# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 11 | 0 | 0.9489 | Diffusible signal factor primes plant immunity against Xanthomonas campestris pv. campestris (Xcc) via JA signaling in Arabidopsis and Brassica oleracea. BACKGROUND: Many Gram-negative bacteria use quorum sensing (QS) signal molecules to monitor their local population density and to coordinate their collective behaviors. The diffusible signal factor (DSF) family represents an intriguing type of QS signal to mediate intraspecies and interspecies communication. Recently, accumulating evidence demonstrates the role of DSF in mediating inter-kingdom communication between DSF-producing bacteria and plants. However, the regulatory mechanism of DSF during the Xanthomonas-plant interactions remain unclear. METHODS: Plants were pretreated with different concentration of DSF and subsequent inoculated with pathogen Xanthomonas campestris pv. campestris (Xcc). Pathogenicity, phynotypic analysis, transcriptome combined with metabolome analysis, genetic analysis and gene expression analysis were used to evaluate the priming effects of DSF on plant disease resistance. RESULTS: We found that the low concentration of DSF could prime plant immunity against Xcc in both Brassica oleracea and Arabidopsis thaliana. Pretreatment with DSF and subsequent pathogen invasion triggered an augmented burst of ROS by DCFH-DA and DAB staining. CAT application could attenuate the level of ROS induced by DSF. The expression of RBOHD and RBOHF were up-regulated and the activities of antioxidases POD increased after DSF treatment followed by Xcc inoculation. Transcriptome combined with metabolome analysis showed that plant hormone jasmonic acid (JA) signaling involved in DSF-primed resistance to Xcc in Arabidopsis. The expression of JA synthesis genes (AOC2, AOS, LOX2, OPR3 and JAR1), transportor gene (JAT1), regulator genes (JAZ1 and MYC2) and responsive genes (VSP2, PDF1.2 and Thi2.1) were up-regulated significantly by DSF upon Xcc challenge. The primed effects were not observed in JA relevant mutant coi1-1 and jar1-1. CONCLUSION: These results indicated that DSF-primed resistance against Xcc was dependent on the JA pathway. Our findings advanced the understanding of QS signal-mediated communication and provide a new strategy for the control of black rot in Brassica oleracea. | 2023 | 37404719 |
| 8768 | 1 | 0.9425 | Selective regulation of endophytic bacteria and gene expression in soybean by water-soluble humic materials. BACKGROUND: As part of the plant microbiome, endophytic bacteria play an essential role in plant growth and resistance to stress. Water-soluble humic materials (WSHM) is widely used in sustainable agriculture as a natural and non-polluting plant growth regulator to promote the growth of plants and beneficial bacteria. However, the mechanisms of WSHM to promote plant growth and the evidence for commensal endophytic bacteria interaction with their host remain largely unknown. Here, 16S rRNA gene sequencing, transcriptomic analysis, and culture-based methods were used to reveal the underlying mechanisms. RESULTS: WSHM reduced the alpha diversity of soybean endophytic bacteria, but increased the bacterial interactions and further selectively enriched the potentially beneficial bacteria. Meanwhile, WSHM regulated the expression of various genes related to the MAPK signaling pathway, plant-pathogen interaction, hormone signal transduction, and synthetic pathways in soybean root. Omics integration analysis showed that Sphingobium was the genus closest to the significantly changed genes in WSHM treatment. The inoculation of endophytic Sphingobium sp. TBBS4 isolated from soybean significantly improved soybean nodulation and growth by increasing della gene expression and reducing ethylene release. CONCLUSION: All the results revealed that WSHM promotes soybean nodulation and growth by selectively regulating soybean gene expression and regulating the endophytic bacterial community, Sphingobium was the key bacterium involved in plant-microbe interaction. These findings refined our understanding of the mechanism of WSHM promoting soybean nodulation and growth and provided novel evidence for plant-endophyte interaction. | 2024 | 38178261 |
| 6730 | 2 | 0.9423 | The ecological role of bacterial seed endophytes associated with wild cabbage in the United Kingdom. Endophytic bacteria are known for their ability in promoting plant growth and defense against biotic and abiotic stress. However, very little is known about the microbial endophytes living in the spermosphere. Here, we isolated bacteria from the seeds of five different populations of wild cabbage (Brassica oleracea L) that grow within 15 km of each other along the Dorset coast in the UK. The seeds of each plant population contained a unique microbiome. Sequencing of the 16S rRNA genes revealed that these bacteria belong to three different phyla (Actinobacteria, Firmicutes, and Proteobacteria). Isolated endophytic bacteria were grown in monocultures or mixtures and the effects of bacterial volatile organic compounds (VOCs) on the growth and development on B. oleracea and on resistance against a insect herbivore was evaluated. Our results reveal that the VOCs emitted by the endophytic bacteria had a profound effect on plant development but only a minor effect on resistance against an herbivore of B. oleracea. Plants exposed to bacterial VOCs showed faster seed germination and seedling development. Furthermore, seed endophytic bacteria exhibited activity via volatiles against the plant pathogen F. culmorum. Hence, our results illustrate the ecological importance of the bacterial seed microbiome for host plant health and development. | 2020 | 31721471 |
| 38 | 3 | 0.9423 | Alginate Oligosaccharide (AOS) induced resistance to Pst DC3000 via salicylic acid-mediated signaling pathway in Arabidopsis thaliana. Alginate Oligosaccharide (AOS) is a natural biological carbohydrate extracted from seaweed. In our study, Arabidopsis thaliana was used to evaluate the AOS-induced resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Resistance was vitally enhanced at 25 mg/L in wild type (WT), showing the decreased disease index and bacteria colonies, burst of ROS and NO, high transcription expression of resistance genes PR1 and increased content of salicylic acid (SA). In SA deficient mutant (sid2), AOS-induced disease resistance dropped obviously compared to WT. The disease index was significantly higher than WT and the expression of recA and avrPtoB are two and four times lower than WT, implying that AOS induces disease resistance injecting Pst DC3000 after three days treatment by arousing the SA pathway. Our results provide a reference for the profound research and application of AOS in agriculture. | 2019 | 31521273 |
| 8128 | 4 | 0.9422 | Recognize and assessment of key host humic-reducing microorganisms of antibiotic resistance genes in different biowastes composts. Humic-reducing microorganisms (HRMs) can utilize humic substance as terminal electron mediator promoting the bioremediation of contaminate, which is ubiquitous in composts. However, the impacts of HRMs on antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in composts and different HRMs community composition following the types of biowastes effected the spread of ARGs have not been investigated. Herein, the dynamics and mobility of ARGs and HRMs during protein-, lignocellulose- and lignin-rich composting were investigated. Result show that ARGs change significantly at the thermophilic phase, and the relative abundance of most ARGs increase during composting. Seven groups of HRMs communities are classified as primary host HRMs of ARGs, and most host HRMs groups from protein-rich composts. Conclusively, regulating methods for inhibiting ARGs spread for different composts are proposed. HRMs show a higher ARGs dissemination capacity in protein-rich composts than lignocellulose- and lignin-rich composts, but the spread of ARGs can be inhibited by regulate physicochemical parameters in protein-rich composts. In contrary, most HRMs have inhibitory effects on ARGs spread in lignocellulose- and lignin-rich composts, and those HRMs can be used as a new agent that inhibits the spread of ARGs. Our results can help in understanding the potential risk spread of ARGs by inoculating functional bacteria derived from different biowastes composts for environmental remediation, given their expected importance to developing a classification-oriented approach for composting different biowastes. | 2022 | 34600985 |
| 23 | 5 | 0.9421 | Ectopic expression of Hrf1 enhances bacterial resistance via regulation of diterpene phytoalexins, silicon and reactive oxygen species burst in rice. Harpin proteins as elicitor derived from plant gram negative bacteria such as Xanthomonas oryzae pv. oryzae (Xoo), Erwinia amylovora induce disease resistance in plants by activating multiple defense responses. However, it is unclear whether phytoalexin production and ROS burst are involved in the disease resistance conferred by the expression of the harpin(Xoo) protein in rice. In this article, ectopic expression of hrf1 in rice enhanced resistance to bacterial blight. Accompanying with the activation of genes related to the phytoalexin biosynthesis pathway in hrf1-transformed rice, phytoalexins quickly and consistently accumulated concurrent with the limitation of bacterial growth rate. Moreover, the hrf1-transformed rice showed an increased ability for ROS scavenging and decreased hydrogen peroxide (H(2)O(2)) concentration. Furthermore, the localization and relative quantification of silicon deposition in rice leaves was detected by scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDS). Finally, the transcript levels of defense response genes increased in transformed rice. These results show a correlation between Xoo resistance and phytoalexin production, H(2)O(2), silicon deposition and defense gene expression in hrf1-transformed rice. These data are significant because they provide evidence for a better understanding the role of defense responses in the incompatible interaction between bacterial disease and hrf1-transformed plants. These data also supply an opportunity for generating nonspecific resistance to pathogens. | 2012 | 22970151 |
| 8644 | 6 | 0.9416 | Biotic and abiotic drivers of soil carbon, nitrogen and phosphorus and metal dynamic changes during spontaneous restoration of Pb-Zn mining wastelands. The biotic and abiotic mechanisms that drive important biogeochemical processes (carbon, nitrogen, phosphorus and metals dynamics) in metal mine revegetation remains elusive. Metagenomic sequencing was used to explored vegetation, soil properties, microbial communities, functional genes and their impacts on soil processes during vegetation restoration in a typical Pb-Zn mine. The results showed a clear niche differentiation between bacteria, fungi and archaea. Compared to bacteria and fungi, the archaea richness were more tightly coupled with natural restoration changes. The relative abundances of CAZyme-related, denitrification-related and metal resistance genes reduced, while nitrification, urease, inorganic phosphorus solubilisation, phosphorus transport, and phosphorus regulation -related genes increased. Redundancy analysis, hierarchical partitioning analysis, relative-importance analysis and partial least squares path modelling, indicated that archaea diversity, primarily influenced by available lead, directly impacts carbon dynamics. Functional genes, significantly affected by available cadmium, directly alter nitrogen dynamics. Additionally, pH affects phosphorus dynamics through changes in bacterial diversity, while metal dynamics are directly influenced by vegetation. These insights elucidate natural restoration mechanisms in mine and highlight the importance of archaea in soil processes. | 2025 | 40054196 |
| 8767 | 7 | 0.9415 | Poly-γ-glutamic acid enhanced the drought resistance of maize by improving photosynthesis and affecting the rhizosphere microbial community. BACKGROUND: Compared with other abiotic stresses, drought stress causes serious crop yield reductions. Poly-γ-glutamic acid (γ-PGA), as an environmentally friendly biomacromolecule, plays an important role in plant growth and regulation. RESULTS: In this project, the effect of exogenous application of γ-PGA on drought tolerance of maize (Zea mays. L) and its mechanism were studied. Drought dramatically inhibited the growth and development of maize, but the exogenous application of γ-PGA significantly increased the dry weight of maize, the contents of ABA, soluble sugar, proline, and chlorophyll, and the photosynthetic rate under severe drought stress. RNA-seq data showed that γ-PGA may enhance drought resistance in maize by affecting the expression of ABA biosynthesis, signal transduction, and photosynthesis-related genes and other stress-responsive genes, which was also confirmed by RT-PCR and promoter motif analysis. In addition, diversity and structure analysis of the rhizosphere soil bacterial community demonstrated that γ-PGA enriched plant growth promoting bacteria such as Actinobacteria, Chloroflexi, Firmicutes, Alphaproteobacteria and Deltaproteobacteria. Moreover, γ-PGA significantly improved root development, urease activity and the ABA contents of maize rhizospheric soil under drought stress. This study emphasized the possibility of using γ-PGA to improve crop drought resistance and the soil environment under drought conditions and revealed its preliminary mechanism. CONCLUSIONS: Exogenous application of poly-γ-glutamic acid could significantly enhance the drought resistance of maize by improving photosynthesis, and root development and affecting the rhizosphere microbial community. | 2022 | 34979944 |
| 8755 | 8 | 0.9414 | Improved Phytophthora resistance in commercial chickpea (Cicer arietinum) varieties negatively impacts symbiotic gene signalling and symbiotic potential in some varieties. Breeding disease-resistant varieties is one of the most effective and economical means to combat soilborne diseases in pulse crops. Commonalities between pathogenic and mutualistic microbe colonization strategies, however, raises the concern that reduced susceptibility to pathogens may simultaneously reduce colonization by beneficial microbes. We investigate here the degree of overlap in the transcriptional response of the Phytophthora medicaginis susceptible chickpea variety 'Sonali' to the early colonization stages of either Phytophthora, rhizobial bacteria or arbuscular mycorrhizal fungi. From a total of 6476 genes differentially expressed in Sonali roots during colonization by any of the microbes tested, 10.2% were regulated in a similar manner regardless of whether it was the pathogenic oomycete or a mutualistic microbe colonizing the roots. Of these genes, 49.7% were oppositely regulated under the same conditions in the moderately Phytophthora resistant chickpea variety 'PBA HatTrick'. Chickpea varieties with improved resistance to Phytophthora also displayed lower colonization by rhizobial bacteria and mycorrhizal fungi leading to an increased reliance on N and P from soil. Together, our results suggest that marker-based breeding in crops such as chickpea should be further investigated such that plant disease resistance can be tailored to a specific pathogen without affecting mutualistic plant:microbe interactions. | 2016 | 27103212 |
| 6921 | 9 | 0.9413 | Impacts of Chemical and Organic Fertilizers on the Bacterial Communities, Sulfonamides and Sulfonamide Resistance Genes in Paddy Soil Under Rice-Wheat Rotation. The responses of sulfonamides, sulfonamide-resistance genes (sul) and soil bacterial communities to different fertilization regimes were investigated by performing a field experiment using paddy soil with no fertilizer applied, chemical fertilizer applied, organic fertilizer applied, and combination of chemical and organic fertilizer applied. Applying organic fertilizer increased the bacterial community diversity and affected the bacterial community composition. Eutrophic bacteria (Bacteroidetes, Gemmatimonadetes, and Proteobacteria) were significantly enriched by applying organic fertilizer. It was also found organic fertilizer application increased sulfamethazine content and the relative abundances of sul1 and sul2 in the soil. In contrast, applying chemical fertilizer significantly increased the abundance of Nitrospirae, Parcubacteria, and Verrucomicrobia and caused no obvious changes on sul. Correlation analysis indicated that sul enrichment was associated with the increases in sulfamethazine content and potential hosts (e.g., Novosphingobium and Rhodoplanes) population. The potential ecological risks of antibiotics in paddy soil with organic fertilizer applied cannot be ignored. | 2022 | 36547725 |
| 8765 | 10 | 0.9409 | Pseudomonas chlororaphis IRHB3 assemblies beneficial microbes and activates JA-mediated resistance to promote nutrient utilization and inhibit pathogen attack. INTRODUCTION: The rhizosphere microbiome is critical to plant health and resistance. PGPR are well known as plant-beneficial bacteria and generally regulate nutrient utilization as well as plant responses to environmental stimuli. In our previous work, one typical PGPR strain, Pseudomonas chlororaphis IRHB3, isolated from the soybean rhizosphere, had positive impacts on soil-borne disease suppression and growth promotion in the greenhouse, but its biocontrol mechanism and application in the field are not unclear. METHODS: In the current study, IRHB3 was introduced into field soil, and its effects on the local rhizosphere microbiome, disease resistance, and soybean growth were comprehensively analyzed through high-throughput sequencing and physiological and molecular methods. RESULTS AND DISCUSSION: We found that IRHB3 significantly increased the richness of the bacterial community but not the structure of the soybean rhizosphere. Functional bacteria related to phosphorus solubilization and nitrogen fixation, such as Geobacter, Geomonas, Candidatus Solibacter, Occallatibacter, and Candidatus Koribacter, were recruited in rich abundance by IRHB3 to the soybean rhizosphere as compared to those without IRHB3. In addition, the IRHB3 supplement obviously maintained the homeostasis of the rhizosphere microbiome that was disturbed by F. oxysporum, resulting in a lower disease index of root rot when compared with F. oxysporum. Furthermore, JA-mediated induced resistance was rapidly activated by IRHB3 following PDF1.2 and LOX2 expression, and meanwhile, a set of nodulation genes, GmENOD40b, GmNIN-2b, and GmRIC1, were also considerably induced by IRHB3 to improve nitrogen fixation ability and promote soybean yield, even when plants were infected by F. oxysporum. Thus, IRHB3 tends to synergistically interact with local rhizosphere microbes to promote host growth and induce host resistance in the field. | 2024 | 38380096 |
| 37 | 11 | 0.9409 | N-3-Oxo-Octanoyl Homoserine Lactone Primes Plant Resistance Against Necrotrophic Pathogen Pectobacterium carotovorum by Coordinating Jasmonic Acid and Auxin-Signaling Pathways. Many Gram-negative bacteria use small signal molecules, such as N-acyl-homoserine lactones (AHLs), to communicate with each other and coordinate their collective behaviors. Recently, increasing evidence has demonstrated that long-chained quorum-sensing signals play roles in priming defense responses in plants. Our previous work indicated that a short-chained signal, N-3-oxo-octanoyl homoserine lactone (3OC8-HSL), enhanced Arabidopsis resistance to the hemi-biotrophic bacteria Pseudomonas syringae pv. tomato DC3000 through priming the salicylic acid (SA) pathway. Here, we found that 3OC8-HSL could also prime resistance to the necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) through the jasmonic acid (JA) pathway, and is dependent on auxin responses, in both Chinese cabbage and Arabidopsis. The subsequent Pcc invasion triggered JA accumulation and increased the down-stream genes' expressions of JA synthesis genes (LOX, AOS, and AOC) and JA response genes (PDF1.2 and VSP2). The primed state was not observed in the Arabidopsis coi1-1 and jar1-1 mutants, which indicated that the primed resistance to Pcc was dependent on the JA pathway. The 3OC8-HSL was not transmitted from roots to leaves and it induced indoleacetic acid (IAA) accumulation and the DR5 and SAUR auxin-responsive genes' expressions in seedlings. When Arabidopsis and Chinese cabbage roots were pretreated with exogenous IAA (10 μM), the plants had activated the JA pathway and enhanced resistance to Pcc, which implied that the JA pathway was involved in AHL priming by coordinating with the auxin pathway. Our findings provide a new strategy for the prevention and control of soft rot in Chinese cabbage and provide theoretical support for the use of the quorum-sensing AHL signal molecule as a new elicitor. | 2022 | 35774826 |
| 20 | 12 | 0.9409 | Paraburkholderia phytofirmans PsJN triggers local and systemic transcriptional reprogramming in Arabidopsis thaliana and increases resistance against Botrytis cinerea. Fungal pathogens are one of the main causes of yield losses in many crops, severely affecting agricultural production worldwide. Among the various approaches to alleviate this problem, beneficial microorganisms emerge as an environmentally friendly and sustainable alternative. In addition to direct biocontrol action against pathogens, certain plant growth-promoting bacteria (PGPB) enhance the plant immune defense to control diseases through induced systemic resistance (ISR). Paraburkholderia phytofirmans PsJN has been shown as an efficient biocontrol agent against diseases. However, the specific mechanisms underlying these beneficial effects at both local and systemic level remain largely unknown. In this study, we investigated the transcriptional response of Arabidopsis thaliana at above- and below-ground levels upon interaction with P. phytofirmans PsJN, and after Botrytis cinerea infection. Our data clearly support the protective effect of P. phytofirmans PsJN through ISR against B. cinerea in plants grown in both soil and hydroponic conditions. The comparative transcriptome analysis of the mRNA and miRNA sequences revealed that PsJN modulates the expression of genes involved in abiotic stress responses, microbe-plant interactions and ISR, with ethylene signaling pathway genes standing out. In roots, PsJN predominantly downregulated the expression of genes related to microbe perception, signaling and immune response, indicating that PsJN locally provoked attenuation of defense responses to facilitate and support colonization and the maintenance of mutualistic relationship. In leaves, the increased expression of defense-related genes prior to infection in combination with the protective effect of PsJN observed in later stages of infection suggests that bacterial inoculation primes plants for enhanced systemic immune response after subsequent pathogen attack. | 2025 | 40530279 |
| 7059 | 13 | 0.9408 | Composting reduces the risks of antibiotic resistance genes in maize seeds posed by gentamicin fermentation waste. Using high-throughput quantitative PCR and next generation sequencing, the impact of land application of raw and composted gentamicin fermentation waste (GFW) on antibiotic resistance genes (ARGs) in maize seeds was studied in a three-year field trial. The raw and composted GFW changed both the bacterial community composition and the ARGs diversity in the maize seeds compared to non-amended controls and chemical fertilizer. The abundance of ARGs after raw GFW amendment was significantly higher than other treatments because of a high abundance of aadA1, qacEdeltal and aph(2')-Id-02; probably induced by gentamicin selection pressure in maize tissues. Meanwhile, the potential host of these three ARGs, pathogenic bacteria Tenacibaculum, also increased significantly in maize seeds after the application of raw GFW. But our result proved that composting could weaken the risk posed by GFW. We further reveal that the key biotic driver for shaping the ARG profiles in maize seeds is bacterial community followed by heavy metal resistance genes, and ARGs are more likely located on bacterial chromosomes. Our findings provide new insight into ARGs dispersal mechanism in maize seeds after long-term GFW application, demonstrate the potential benefits of composting the GFW to reduce risks as well as the potential efficient management method to GFW. | 2023 | 36736399 |
| 33 | 14 | 0.9408 | Transgenic Silkworms Overexpressing Relish and Expressing Drosomycin Confer Enhanced Immunity to Multiple Pathogens. The sericulture industry faces substantial economic losses due to severe pathogenic infections caused by fungi, viruses, and bacteria. The development of transgenic silkworms against specific pathogens has been shown to enhance disease resistance against a particular infection. A single gene or its products that can confer protection against multiple pathogens is required. In an attempt to develop silkworms with enhanced immunity against multiple pathogens, we generated transgenic silkworm lines with an overexpressed NF-kB transcription factor, Relish 1, under two different promoters. Separately, a potent anti-fungal gene, Drosomycin, was also expressed in transgenic silkworms. Both Relish 1 and Drosomycin transgenic silkworms had single copy genomic integration, and their mRNA expression levels were highly increased after infection with silkworm pathogens. The overexpression of the Relish 1 in transgenic silkworms resulted in the upregulation of several defense-related genes, Cecropin B, Attacin, and Lebocin, and showed enhanced resistance to Nosema bombycis (microsporidian fungus), Nucleopolyhedrovirus (BmNPV), and bacteria. The Drosomycin expressing transgenic silkworms showed elevated resistance to N. bombycis and bacteria. These findings demonstrate the role of Relish 1 in long-lasting protection against multiple pathogens in silkworms. Further, the successful introduction of a foreign gene, Drosomycin, also led to improved disease resistance in silkworms. | 2022 | 35098482 |
| 6002 | 15 | 0.9407 | Comparative analysis of intestinal microbiota composition and transcriptome in diploid and triploid Carassius auratus. Polyploidy and the microbiome are crucial factors in how a host organism responds to disease. However, little is known about how triploidization and microbiome affect the immune response and disease resistance in the fish host. Therefore, this study aims to identify the relationship between intestinal microbiota composition, transcriptome changes, and disease resistance in triploid Carassius auratus (3nCC). In China's central Dongting lake water system, diploid (2nCC) and triploid Carassius auratus were collected, then 16S rRNA and mRNA sequencing were used to examine the microbes and gene expression in the intestines. 16S rRNA sequencing demonstrated that triploidization altered intestinal richness, as well as the diversity of commensal bacteria in 3nCC. In addition, the abundance of the genus Vibrio in 3nCC was increased compared to 2nCC (P < 0.05). Furthermore, differential expression analysis of 3nCC revealed profound up-regulation of 293 transcripts, while 324 were down-regulated. Several differentially expressed transcripts were related to the immune response pathway in 3nCC, including NLRP3, LY9, PNMA1, MR1, PELI1, NOTCH2, NFIL3, and NLRC4. Taken together, triploidization can alter bacteria composition and abundance, which can in turn result in changes in expression of genes. This study offers an opportunity for deciphering the molecular mechanism underlying disease resistance after triploidization. | 2023 | 36593453 |
| 35 | 16 | 0.9407 | Gluconacetobacter diazotrophicus Elicits a Sugarcane Defense Response Against a Pathogenic Bacteria Xanthomonas albilineans. A new role for the plant growth-promoting nitrogen-fixing endophytic bacteria Gluconacetobacter diazotrophicus has been identified and characterized while it is involved in the sugarcane-Xanthomonas albilineans pathogenic interactions. Living G.diazotrophicus possess and/or produce elicitor molecules which activate the sugarcane defense response resulting in the plant resistance to X. albilineans, in this particular case controlling the pathogen transmission to emerging agamic shoots. A total of 47 differentially expressed transcript derived fragments (TDFs) were identified by cDNA-AFLP. Transcripts showed significant homologies to genes of the ethylene signaling pathway (26%), proteins regulates by auxins (9%), beta-1,3 Glucanase proteins (6%) and ubiquitin genes (4%), all major signaling mechanisms. Results point toward a form of induction of systemic resistance in sugarcane-G. diazotrophicus interactions which protect the plant against X. albilineans attack. | 2006 | 19516988 |
| 6911 | 17 | 0.9407 | Linking bacterial life strategies with the distribution pattern of antibiotic resistance genes in soil aggregates after straw addition. Straw addition markedly affects the soil aggregates and microbial community structure. However, its influence on the profile of antibiotic resistance genes (ARGs), which are likely associated with changes in bacterial life strategies, remains unclear. To clarify this issue, a soil microcosm experiment was incubated under aerobic (WS) or anaerobic (AnWS) conditions after straw addition, and metagenomic sequencing was used to characterise ARGs and bacterial communities in soil aggregates. The results showed that straw addition shifted the bacterial life strategies from K- to r-strategists in all aggregates, and the aerobic and anaerobic conditions stimulated the growth of aerobic and anaerobic r-strategist bacteria, respectively. The WS decreased the relative abundances of dominant ARGs such as QnrS5, whereas the AnWS increased their abundance. After straw addition, the macroaggregates consistently exhibited a higher number of significantly altered bacteria and ARGs than the silt+clay fractions. Network analysis revealed that the WS increased the number of aerobic r-strategist bacterial nodes and fostered more interactions between r-and K-strategist bacteria, thus promoting ARGs prevalence, whereas AnWS exhibited an opposite trend. These findings provide a new perspective for understanding the fate of ARGs and their controlling factors in soil ecosystems after straw addition. ENVIRONMENTAL IMPLICATIONS: Straw soil amendment has been recommended to mitigate soil fertility degradation, improve soil structure, and ultimately increase crop yields. However, our findings highlight the importance of the elevated prevalence of ARGs associated with r-strategist bacteria in macroaggregates following the addition of organic matter, particularly fresh substrates. In addition, when assessing the environmental risk posed by ARGs in soil that receives crop straw, it is essential to account for the soil moisture content. This is because the species of r-strategist bacteria that thrive under aerobic and anaerobic conditions play a dominant role in the dissemination and accumulation of ARG. | 2024 | 38643583 |
| 18 | 18 | 0.9406 | Antivirulence effects of cell-free culture supernatant of endophytic bacteria against grapevine crown gall agent, Agrobacterium tumefaciens, and induction of defense responses in plantlets via intact bacterial cells. BACKGROUND: Crown gall disease caused by Agrobacterium tumefaciens is a very destructive affliction that affects grapevines. Endophytic bacteria have been discovered to control plant diseases via the use of several mechanisms. This research examined the potential for controlling crown gall by three endophytic bacteria that were previously isolated from healthy cultivated and wild grapevines including Pseudomonas kilonensis Ba35, Pseudomonas chlororaphis Ba47, and Serratia liquefaciens Ou55. RESULT: At various degrees, three endophytic bacteria suppressed the populations of A. tumefaciens Gh1 and greatly decreased the symptoms of crown gall. Furthermore, biofilm production and motility behaviors of A. tumefaciens Gh1were greatly inhibited by the Cell-free Culture Supernatant (CFCS) of endophytic bacteria. According to our findings, CFCS may reduce the adhesion of A. tumefaciens Gh1 cells to grapevine cv. Rashe root tissues as well as their chemotaxis motility toward the extract of the roots. When compared to the untreated control, statistical analysis showed that CFCS significantly reduced the swimming, twitching, and swarming motility of A. tumefaciens Gh1. The findings demonstrated that the endophytic bacteria effectively stimulated the production of plant defensive enzymes including superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia lyase (PAL), and total soluble phenols at different time intervals in grapevine inoculated with A. tumefaciens Gh1. The Ba47 strain markedly increased the expression levels of defense genes associated with plant resistance. The up-regulation of PR1, PR2, VvACO1, and GAD1 genes in grapevine leaves indicates the activation of SA and JA pathways, which play a role in enhancing resistance to pathogen invasion. The results showed that treating grapevine with Ba47 increased antioxidant defense activities and defense-related gene expression, which reduced oxidative damage caused by A. tumefaciens and decreased the incidence of crown gall disease. CONCLUSION: This is the first study on how A. tumefaciens, the grapevine crown gall agent, is affected by CFCS generated by endophytic bacteria in terms of growth and virulence features. To create safer plant disease management techniques, knowledge of the biocontrol processes mediated by CFCS during microbial interactions is crucial. | 2024 | 38336608 |
| 22 | 19 | 0.9404 | A plant growth-promoting bacteria Priestia megaterium JR48 induces plant resistance to the crucifer black rot via a salicylic acid-dependent signaling pathway. Xanthomonas campestris pv. campestris (Xcc)-induced black rot is one of the most serious diseases in cruciferous plants. Using beneficial microbes to control this disease is promising. In our preliminary work, we isolated a bacterial strain (JR48) from a vegetable field. Here, we confirmed the plant-growth-promoting (PGP) effects of JR48 in planta, and identified JR48 as a Priestia megaterium strain. We found that JR48 was able to induce plant resistance to Xcc and prime plant defense responses including hydrogen peroxide (H(2)O(2)) accumulation and callose deposition with elevated expression of defense-related genes. Further, JR48 promoted lignin biosynthesis and raised accumulation of frees salicylic acid (SA) as well as expression of pathogenesis-related (PR) genes. Finally, we confirmed that JR48-induced plant resistance and defense responses requires SA signaling pathway. Together, our results revealed that JR48 promotes plant growth and induces plant resistance to the crucifer black rot probably through reinforcing SA accumulation and response, highlighting its potential as a novel biocontrol agent in the future. | 2022 | 36438094 |