.202439127663
6364160.9890Characterization of clumpy adhesion of Escherichia coli to human cells and associated factors influencing antibiotic sensitivity. Escherichia coli intestinal infection pathotypes are characterized by distinct adhesion patterns, including the recently described clumpy adhesion phenotype. Here, we identify and characterize the genetic factors contributing to the clumpy adhesion of E. coli strain 4972. In this strain, the transcriptome and proteome of adhered bacteria were found to be distinct from planktonic bacteria in the supernatant. A total of 622 genes in the transcriptome were differentially expressed in bacteria present in clumps relative to the planktonic bacteria. Seven genes targeted for disruption had variable distribution in different pathotypes and nonpathogenic E. coli, with the pilV and spnT genes being the least frequent or absent from most groups. Deletion (Δ) of five differentially expressed genes, flgH, ffp, pilV, spnT, and yggT, affected motility, adhesion, or antibiotic stress. ΔflgH exhibited 80% decrease and ΔyggT depicted 184% increase in adhesion, and upon complementation, adhesion was significantly reduced to 13%. ΔflgH lost motility and was regenerated when complemented, whereas Δffp had significantly increased motility, and reintroduction of the same gene reduced it to the wild-type level. The clumps produced by Δffp and ΔspnT were more resistant and protected the bacteria, with ΔspnT showing the best clump formation in terms of ampicillin stress protection. ΔyggT had the lowest tolerance to gentamicin, where the antibiotic stress completely eliminated the bacteria. Overall, we were able to investigate the influence of clump formation on cell surface adhesion and antimicrobial tolerance, with the contribution of several factors crucial to clump formation on susceptibility to the selected antibiotics. IMPORTANCE: The study explores a biofilm-like clumpy adhesion phenotype in Escherichia coli, along with various factors and implications for antibiotic susceptibility. The phenotype permitted the bacteria to survive the onslaught of high antibiotic concentrations. Profiles of the transcriptome and proteome allowed the differentiation between adhered bacteria in clumps and planktonic bacteria in the supernatant. The deletion mutants of genes differentially expressed between adhered and planktonic bacteria, i.e., flgH, ffp, pilV, spnT, and yggT, and respective complementations in trans cemented their roles in multiple capacities. ffp, an uncharacterized gene, is involved in motility and resistance to ampicillin in a clumpy state. The work also affirms for the first time the role of the yggT gene in adhesion and its involvement in susceptibility against another aminoglycoside antibiotic, i.e., gentamicin. Overall, the study contributes to the mechanisms of biofilm-like adhesion phenotype and understanding of the antimicrobial therapy failures and infections of E. coli.202438530058
2485170.9890Characterisation of uropathogenic Escherichia coli from children with urinary tract infection in different countries. Uropathogenic Escherichia coli (UPEC) carry many virulence factors, including those involved in long-term survival in the urinary tract. However, their prevalence and role among UPEC causing urinary tract infection (UTI) in children is not well studied. To further understand the virulence characteristics of these bacteria, we investigated the prevalence of antibiotic resistance, antigen 43 genes, curli and cellulose among UPEC in children from different countries. Isolates (n = 337) from five countries were tested for antibiotic susceptibility, phylogenetic groups, prevalence of flu, fluA(CFT073), fluB(CFT073), curli and cellulose. High prevalence of multidrug resistance and extended spectrum beta lactamase production was found among Iranian and Vietnamese isolates. Resistance was associated with phylogenetic group D while group B2 was associated with fluA(CFT073) and fluB(CFT073). Fewer Iranian isolates carried fluA(CFT073), curli and cellulose. fluB(CFT073) was most prevalent among Slovak isolates. Ampicillin and amoxicillin/clavulanic acid resistance was prevalent among fluA(CFT073)- and fluB(CFT073)-positive Australian, Iranian and Swedish isolates. Lack of curli and cellulose was associated with resistance among Vietnamese isolates. We conclude that major differences exist in the prevalence of antibiotic resistance among UPEC from different countries. Associations observed between resistance and virulence factors may, in different ways, promote the long-term survival of UPEC in the urinary tract.201121509475
2340180.9890Binary CuO\CoO nanoparticles inhibit biofilm formation and reduce the expression of papC and fimH genes in multidrug-resistant Klebsiella oxytoca. BACKGROUND AND AIM: Binary copper-cobalt oxide nanoparticles (CuO\CoO NPs) are modern kinds of antimicrobials, which may get a lot of interest in clinical application. This study aimed to detect the effect of the binary CuO\CoO NPs on the expression of papC and fimH genes in multidrug-resistant (MDR) isolates of Klebsiella oxytoca to reduce medication time and improve outcomes. METHODS: Ten isolates of K. oxytoca were collected and identified by different conventional tests besides PCR. Antibiotic sensitivity and biofilm-forming ability were carried out. The harboring of papC and fimH genes was also detected. The effect of binary CuO\CoO nanoparticles on the expression of papC and fimH genes was investigated. RESULTS: Bacterial resistance against cefotaxime and gentamicin was the highest (100%), while the lowest percentage of resistance was to amikacin (30%). Nine of the ten bacterial isolates had the ability to form a biofilm with different capacities. MIC for binary CuO\CoO NPs was 2.5 µg/mL. Gene expression of papC and fimH was 8.5- and 9-fold lower using the NPs. CONCLUSION: Binary CuO\CoO NPs have a potential therapeutic effect against infections triggered by MDR K. oxytoca strains due to the NPs-related downregulation ability on the virulence genes of K. oxytoca.202337269387
6376190.9890Mechanisms of mepA Overexpression and Membrane Potential Reduction Leading to Ciprofloxacin Heteroresistance in a Staphylococcus aureus Isolate. Heteroresistance has seriously affected the evaluation of antibiotic efficacy against pathogenic bacteria, causing misjudgment of antibiotics' sensitivity in clinical therapy, leading to treatment failure, and posing a serious threat to current medical health. However, the mechanism of Staphylococcus aureus heteroresistance to ciprofloxacin remains unclear. In this study, heteroresistance to ciprofloxacin in S. aureus strain 529 was confirmed by antimicrobial susceptibility testing and population analysis profiling (PAP), with the resistance of subclonal 529_HR based on MIC being 8-fold that of the original bacteria. A 7-day serial MIC evaluation and growth curves demonstrate that their phenotype was stable, with 529_HR growing more slowly than 529, but reaching a plateau in a similar proportion. WGS analysis showed that there were 11 nonsynonymous mutations and one deletion gene between the two bacteria, but none of these SNPs were directly associated with ciprofloxacin resistance. Transcriptome data analysis showed that the expression of membrane potential related genes (qoxA, qoxB, qoxC, qoxD, mprF) was downregulated, and the expression of multidrug resistance efflux pump gene mepA was upregulated. The combination of ciprofloxacin and limonene restored the 529_HR MIC from 1 mg/L to 0.125 mg/L. Measurement of the membrane potential found that 529_HR had a lower potential, which may enable it to withstand the ciprofloxacin-induced decrease in membrane potential. In summary, we demonstrated that upregulation of mepA gene expression and a reduction in membrane potential are the main heteroresistance mechanisms of S. aureus to ciprofloxacin. Additionally, limonene may be a potentially effective agent to inhibit ciprofloxacin heteroresistance phenotypes.202540076991