# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5051 | 0 | 0.9229 | Octapeptin C4 and polymyxin resistance occur via distinct pathways in an epidemic XDR Klebsiella pneumoniae ST258 isolate. BACKGROUND: Polymyxin B and E (colistin) have been pivotal in the treatment of XDR Gram-negative bacterial infections; however, resistance has emerged. A structurally related lipopeptide, octapeptin C4, has shown significant potency against XDR bacteria, including polymyxin-resistant strains, but its mode of action remains undefined. OBJECTIVES: We sought to compare and contrast the acquisition of resistance in an XDR Klebsiella pneumoniae (ST258) clinical isolate in vitro with all three lipopeptides to potentially unveil variations in their mode of action. METHODS: The isolate was exposed to increasing concentrations of polymyxins and octapeptin C4 over 20 days. Day 20 strains underwent WGS, complementation assays, antimicrobial susceptibility testing and lipid A analysis. RESULTS: Twenty days of exposure to the polymyxins resulted in a 1000-fold increase in the MIC, whereas for octapeptin C4 a 4-fold increase was observed. There was no cross-resistance observed between the polymyxin- and octapeptin-resistant strains. Sequencing of polymyxin-resistant isolates revealed mutations in previously known resistance-associated genes, including crrB, mgrB, pmrB, phoPQ and yciM, along with novel mutations in qseC. Octapeptin C4-resistant isolates had mutations in mlaDF and pqiB, genes related to phospholipid transport. These genetic variations were reflected in distinct phenotypic changes to lipid A. Polymyxin-resistant isolates increased 4-amino-4-deoxyarabinose fortification of lipid A phosphate groups, whereas the lipid A of octapeptin C4-resistant strains harboured a higher abundance of hydroxymyristate and palmitoylate. CONCLUSIONS: Octapeptin C4 has a distinct mode of action compared with the polymyxins, highlighting its potential as a future therapeutic agent to combat the increasing threat of XDR bacteria. | 2019 | 30445429 |
| 1405 | 1 | 0.9182 | The threat of carbapenem resistance in Eastern Europe in patients with decompensated cirrhosis admitted to intensive care unit. BACKGROUND: Multidrug-resistant organisms are an increasing concern in patients with decompensated cirrhosis. AIM: We aimed to evaluate the prevalence of infections with carbapenem-resistant Enterobacteriaceae in patients with decompensated cirrhosis. METHODS: Patients with decompensated cirrhosis admitted to ICU were included. The isolated Enterobacteriaceae strains were tested for carbapenemase-producing genes using the Roche LightMix® Modular VIM/IMP/NDM/GES/KPC/OXA48-carbapenemase detection kit. RESULTS: 48 culture-positive infections were registered in 75 patients with acutely decompensated cirrhosis. Thirty patients contracted a second infection. 46% of bacteria isolated at admission and 60% of bacteria responsible for infections identified during ICU-stay were multiresistant. ESBL+ Enterobacteriaceae were predominant at admission, while carbapenem-resistance was dominant in both Enterobacteriaceae and Non-Fermenting-Gram-Negative Bacteria responsible for infections diagnosed during hospitalisation. OXA 48 or KPC type carbapenemases were present in 30% of the analyzed Enterobacteriaceae and in 40% of the phenotypically carbapenem-resistant Klebsiella pneumoniae strains. The length of ICU stay was a risk-factor for a second infection (p=0.04). Previous carbapenem usage was associated with occurence of infections with carbapenem-resistant Gram-negative bacteria during hospitalization (p=0.03). CONCLUSION: The prevalence of infections with carbapenem-resistant Enterobacteriaceae is high in patients with decompensated cirrhosis admitted to ICU. Carbapenemase-producing genes in Enterobacteriaceae in our center are bla(OXA-48) and bla(KPC). | 2022 | 35732546 |
| 6006 | 2 | 0.9178 | Missense Mutations in the CrrB Protein Mediate Odilorhabdin Derivative Resistance in Klebsiella pneumoniae. NOSO-502 is a preclinical antibiotic candidate of the Odilorhabdin class. This compound exhibits activity against Enterobacteriaceae pathogens, including carbapenemase-producing bacteria and most of the Colistin (CST)-resistant strains. Among a collection of CST-resistant Klebsiella pneumoniae strains harboring mutations on genes pmrAB, mgrB, phoPQ, and crrB, only those bearing mutations in gene crrB were found to be resistant to NOSO-502.CrrB is a histidine kinase which acts with the response regulator CrrA to modulate the PmrAB system, which finally induces the restructuring of the lipopolysaccharide present on the outer membrane and thus leading to CST resistance. Moreover, crrB mutations also enhance the transcription of neighboring genes such as H239_3063, an ABC transporter transmembrane region; H239_3064, a putative efflux pump also known as KexD; and H239_3065, a N-acetyltransferase.To elucidate the mechanism of resistance to NOSO-502 induced by CrrB missense mutations in K. pneumoniae, mutants of NCTC 13442 and ATCC BAA-2146 strains resistant to NOSO-502 and CST with single amino acid substitutions in CrrB (S8N, F33Y, Y34N, W140R, N141I, P151A, P151L, P151S, P151T, F303Y) were selected. Full susceptibility to NOSO-502 was restored in crrA or crrB deleted K. pneumoniae NCTC 13442 CrrB(P151L) mutants, confirming the role of CrrAB in controlling this resistance pathway. Deletion of kexD (but no other neighboring genes) in the same mutant also restored NOSO-502-susceptibility. Upregulation of the kexD gene expression was observed for all CrrB mutants. Finally, plasmid expression of kexD in a K. pneumoniae strain missing the locus crrABC and kexD significantly increased resistance to NOSO-502. | 2023 | 33685902 |
| 2463 | 3 | 0.9168 | Characterization of Antibiotic-Resistant Stenotrophomonas Isolates from Painted Turtles Living in the Wild. Stenotrophomonas maltophilia is a ubiquitous multidrug-resistant opportunistic pathogen commonly associated with nosocomial infections. The purpose of this study was to isolate and characterize extended-spectrum beta-lactamase (ESBL) producing bacteria from painted turtles (Chrysemys picta) living in the wild and captured in southeastern Wisconsin. Fecal samples from ten turtles were examined for ESBL producing bacteria after incubation on HardyCHROM™ ESBL agar. Two isolates were cultivated and identified by 16S rRNA gene sequencing and whole genome sequencing (WGS) as Stenotrophomonas sp. 9A and S. maltophilia 15A. They were multidrug-resistant, as determined by antibiotic susceptibility testing. Stenotrophomonas sp. 9A was found to produce an extended spectrum beta-lactamase (ESBL) and both isolates were found to be carbapenem-resistant. EDTA-modified carbapenem inactivation method (eCIM) and the modified carbapenem inactivation method (mCIM) tests were used to examine the carbapenemase production and the test results were negative. Through WGS several antimicrobial resistance genes were identified in S. maltophilia 15A. For example a chromosomal L1 β-lactamase gene, which is known to hydrolyze carbapenems, a L2 β-lactamase gene, genes for the efflux systems smeABC and smeDEF and the aminoglycosides resistance genes aac(6')-lz and aph(3')-llc were found. An L2 β-lactamase gene in Stenotrophomonas sp. 9A was identified through WGS. | 2023 | 36729340 |
| 6088 | 4 | 0.9163 | Complete Genome of Achromobacter xylosoxidans, a Nitrogen-Fixing Bacteria from the Rhizosphere of Cowpea (Vigna unguiculata [L.] Walp) Tolerant to Cucumber Mosaic Virus Infection. Achromobacter xylosoxidans is one of the nitrogen-fixing bacteria associated with cowpea rhizosphere across Africa. Although its role in improving soil fertility and inducing systemic resistance in plants against pathogens has been documented, there is limited information on its complete genomic characteristics from cowpea roots. Here, we report the complete genome sequence of A. xylosoxidans strain DDA01 isolated from the topsoil of a field where cowpea plants tolerant to cucumber mosaic virus (CMV) were grown in Ibadan, Nigeria. The genome of DDA01 was sequenced via Illumina MiSeq and contained 6,930,067 nucleotides with 67.55% G + C content, 73 RNAs, 59 tRNAs, and 6421 protein-coding genes, including those associated with nitrogen fixation, phosphate solubilization, Indole3-acetic acid production, and siderophore activity. Eleven genetic clusters for secondary metabolites, including alcaligin, were identified. The potential of DDA01 as a plant growth-promoting bacteria with genetic capabilities to enhance soil fertility for resilience against CMV infection in cowpea is discussed. To our knowledge, this is the first complete genome of diazotrophic bacteria obtained from cowpea rhizosphere in sub-Saharan Africa, with potential implications for improved soil fertility, plant disease resistance, and food security. | 2024 | 39278894 |
| 2445 | 5 | 0.9163 | Isolation and characterisation of carbapenem-resistant Xanthomonas citri pv. mangiferaeindicae-like strain gir from the faecal material of giraffes. The purpose of this study was to determine if giraffes (Giraffa camelopardalis) living in captivity at the Jacksonville Zoo and Gardens, Jacksonville, FL were colonised with carbapenem-resistant bacteria and, if found, to identify underlying genetic mechanisms contributing to a carbapenem-resistant phenotype. Faecal samples from seven giraffes were examined for carbapenem-resistant bacteria. Only one isolate (a Xanthomondaceae) was found to be carbapenem-resistant by antibiotic susceptibility testing. This isolate was selected for additional characterization, including whole genome sequencing (WGS). Based on average nucleotide identity, the bacterium was identified as Xanthomonas citri pv. mangiferaeindicae-like strain gir. Phenotypic carbapenemase tests and PCR for the most common carbapenemase genes produced negative results, suggesting that carbapenem resistance was mediated by another mechanism. Resistance gene profile analysis of WGS results confirmed these results. Among identified resistance genes, a chromosomal class A beta-lactamase with 71% identity to the penP beta-lactamase gene from Xanthomonas citri ssp. citri was identified, which could contribute to a carbapenem-resistant phenotype. | 2020 | 31485840 |
| 6173 | 6 | 0.9162 | Mutation in crrB encoding a sensor kinase increases expression of the RND-type multidrug efflux pump KexD in Klebsiella pneumoniae. BACKGROUND: RND-type multidrug efflux systems in Gram-negative bacteria protect them against antimicrobial agents. Gram-negative bacteria generally possess several genes which encode such efflux pumps, but these pumps sometimes fail to show expression. Generally, some multidrug efflux pumps are silent or expressed only at low levels. However, genome mutations often increase the expression of such genes, conferring the bacteria with multidrug-resistant phenotypes. We previously reported mutants with increased expression of the multidrug efflux pump KexD. We aimed to identify the cause of KexD overexpression in our isolates. Furthermore, we also examined the colistin resistant levels in our mutants. METHODS: A transposon (Tn) was inserted into the genome of Klebsiella pneumoniae Em16-1, a KexD-overexpressing mutant, to identify the gene(s) responsible for KexD overexpression. RESULTS: Thirty-two strains with decreased kexD expression after Tn insertion were isolated. In 12 of these 32 strains, Tn was identified in crrB, which encodes a sensor kinase of a two-component regulatory system. DNA sequencing of crrB in Em16-1 showed that the 452nd cytosine on crrB was replaced by thymine, and this mutation changed the 151st proline into leucine. The same mutation was found in all other KexD-overexpressing mutants. The expression of crrA increased in the mutant overexpressing kexD, and the strains in which crrA was complemented by a plasmid showed elevated expression of kexD and crrB from the genome. The complementation of the mutant-type crrB also increased the expression of kexD and crrA from the genome, but the complementation of the wild-type crrB did not. Deletion of crrB decreased antibiotic resistance levels and KexD expression. CrrB was reported as a factor of colistin resistance, and the colistin resistance of our strains was tested. However, our mutants and strains carrying kexD on a plasmid did not show increased colistin resistance. CONCLUSION: Mutation in crrB is important for KexD overexpression. Increased CrrA may also be associated with KexD overexpression. | 2023 | 37331490 |
| 1492 | 7 | 0.9161 | Characterization of the tet(M)-bearing transposon Tn7125 of Escherichia coli strain A13 isolated from an intensive pig farm located in Henan province, China. BACKGROUND: Transposons carrying tet(M) in Gram-positive bacteria have been reported extensively, while there is a paucity of data on the transmission characteristics of tet(M) in Gram-negative bacteria. Therefore, the aim of this study was to investigate the genetic characteristics of the tet(M)-bearing transposon Tn7125, and to clarify the transmission mechanism of the plasmids pTA13-1 and pTA13-3 in Escherichia coli strain A13. METHODS: Plasmids from strain A13 and a corresponding transconjugant were determined by whole genome sequencing and analyzed using bioinformatics tools. The plasmids pTA13-1 and pTA13-3 of the transconjugant TA13 were characterized by S1-pulse-field gel electrophoresis, Southern hybridization, stability experiments, and direct competition assays. RESULTS: The conjugated IncF2:A6:B20 plasmid pTA13-1 co-transferred with the 41-kb plasmid pTA13-3, which carried no resistance genes; plasmid pTA13-2, which harbored the replication initiator PO111; and the IncX4 plasmid pTA13-4, which harbored the antibiotic resistance gene mcr-1. The novel IS26-bracked composite transposon Tn7125 was located on plasmid pTA13-1, which mainly consists of three resistance modules: IS26-ctp-lp-tet(M)-hp-IS406tnp, qac-aadA1-cmlA1-aadA2-DUF1010-dfrA12, and ∆ISVSa3-VirD-floR-LysR-ISVSa3. The plasmid pTA13-1 was highly stable in E. coli strain J53 with no fitness cost to the host or disadvantage in growth competition. CONCLUSION: Evolution of co-integrated transposons, such as Tn7125, may convey antibiotic resistance to a wide spectrum of hosts via the plasmids pTA13-1 and pTA13-3, which acts as an adaptable and mobile multidrug resistance reservoir to accelerate dissemination of other genes by co-selection, thereby posing a potentially serious barrier to clinical treatment regimens. | 2025 | 40639501 |
| 5066 | 8 | 0.9159 | Genetic Alterations Associated with Colistin Resistance Development in Escherichia coli. Background: The increased incidence of infections due to multidrug-resistant Gram-negative bacteria has led to the renewed interest in the use of 'forgotten' antibiotics such as colistin. In this work, we studied the chromosomal colistin resistance mechanisms among laboratory-induced colistin-resistant Escherichia coli isolates. Methods: Three colistin-susceptible (ColS) clinical isolates of E. coli assigning to ST131, ST405, and ST361 were exposed to successively increasing concentrations of colistin. The nucleotide sequences of pmrA, pmrB, pmrD, phoP, phoQ, and mgrB genes were determined. The fitness burden associated with colistin resistance acquisition was determined by measuring the in vitro growth rate. Results: Colistin resistance induction resulted in 16-64 times increase in colistin MICs in mutants (n = 8) compared with parental isolates. Analysis of chromosomal genes in colistin-resistant mutants compared with those of ColS ancestors revealed genetic alterations confined to PmrAB two-component system and included PmrA G53R/R81S/L105P and PmrB E121K/E121A/A159P/A159V/G302E changes. The PmrB E121 was found as a critical position for colistin resistance development being altered in three mutants with different ancestors. The acquired colistin-resistance phenotype was stable following 10 consecutive passages in the absence of selective pressure of colistin and it did not alter the susceptibility of mutants to other antimicrobial agents. All mutants exhibited growth rates similar to their respective ColS ancestors, except for one isolate, which revealed a significant growth defect. Conclusion: Our results revealed that colistin resistance in E. coli was more related to PmrAB alterations, which did not impose a fitness cost in most cases. | 2024 | 38905152 |
| 1720 | 9 | 0.9159 | Elucidation of molecular mechanism for colistin resistance among Gram-negative isolates from tertiary care hospitals. Antimicrobial resistance is a growing concern of global public health. The emergence of colistin-resistance among carbapenem-resistant (CPR) Gram-negative bacteria causing fear of pan-resistance, treatment failure, and high mortality across the globe. AIM: To determine the genotypic colistin-resistance mechanisms among colistin-resistant (CR)Gram-negative clinical isolates along with genomic insight into hypermucoviscous(hv)-CR-Klebsiella pneumoniae. METHODS: Phenotypic colistin-resistance via broth-microdilution method. PCR-based detection of plasmid-mediated colistin resistance genes(mcr-1,2,3). Characterization of selected hvCR-K. pneumoniae via Whole-genome sequencing. RESULTS: Phenotypic colistin-resistance was 28% among CPR-Gram-negative isolates of which 90% of CR-isolates displayed MDR profile with overall low plasmid-mediated colistin resistance (mcr-2 = 9.4%;mcr-3 = 6%). Although K. pneumoniae isolates showed the highest phenotypic colistin-resistance (51%) however, relatively low plasmid-mediated gene-carriage (mcr-2 = 11.5%;mcr-3 = 3.4%) pointed toward other mechanisms of colistin-resistance. mcr-negative CR-K. pneumoniae displaying hv-phenotype were subjected to WGS. In-silico analysis detected 7-novel mutations in lipid-A modification genes includes eptA(I38V; V50L; A135P), opgE(M53L; T486A; G236S), and arnD(S164P) in addition to several non-synonymous mutations in lipid-A modification genes conferring resistance to colistin. Insertion of 6.6-kb region harboring putative-PEA-encoding gene(yjgX) was detected for the first time in K. pneumoniae (hvCRKP4771). In-silico analysis further confirmed the acquisition of not only MDR determinants but several hypervirulent-determinants displaying a convergent phenotype. CONCLUSION: overall high prevalence of phenotypic colistin resistance but low mcr-gene carriage suggested complex chromosomal mediated resistance mechanism especially in K. pneumoniae isolates. The presence of novel mutations in lipid-A modification genes and the acquisition of putative-PEA-encoding gene by hvCR-K. pneumoniae points toward the role of chromosomal determinants conferring resistance to colistin in the absence of mcr-genes. | 2022 | 35058128 |
| 6162 | 10 | 0.9154 | The resistance of BALB/cJ mice to Yersinia pestis maps to the major histocompatibility complex of chromosome 17. Yersinia pestis, the causative agent of plague, has been well studied at the molecular and genetic levels, but little is known about the role that host genes play in combating this highly lethal pathogen. We challenged several inbred strains of mice with Y. pestis and found that BALB/cJ mice are highly resistant compared to susceptible strains such as C57BL/6J. This resistance was observed only in BALB/cJ mice and not in other BALB/c substrains. Compared to C57BL/6J mice, the BALB/cJ strain exhibited reduced bacterial burden in the spleen and liver early after infection as well as lower levels of serum interleukin-6. These differences were evident 24 h postinfection and became more pronounced with time. Although a significant influx of neutrophils in the spleen and liver was exhibited in both strains, occlusive fibrinous thrombi resulting in necrosis of the surrounding tissue was observed only in C57BL/6J mice. In an effort to identify the gene(s) responsible for resistance, we measured total splenic bacteria in 95 F(2) mice 48 h postinfection and performed quantitative trait locus mapping using 58 microsatellite markers spaced throughout the genome. This analysis revealed a single nonrecessive plague resistance locus, designated prl1 (plague resistance locus 1), which coincides with the major histocompatibility complex of chromosome 17. A second screen of 95 backcrossed mice verified that this locus confers resistance to Y. pestis early in infection. Finally, eighth generation backcrossed mice harboring prl1 were found to maintain resistance in the susceptible C57BL/6J background. These results identify a novel genetic locus in BALB/cJ mice that confers resistance to Y. pestis. | 2008 | 18573896 |
| 3021 | 11 | 0.9153 | Sequencing and comparative analysis of IncP-1α antibiotic resistance plasmids reveal a highly conserved backbone and differences within accessory regions. Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup. | 2011 | 21115076 |
| 2097 | 12 | 0.9152 | Effective Photodynamic Therapy with Ir(III) for Virulent Clinical Isolates of Extended-Spectrum Beta-Lactamase Klebsiella pneumoniae. BACKGROUND: The extended-spectrum beta-lactamase (ESBL) Klebsiella pneumoniae is one of the leading causes of health-associated infections (HAIs), whose antibiotic treatments have been severely reduced. Moreover, HAI bacteria may harbor pathogenic factors such as siderophores, enzymes, or capsules, which increase the virulence of these strains. Thus, new therapies, such as antimicrobial photodynamic inactivation (aPDI), are needed. METHOD: A collection of 118 clinical isolates of K. pneumoniae was characterized by susceptibility and virulence through the determination of the minimum inhibitory concentration (MIC) of amikacin (Amk), cefotaxime (Cfx), ceftazidime (Cfz), imipenem (Imp), meropenem (Mer), and piperacillin-tazobactam (Pip-Taz); and, by PCR, the frequency of the virulence genes K2, magA, rmpA, entB, ybtS, and allS. Susceptibility to innate immunity, such as human serum, macrophages, and polymorphonuclear cells, was tested. All the strains were tested for sensitivity to the photosensitizer PSIR-3 (4 µg/mL) in a 17 µW/cm(2) for 30 min aPDI. RESULTS: A significantly higher frequency of virulence genes in ESBL than non-ESBL bacteria was observed. The isolates of the genotype K2+, ybtS+, and allS+ display enhanced virulence, since they showed higher resistance to human serum, as well as to phagocytosis. All strains are susceptible to the aPDI with PSIR-3 decreasing viability in 3log10. The combined treatment with Cfx improved the aPDI to 6log10 for the ESBL strains. The combined treatment is synergistic, as it showed a fractional inhibitory concentration (FIC) index value of 0.15. CONCLUSIONS: The aPDI effectively inhibits clinical isolates of K. pneumoniae, including the riskier strains of ESBL-producing bacteria and the K2+, ybtS+, and allS+ genotype. The aPDI with PSIR-3 is synergistic with Cfx. | 2021 | 33922077 |
| 2998 | 13 | 0.9150 | Membrane vesicles derived from Enterococcus faecalis promote the co-transfer of important antibiotic resistance genes located on both plasmids and chromosomes. BACKGROUND: Bacterial membrane vesicles (BMVs) are novel vehicles of antibiotic resistance gene (ARG) transfer in Gram-negative bacteria, but their role in the spread of ARGs in Gram-positive bacteria has not been defined. The purpose of this study was to evaluate the role of MVs in the transmission of antimicrobial resistance in Gram-positive bacteria. METHODS: A linezolid-resistant Enterococcus faecalis CQ20 of swine origin was selected as the donor strain. Linezolid-susceptible E. faecalis SC032 of human origin, Enterococcus faecium BM4105 and Escherichia coli were selected as recipient strains. The presence of plasmids (pCQ20-1 and pCQ20-2) and an optrA-carrying transposon Tn6674 in CQ20, MVs and vesiculants was verified by WGS or PCR. MVs were isolated with density gradient centrifugation, and MV-mediated transformation was performed to assess the horizontal transferability of MVs. The MICs for CQ20 and its vesiculants were determined by the broth microdilution method. RESULTS: CQ20-derived MVs (CQ20-MV) were isolated, and PCR identified the presence of two plasmids and the optrA gene in the CQ20-MVs. MV-mediated transformation to E. faecalis SC032 and E. faecium BM4105 was successfully performed, and the WGS data also showed that both plasmids pCQ20-1 and pCQ20-2 and optrA-carrying transposon Tn6674 were transferred to E. faecalis SC032 and E. faecium BM4105, but failed for E. coli. Additionally, vesiculants that had acquired ARGs still had the ability to spread these genes via MVs. CONCLUSIONS: To our knowledge, this is the first report of MV-mediated co-transfer of ARG-carrying plasmids and transposons in the Gram-positive bacterium E. faecium. | 2024 | 38109479 |
| 2453 | 14 | 0.9148 | Prevalence and molecular determinants of colistin resistance among commensal Enterobacteriaceae isolated from poultry in northwest of Iran. BACKGROUND: The emergence of colistin-resistant Enterobacteriaceae from human and animal sources is a public health concern as this antibiotic is considered to be the last line therapeutic option for infections caused by multidrug-resistant Gram-negative bacteria. Here we aimed to determine the prevalence of colistin resistance, among enterobacteria isolated from poultry and the possible underlying colistin resistance mechanisms. METHODS: A collection of 944 cloacal samples were obtained from poultry and screened for colistin resistance. To uncover the molecular mechanism behind colistin resistance, the presence of plasmid encoded colistin resistance genes mcr-1, mcr-2, mcr-3 and mcr-4 was examined by PCR. The nucleotide sequences of the mgrB, pmrA, pmrB, phoP, phoQ, crrA and crrB genes were determined. The genetic relatedness of the colistin resistant (ColR) isolates was evaluated by Multilocus sequence typing. Three ColR mutants were generated in vitro by repetitive drug exposure. RESULTS: Overall from 931 enteric bacteria isolated from poultry samples obtained from 131 farms, nine ColR bacteria (0.96%) with high level colistin resistance (MICs ≥ 64 mg/L) were detected all being identified as K. pneumoniae. The 9 ColR bacteria originated from different farms and belonged to 7 distinct Sequence types including ST11 (22.2%) and ST726 (22.2%) being the most prevalent STs followed by ST37, ST74, ST485, ST525 and novel sequence type 3380 (11.1% each). mcr-type genes were not detected in any isolate. In 88.8% of the isolates (n = 8), MgrB was inactivated by Insertion of IS elements (IS1-like, IS3-like, IS5-like families, positions + 75, + 113, + 117, + 135) and nonsense mutations at codons 8, 16, 30. All ColR isolates harboured wild type PmrA, PhoP, PhoQ or polymorphic variants of PmrB. Sequence analysis of the CrrB revealed a familiar S195N and 4 novel I27V, T150R, F303S and K325R substitutions. PmrB T93N substitution and mgrB locus deletion were identified in two laboratory induced ColR mutants and one mutant lacked alteration in the studied loci. In one ColR isolate with wild type MgrB an A83V substitution was detected in CrrA. CONCLUSION: It is concluded from our results that colistin resistance in the studied avian K. pneumoniae isolates was mostly linked to alterations identified within the mgrB gene. | 2019 | 30728861 |
| 2495 | 15 | 0.9147 | Transmission of Mobile Colistin Resistance (mcr-1) by Duodenoscope. BACKGROUND: Clinicians increasingly utilize polymyxins for treatment of serious infections caused by multidrug-resistant gram-negative bacteria. Emergence of plasmid-mediated, mobile colistin resistance genes creates potential for rapid spread of polymyxin resistance. We investigated the possible transmission of Klebsiella pneumoniae carrying mcr-1 via duodenoscope and report the first documented healthcare transmission of mcr-1-harboring bacteria in the United States. METHODS: A field investigation, including screening targeted high-risk groups, evaluation of the duodenoscope, and genome sequencing of isolated organisms, was conducted. The study site included a tertiary care academic health center in Boston, Massachusetts, and extended to community locations in New England. RESULTS: Two patients had highly related mcr-1-positive K. pneumoniae isolated from clinical cultures; a duodenoscope was the only identified epidemiological link. Screening tests for mcr-1 in 20 healthcare contacts and 2 household contacts were negative. Klebsiella pneumoniae and Escherichia coli were recovered from the duodenoscope; neither carried mcr-1. Evaluation of the duodenoscope identified intrusion of biomaterial under the sealed distal cap; devices were recalled to repair this defect. CONCLUSIONS: We identified transmission of mcr-1 in a United States acute care hospital that likely occurred via duodenoscope despite no identifiable breaches in reprocessing or infection control practices. Duodenoscope design flaws leading to transmission of multidrug-resistant organsisms persist despite recent initiatives to improve device safety. Reliable detection of colistin resistance is currently challenging for clinical laboratories, particularly given the absence of a US Food and Drug Administration-cleared test; improved clinical laboratory capacity for colistin susceptibility testing is needed to prevent the spread of mcr-carrying bacteria in healthcare settings. | 2019 | 30204838 |
| 8438 | 16 | 0.9146 | Virulence of Bacteria Colonizing Vascular Bundles in Ischemic Lower Limbs. BACKGROUND: We documented previously the presence of bacterial flora in vascular bundles, lymphatics, and lymph nodes of ischemic lower limbs amputated because of multifocal atheromatic changes that made them unsuitable for reconstructive surgery and discussed their potential role in tissue destruction. The question arose why bacterial strains inhabiting lower limb skin and considered to be saprophytes become pathogenic once they colonize deep tissues. Bacterial pathogenicity is evoked by activation of multiple virulence factors encoded by groups of genes. METHODS: We identified virulence genes in bacteria cultured from deep tissue of ischemic legs of 50 patients using a polymerase chain reaction technique. RESULTS: The staphylococcal virulence genes fnbA (fibronectin-binding protein A), cna (collagen adhesin precursor), and ica (intercellular adhesion) were present in bacteria isolated from both arteries and, to a lesser extent, skin. The IS256 gene, whose product is responsible for biofilm formation, was more frequent in bacteria retrieved from the arteries than skin bacteria. Among the virulence genes of Staphylococcus epidermidis encoding autolysin atlE, icaAB (intercellular adhesion), and biofilm insert IS256, only the latter was detected in arterial specimens. Bacteria cultured from the lymphatics did not reveal expression of eta and IS256 in arteries. The Enterococcus faecalis asa 373 (aggregation substance) and cylA (cytolysin activator) frequency was greater in arteries than in skin bacteria, as were the E. faecium cyl A genes. All Pseudomonas aeruginosa virulence genes were present in bacteria cultured from both the skin and arteries. Staphylococci colonizing arterial bundles and transported to tissues via ischemic limb lymphatics expressed virulence genes at greater frequency than did those dwelling on the skin surface. Moreover, enterococci and Pseudomonas isolated from arterial bundles expressed many virulence genes. CONCLUSIONS: These findings may add to the understanding of the mechanism of development of destructive changes in lower limb ischemic tissues by the patient's, but not hospital-acquired, bacteria, as well as the generally unsatisfactory results of antibiotic administration in these cases. More aggressive antibiotic therapy targeted at the virulent species should be applied. | 2016 | 26431369 |
| 1438 | 17 | 0.9145 | Prevalence and molecular characterization of carbapenemase-producing gram-negative bacteria from a university hospital in China. BACKGROUND: The increasing emergence of carbapenem resistance in gram-negative bacteria associated with carbapenemase prompted the initiation of this study. METHODS: A total of 3139 gram-negative bacteria were recovered from a 3380-bed university hospital in Wenzhou during 2008 and 2012. Antimicrobial susceptibility was determined using the VITEK2 Compact System and agar dilution method. The phenotype and genotype of carbapenemase were demonstrated using the modified Hodge test, PCR and sequencing. A conjugation experiment was performed to reveal the transferability of resistant genes. The location of the carbapenemase gene was studied by plasmid analysis and southern blot hybridization. Clonal relatedness of the isolates was investigated by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). RESULTS: Overall, 751 of 3139 isolates (71/2055 Enterobacteriaceae, 510/620 Acinetobacter baumannii and 170/464 Pseudomonas aeruginosa) exhibited resistance to carbapenem. Carbapenemase-encoding genes were detected in 70.4% (50/71) of carbapenem-resistant Enterobacteriaceae, including blaKPC (80%) and blaIMP (20%). All A. baumannii subjected to genotype analysis were positive for blaOXA-51-like and co-harboured blaOXA-23-like (80.4%) and blaIMP (7.8%). ISAba1 was found upstream of blaOXA-23-like and blaOXA-51-like. Eight and seven strains of 170 P. aeruginosa carried blaIMP and blaVIM, respectively. PFGE analysis identified at least one dominant genotype in certain species. Four KPC-2-producing Klebsiella pneumoniae belonged to the same sequence type ST11. The plasmids carrying blaKPC were successfully transferred into recipient strains. CONCLUSION: This study highlights the challenge of increasing prevalence of carbapenem resistance associated with carbapenemase genes and dissemination of epidemic clones in Wenzhou, China. | 2016 | 26463362 |
| 5185 | 18 | 0.9145 | Genomic characterisation of nasal isolates of coagulase-negative Staphylococci from healthy medical students reveals novel Staphylococcal cassette chromosome mec elements. Coagulase-negative staphylococci (CoNS) are a diverse group of Gram-positive bacteria that are part of the normal human microbiota. Once thought to be non-pathogenic, CoNS has emerged in recent years as opportunistic pathogens of concern particularly in healthcare settings. In this study, the genomes of four methicillin-resistant CoNS isolates obtained from the nasal swabs of healthy university medical students in Malaysia were sequenced using the Illumina short-read platform. Genome sequencing enabled the identification of the four isolates as Staphylococcus warneri UTAR-CoNS1, Staphylococcus cohnii subsp. cohnii UTAR-CoNS6, Staphylococcus capitis subsp. urealyticus UTAR-CoNS20, and Staphylococcus haemolyticus UTAR-CoNS26. The genome of S. cohnnii UTAR-CoNS6 harboured the mecA methicillin-resistance gene on a Staphylococcal cassette chromosome mec (SCCmec) element similar to SCCmec type XIV (5 A) but the SCCmec cassettes identified in the other three CoNS genomes were novel and untypeable. Some of these SCCmec elements also encoded heavy metal resistance genes while the SCCmec type XIV (5 A) variant in S. cohnii UTAR-CoNS6 harboured the complete ica operon, a known virulence factor that functions in biofilm formation. In S. cohnii UTAR-CoNS6, the macrolide resistance genes msrA and mphC along with copper and cadmium resistance genes were located on a 26,630 bp plasmid, pUCNS6. This study showcased the diversity of CoNS in the nasal microbiota of medical students but the discovery of novel SCCmec elements, various antimicrobial and heavy metal resistance along with virulence genes in these isolates is of concern and warrants vigilance due to the likelihood of spread, especially to hospitalised patients. | 2025 | 40595841 |
| 106 | 19 | 0.9143 | Genomic evidence of the illumination response mechanism and evolutionary history of magnetotactic bacteria within the Rhodospirillaceae family. BACKGROUND: Magnetotactic bacteria (MTB) are ubiquitous in natural aquatic environments. MTB can produce intracellular magnetic particles, navigate along geomagnetic field, and respond to light. However, the potential mechanism by which MTB respond to illumination and their evolutionary relationship with photosynthetic bacteria remain elusive. RESULTS: We utilized genomes of the well-sequenced genus Magnetospirillum, including the newly sequenced MTB strain Magnetospirillum sp. XM-1 to perform a comprehensive genomic comparison with phototrophic bacteria within the family Rhodospirillaceae regarding the illumination response mechanism. First, photoreceptor genes were identified in the genomes of both MTB and phototrophic bacteria in the Rhodospirillaceae family, but no photosynthesis genes were found in the MTB genomes. Most of the photoreceptor genes in the MTB genomes from this family encode phytochrome-domain photoreceptors that likely induce red/far-red light phototaxis. Second, illumination also causes damage within the cell, and in Rhodospirillaceae, both MTB and phototrophic bacteria possess complex but similar sets of response and repair genes, such as oxidative stress response, iron homeostasis and DNA repair system genes. Lastly, phylogenomic analysis showed that MTB cluster closely with phototrophic bacteria in this family. One photoheterotrophic genus, Phaeospirillum, clustered within and displays high genomic similarity with Magnetospirillum. Moreover, the phylogenetic tree topologies of magnetosome synthesis genes in MTB and photosynthesis genes in phototrophic bacteria from the Rhodospirillaceae family were reasonably congruent with the phylogenomic tree, suggesting that these two traits were most likely vertically transferred during the evolution of their lineages. CONCLUSION: Our new genomic data indicate that MTB and phototrophic bacteria within the family Rhodospirillaceae possess diversified photoreceptors that may be responsible for phototaxis. Their genomes also contain comprehensive stress response genes to mediate the negative effects caused by illumination. Based on phylogenetic studies, most of MTB and phototrophic bacteria in the Rhodospirillaceae family evolved vertically with magnetosome synthesis and photosynthesis genes. The ancestor of Rhodospirillaceae was likely a magnetotactic phototrophic bacteria, however, gain or loss of magnetotaxis and phototrophic abilities might have occurred during the evolution of ancestral Rhodospirillaceae lineages. | 2019 | 31117953 |