# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3669 | 0 | 0.9883 | Detection of clinically relevant antimicrobial resistance determinants in warm-blooded marine animals in Livingston Island (South Shetland Islands, Antarctica): A field-based molecular genetics study. Molecular genetic studies of stools were performed to assess the spread of some clinically relevant antimicrobial resistance determinants (ARD) in a gentoo penguin (Pygoscelis papua) and an Antarctic fur seal (Arctocephalus gazella) on Livingston Island. Glycopeptide resistance genes (vanA/vanD and vanB) were detected in both fecal samples, while the penguin's one was also mecA-positive and bla(NDM)-positive. Because of the remoteness and the isolation of the sampling locations, the carriage of vancomycin-resistant Enterococcus spp., methicillin-resistant Staphylococcus aureus, and NDM-producing Enterobacterales or other gram-negative bacilli suggested an ocean pollution with antibiotic resistant bacteria (ARB). Additionally, due to the type of ARD we detected, our results are alarming, and they cannot be explained only with agricultural and/or aquacultural pollution. Even though the current study is a preliminary one, it also demonstrates the potential of the field genetics analyses carried out with minimal equipment as a reliable monitoring tool for pollution with ARB. | 2022 | 35597002 |
| 3047 | 1 | 0.9880 | Formaldehyde-resistance in Enterobacteriaceae and Pseudomonas aeruginosa: identification of resistance genes by DNA-hybridization. A 4.1. Kb large DNA fragment of a E. coli plasmid pVU 3695, on which the genes for formaldehyde-resistance are located, was used as a DNA probe to identify bacteria that carry this segment among formaldehyde-resistant bacteria. It was shown by Southern Blot-, Dot Blot-, and Colony Blot- Hybridization studies that the DNA of all formaldehyde-resistant E. coli, Serratia marcescens, Enterobacter cloacae, Citrobacter freundii and Klebsiella pneumoniae strains tested hybridize with the DNA probe from E. coli. In contrast the E. coli DNA probe does not hybridize with the DNA from formaldehyde-resistant Pseudomonas aeruginosa strains. | 1991 | 1909132 |
| 1706 | 2 | 0.9879 | First evidence of blaNDM-1 and blaOXA-23 carbapenemase genes in human body lice infesting a second-hand T-shirt in a street market in Italy. BACKGROUND: The spread of carbapenems resistance is a public health concern. The main group of carbapenemases encoding the β-lactamases activity (bla genes) is the Metallo-β-lactamases (MBLs). METHODS: The presence of carbapenemase blaOXA-23-like, blaOXA-40-like, blaOXA-51-like, blaOXA-58-like, and blaNDM-1 genes was screened by real time PCR in 26 Pediculus humanus insects identified from second-hand clothes in a local market in Central Italy. Bacteria diversity was also characterized through shotgun metagenomic amplification for a deep sequencing of the host-associated bacterial microbiomes. RESULTS: The blaOXA-23 and blaNDM-1 carbapenemases genes were found and metagenomic analysis showed a great presence of Acinetobacter species. CONCLUSIONS: These results suggest a new potential transmission path for carbapenemase gene spread through bacteria ingested by insects infesting humans. | 2021 | 33797402 |
| 2223 | 3 | 0.9879 | Evaluation of a new real-time PCR assay (Check-Direct CPE) for rapid detection of KPC, OXA-48, VIM, and NDM carbapenemases using spiked rectal swabs. To prevent the spread of carbapenemase-producing bacteria, a fast and accurate detection of patients carrying these bacteria is extremely important. The Check-Direct CPE assay (Check-Points, Wageningen, The Netherlands) is a new multiplex real-time PCR assay, which has been developed to detect and differentiate between the most prevalent carbapenemase genes encountered in Enterobacteriaceae (blaKPC, blaOXA-48, blaVIM, and blaNDM) directly from rectal swabs. Evaluation of this assay using 83 non-duplicate isolates demonstrated 100% sensitivity and specificity and the correct identification of the carbapenemase gene(s) present in all carbapenemase-producing isolates. Moreover, the limit of detection (LoD) of the real-time PCR assay in spiked rectal swabs was determined and showed comparable LoDs with the ChromID CARBA agar. With an excellent performance on clinical isolates and spiked rectal swabs, this assay appeared to be an accurate and rapid method to detect blaKPC, blaOXA-48, blaVIM, and blaNDM genes directly from a rectal screening swab. | 2013 | 24135412 |
| 1403 | 4 | 0.9879 | Evaluation of the AusDiagnostics MT CRE EU assay for the detection of carbapenemase genes and transferable colistin resistance determinants mcr-1/-2 in MDR Gram-negative bacteria. OBJECTIVES: To evaluate the AusDiagnostics MT CRE EU assay for the detection of carbapenemase and acquired colistin resistance genes in Gram-negative bacteria. METHODS: The assay allows the detection of blaKPC, blaOXA-48-like, blaNDM, blaVIM, blaIMP, blaSIM, blaGIM, blaSPM, blaFRI, blaIMI, blaGES (differentiating ESBL and carbapenemase variants), blaSME and mcr-1/-2. It was evaluated against a panel of isolates including Enterobacteriaceae, Pseudomonas spp. and Acinetobacter spp. retrospectively (n = 210) and prospectively (n = 182). RESULTS: The CRE EU assay was able to detect 268/268 carbapenemase genes, with 239 belonging to the 'big five' families (KPC, OXA-48-like, NDM, VIM and IMP) and 29 carbapenemase genes of the SIM, GIM, SPM, FRI, IMI, SME and GES families. It could distinguish between ESBL and carbapenemase variants of GES. It also allowed detection of mcr-1/-2 colistin resistance genes on their own or in isolates co-producing a carbapenemase. CONCLUSIONS: The AusDiagnostics MT CRE EU assay offered wide coverage for detection of acquired carbapenemase genes. It required minimal hands-on time and delivered results in less than 4 h from bacterial culture. | 2018 | 30189011 |
| 1391 | 5 | 0.9879 | Faecal carriage of extended-spectrum β-lactamase-producing and AmpC β-lactamase-producing bacteria among Danish army recruits. During May and June 2008, 84 Danish army recruits were tested for faecal carriage of extended-spectrum β-lactamase (ESBL)-producing and AmpC β-lactamase-producing bacteria. Three ESBL-producing (CTX-M-14a) Escherichia coli isolates, two AmpC-producing (CMY-2) E. coli isolates and one AmpC-producing (CMY-34) Citrobacter freundii isolate were detected. Two of the CTX-M-14a E. coli isolates had similar pulsed-field gel electrophoresis and multilocus sequence typing profiles, indicating the same origin or transmission between the two army recruits. The bla(CTX-M-14a) genes were transferable to an E. coli recipient. These commensal bacteria therefore constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria in the intestine. | 2011 | 20718802 |
| 2642 | 6 | 0.9877 | Low rates of antimicrobial-resistant Enterobacteriaceae in wildlife in Taï National Park, Côte d'Ivoire, surrounded by villages with high prevalence of multiresistant ESBL-producing Escherichia coli in people and domestic animals. Antimicrobial resistance genes can be found in all ecosystems, including those where antibiotic selective pressure has never been exerted. We investigated resistance genes in a collection of faecal samples of wildlife (non-human primates, mice), people and domestic animals (dogs, cats) in Côte d'Ivoire; in the chimpanzee research area of Taï National Park (TNP) and adjacent villages. Single bacteria isolates were collected from antibiotic-containing agar plates and subjected to molecular analysis to detect Enterobacteriaceae isolates with plasmid-mediated genes of extended-spectrum beta-lactamases (ESBLs) and plasmid-mediated quinolone resistance (PMQR). While the prevalence of ESBL-producing E. coli in the villages was 27% in people (n = 77) and 32% in dogs (n = 38), no ESBL-producer was found in wildlife of TNP (n = 75). PMQR genes, mainly represented by qnrS1, were also present in human- and dog-originating isolates from the villages (36% and 42% in people and dogs, respectively), but no qnrS has been found in the park. In TNP, different variants of qnrB were detected in Citrobacter freundii isolates originating non-human primates and mice. In conclusion, ESBL and PMQR genes frequently found in humans and domestic animals in the villages were rather exceptional in wildlife living in the protected area. Although people enter the park, the strict biosecurity levels they are obliged to follow probably impede transmission of bacteria between them and wildlife. | 2014 | 25474243 |
| 1671 | 7 | 0.9877 | KPC and VIM producing Enterobacter cloacae strain from a hospital in northeastern Venezuela. An 83-year-old male patient is admitted to the central hospital in Cumana, Venezuela with severe urinary infection, history of hospitalizaions and prolonged antimicrobial treatments. A strain of Enterobacter cloacae was isolated showing resistance to multiple types of antibiotics (only sensitive to gentamicin), with phenotype of serine- and metallo-carbapenemases. Both, bla(VIM-2) and bla(KPC) genes were detected in the isolate. This is the first report of an Enterobacteriaceae species producing both KPC carbapenemase and VIM metallo carbapenemase in Venezuela. This finding has a great clinical and epidemiological impact in the region, because of the feasibility of transferring these genes, through mobile elements to other strains of Enterobacter and to other infection-causing species of bacteria. | 2015 | 26299058 |
| 2079 | 8 | 0.9877 | Prevalence of 16S rRNA methylases in Gram-negative bacteria derived from companion animals and livestock in Japan. The emergence and spread of aminoglycoside-resistant bacteria are a public health concern. The acquisition of the genes encoding 16S rRNA methylases, such as armA, rmtA, and rmtB, confers high-level resistance to aminoglycosides. However, the prevalence has not been well investigated in Japanese veterinary fields. To determine the prevalence of 16S rRNA methylases in animals, we detected 16S rRNA methylases genes in Gram-negative bacteria from animals. Here, we report the isolation of rmtB amd armA from two of the 446 Escherichia coli (0.5%) and one of the 103 Klebsiella spp. isolates (1.0%) from companion animals, respectively. However, none of the isolations were observed from 2445 E. coli isolates derived from livestock in Japan. The prevalence of 16S rRNA methylases in animals, especially in companion animals, should be carefully monitored in Japanese veterinary fields to avoid the spreading of the genes. | 2019 | 31061295 |
| 2222 | 9 | 0.9877 | Multiplex real-time PCR assay for the detection of extended-spectrum β-lactamase and carbapenemase genes using melting curve analysis. Real-time PCR melt curve assays for the detection of β-lactamase, extended-spectrum β-lactamase and carbapenemase genes in Gram-negative bacteria were developed. Two multiplex real-time PCR melt curve assays were developed for the detection of ten common β-lactamase genes: blaKPC-like, blaOXA-48-like, blaNDM-like, blaVIM-like, blaIMP-like, blaCTX-M-1+2-group, blaCMY-like, blaACC-like, blaSHV-like and blaTEM-like. The assays were evaluated using 25 bacterial strains and 31 DNA samples (total n=56) comprising different Enterobacteriaceae genera and Pseudomonas spp. These strains were previously characterized at five research institutes. Each resistance gene targeted in this study generated a non-overlapping and distinct melt curve peak. The assay worked effectively and detected the presence of additional resistance genes in 23 samples. The assays developed in this study offer a simple, low cost method for the detection of prevalent β-lactamase, ESBL and carbapenemase genes among Gram-negative pathogens. | 2016 | 27021662 |
| 1748 | 10 | 0.9876 | Detection of multidrug-resistant Gram-negative bacteria from imported reptile and amphibian meats. AIMS: The food supply is a potential source of antimicrobial resistance. Current surveillance programmes targeting food are limited to beef, pork and poultry and do not capture niche products. In this study, imported reptile and amphibian products were screened for antimicrobial-resistant bacteria. METHODS AND RESULTS: In all, 53 items including soft shell turtles, frog legs, geckos, snakes and a turtle carapace were purchased from specialty markets in Vancouver and Saskatoon, Canada. Samples were selectively cultured for Salmonella sp., Escherichia coli, extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae and meropenem-resistant organisms. Salmonella, all pan-susceptible, were grown from six dried geckos. Escherichia coli were isolated from 19 samples, including ESBL producers from six items. One multidrug-resistant E. coli possessed both the bla(CTX-M-55) and mcr-1 genes. An NDM-1-producing Acinetobacter sp. was also isolated from a dried turtle carapace. CONCLUSIONS: Our results suggest that imported reptile and amphibian meats are an underappreciated source of resistant bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: The international trade of food may play a role in the dissemination of resistant bacteria. The presence of these bacteria in niche market foods represents a risk of unknown magnitude to public health and a gap in current national resistance surveillance programmes. | 2020 | 32259384 |
| 927 | 11 | 0.9876 | Prevalence of carbapenemase-producing organisms at the Kidney Center of Rawalpindi (Pakistan) and evaluation of an advanced molecular microarray-based carbapenemase assay. AIM: A DNA microarray-based assay for the detection of antimicrobial resistance (AMR) genes was used to study carbapenemase-producing organisms at the Kidney Center of Rawalpindi, Pakistan. METHODS: The evaluation of this assay was performed using 97 reference strains with confirmed AMR genes. Testing of 7857 clinical samples identified 425 Gram-negative bacteria out of which 82 appeared carbapenem resistant. These isolates were analyzed using VITEK-2 for phenotyping and the described AMR assay for genotyping. RESULTS: The most prevalent carbapenemase gene was blaNDM and in 12 isolates we detected two carbapenemase genes (e.g., blaNDM/blaOXA-48). CONCLUSION: Our prevalence data from Pakistan show that - as in other parts of the world - carbapenemase-producing organisms with different underlying resistance mechanisms are emerging, and this warrants intensified and constant surveillance. | 2018 | 29938540 |
| 831 | 12 | 0.9876 | RmtC and RmtF 16S rRNA Methyltransferase in NDM-1-Producing Pseudomonas aeruginosa. We investigated 16S rRNA methyltransferases in 38 blaNDM-1-positive Pseudomonas aeruginosa isolates and found RmtC in 3 isolates, 1 of which also harbored RmtF. The isolates were clonally unrelated; rmtC and rmtF genes were located on a chromosome with the blaNDM-1 gene. Strategies are needed to limit the spread of such isolates. | 2015 | 26488937 |
| 1826 | 13 | 0.9876 | Extended-spectrum Beta-lactamase gene sequences in gram-negative saprophytes on retail organic and nonorganic spinach. A substantial proportion of infections caused by drug-resistant Gram-negative bacteria (GNB) in community and health care settings are recognized to be caused by evolutionarily related GNB strains. Their global spread has been suggested to occur due to human activities, such as food trade and travel. These multidrug-resistant GNB pathogens often harbor mobile drug resistance genes that are highly conserved in their sequences. Because they appear across different GNB species, these genes may have origins other than human pathogens. We hypothesized that saprophytes in common human food products may serve as a reservoir for such genes. Between July 2007 and April 2008, we examined 25 batches of prepackaged retail spinach for cultivatable GNB population structure by 16S rRNA gene sequencing and for antimicrobial drug susceptibility testing and the presence of extended-spectrum beta-lactamase (ESBL) genes. We found 20 recognized GNB species among 165 (71%) of 231 randomly selected colonies cultured from spinach. Twelve strains suspected to express ESBLs based on resistance to cefotaxime and ceftazidime were further examined for bla(CTX-M) and bla(TEM) genes. We found a 712-bp sequence in Pseudomonas teessidea that was 100% identical to positions 10 to 722 of an 876-bp bla(CTX-M-15) gene of an E. coli strain. Additionally, we identified newly recognized ESBL bla(RAHN-2) sequences from Rahnella aquatilis. These observations demonstrate that saprophytes in common fresh produce can harbor drug resistance genes that are also found in internationally circulating strains of GNB pathogens; such a source may thus serve as a reservoir for drug resistance genes that ultimately enter pathogens to affect human health. | 2011 | 21216903 |
| 2215 | 14 | 0.9875 | Analytical Performance of Multiplexed Screening Test for 10 Antibiotic Resistance Genes from Perianal Swab Samples. BACKGROUND: Multiantibiotic-resistant bacteria pose a threat to patients and place an economic burden on health care systems. Carbapenem-resistant bacilli and extended-spectrum β-lactamase (ESBL) producers drive the need to screen infected and colonized patients for patient management and infection control. METHODS: We describe a multiplex microfluidic PCR test for perianal swab samples (Acuitas(®) MDRO Gene Test, OpGen) that detects the vancomycin-resistance gene vanA plus hundreds of gene subtypes from the carbapenemase and ESBL families Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-β-lactamase (NDM), Verona integron-mediated metallo-β-lactamase (VIM), imipenemase metallo-β-lactamase (IMP), OXA-23, OXA-48, OXA-51, CTX-M-1, and CTX-M-2, regardless of the bacterial species harboring the antibiotic resistance. RESULTS: Analytical test sensitivity per perianal swab is 11-250 CFU of bacteria harboring the antibiotic resistance genes. Test throughput is 182 samples per test run (1820 antibiotic resistance gene family results). We demonstrate reproducible test performance and 100% gene specificity for 265 clinical bacterial organisms harboring a variety of antibiotic resistance genes. CONCLUSIONS: The Acuitas MDRO Gene Test is a sensitive, specific, and high-throughput test to screen colonized patients and diagnose infections for several antibiotic resistance genes directly from perianal swab samples, regardless of the bacterial species harboring the resistance genes. | 2016 | 26637481 |
| 2011 | 15 | 0.9875 | Molecular epidemiology of two genes encoding 3-N-aminoglycoside acetyltransferases AAC(3)I and AAC(3)II among gram-negative bacteria from a Spanish hospital. The molecular epidemiology of the aacC1 and aacC2 genes, encoding 3-N-aminoglycoside acetyltransferases AAC(3)I and AAC(3)II, respectively, was studied by DNA-DNA hybridization. The sample included 315 gentamicin-resistant Gram-negative bacilli collected over a six-month period from patients attending a Spanish Hospital. The aminoglycoside resistance phenotype of these strains was also determined. The aacC1 probe hybridized with 39 strains, the aacC2 probe with 146 strains and both probes hybridized with 26 strains. The aacC1 gene was most frequently detected in Pseudomonas aeruginosa whereas the aacC2 gene was most frequently detected in enterobacteria and Acinetobacter spp. Strains harbouring aacC genes were isolated from both in- and outpatients with different infectious diseases, mainly urinary tract infections. As inferred from the results of Southern hybridization, both genes showed a wide horizontal dispersion among plasmids and bacteria. | 1993 | 8150069 |
| 2640 | 16 | 0.9875 | Enterobacteriaceae Harboring AmpC (bla(CMY)) and ESBL (bla(CTX-M)) in Migratory and Nonmigratory Wild Songbird Populations on Ohio Dairies. Extended-spectrum β-lactamases (ESBLs) confer bacterial resistance to critically important antimicrobials, including extended-spectrum cephalosporins (ESCs). Livestock are important reservoirs for the zoonotic food-borne transmission of ESC-resistant enteric bacteria. Our aim is to describe the potential role of migratory and resident wild birds in the epidemiology of ESBL-mediated bacterial resistance on dairy farms. Using mist nets, we sampled wild migratory and resident birds either immediately adjacent to or 600 ft away from free-stall barns on three Ohio dairy farms during the 2014 and 2015 spring migrations. Individual swabs were used to obtain both a cloacal and external surface swab from each bird. Samples were inoculated into MacConkey broth containing cefotaxime then inoculated onto MacConkey agar with cefoxitin, cefepime, or meropenem to identify the bla(CMY,) bla(CTX-M,) and carbapenemase phenotypes, respectively. Six hundred twenty-three birds were sampled, 19 (3.0%) of which harbored bacteria with bla(CMY) and 32 (5.1%) harbored bacteria with bla(CTX-M) from either their cloacal sample or from their external swab. There was no difference in the prevalence of either gene between migratory and resident birds. Prevalence of bla(CMY) and bla(CTX-M) was higher among birds sampled immediately outside the barns compared with those sampled 600 ft away. Our results suggest that wild birds can serve as mechanical and/or biological vectors for Enterobacteriaceae with resistance to ESCs. Birds live in close contact with dairy cows and their feed, therefore, transmission locally between farms is possible. Finding a similar prevalence in migratory and nonmigratory birds suggests the potential for regional and intercontinental movement of these resistance genes via birds. | 2017 | 28165890 |
| 2521 | 17 | 0.9875 | Insights into antimicrobial resistance among long distance migratory East Canadian High Arctic light-bellied Brent geese (Branta bernicla hrota). BACKGROUND: Antimicrobial resistance (AMR) is the most significant threat to global public health and ascertaining the role wild birds play in the epidemiology of resistance is critically important. This study investigated the prevalence of AMR Gram-negative bacteria among long-distance migratory East Canadian High Arctic (ECHA) light-bellied Brent geese found wintering on the east coast of Ireland. FINDINGS: In this study a number of bacterial species were isolated from cloacal swabs taken from ECHA light-bellied Brent geese. Nucleotide sequence analysis identified five species of Gram-negative bacteria; the dominant isolated species were Pantoea spp. (n = 5) followed by Buttiauxella agrestis (n = 2). Antimicrobial susceptibility disk diffusion results identified four of the Pantoea spp. strains, and one of the Buttiauxella agrestis strains resistant to amoxicillin-clavulanic acid. CONCLUSION: To our knowledge this is the first record of AMR bacteria isolated from long distance migratory ECHA light-bellied Brent geese. This indicates that this species may act as reservoirs and potential disseminators of resistance genes into remote natural ecosystems across their migratory range. This population of geese frequently forage (and defecate) on public amenity areas during the winter months presenting a potential human health risk. | 2015 | 27651892 |
| 2225 | 18 | 0.9875 | Evaluation of the DNA microarray "AMR Direct Flow Chip Kit" for detection of antimicrobial resistance genes from Gram-positive and Gram-negative bacterial isolated colonies. INTRODUCTION: The AMR Direct Flow Chip assay allows the simultaneous detection of a large variety of antibiotic resistance genetic markers. To assess this kit's performance, we use isolated colonies as starting material. The assay has been approved by the European Economic Area as a suitable device for in vitro diagnosis (CE IVD) using clinical specimens. METHODS: A total of 210 bacterial isolates harbouring either one or more antimicrobial resistance genes including plasmid-encoded extended-spectrum β-lactamases (SHV, CTX-M) and carbapenemases (GES, SME, KPC, NMC/IMI, SIM, GIM, SPM, NDM, VIM, IMP, and OXA), mecA, vanA and vanB, and 30 controls were included. RESULTS: The assay displayed a sensitivity and specificity of 100% for all target genes included in the array. CONCLUSION: The AMR Direct Flow Chip Kit is an accurate assay for detecting genes which commonly confer resistance to β-lactams and vancomycin from isolated colonies in culture of Gram-positive and Gram-negative bacteria. | 2019 | 30857832 |
| 962 | 19 | 0.9875 | Transfer of Antimicrobial-Resistant Escherichia coli and Resistance Genes in a Child Care Center. Several reports describe antimicrobial-resistance transfer among children and the community in outbreak situations, but transfer between a child and a care giver has not been examined in child care facilities under normal circumstances. We investigated the transfer of antimicrobial-resistance genes, resistant bacteria, or both among healthy children and teachers. From 2007 to 2009, 104 Escherichia coli isolates were obtained from four teachers and 38 children in a child care center. Twenty-six cephem-resistant isolates were obtained from children in 2007 and 2008. In 2009, cephem-resistant isolates were detected in children as well as a teacher. Nalidixic acid-resistant isolates from the same teacher for 3 years showed low similarity (<50%) to each other. However, an isolate from a teacher in 2007 and another from a child in 2008 showed high similarity (87%). Pulsed-field gel electrophoresis revealed 100% similarity for four isolates in 2007 and one isolate in 2008, and also similarity among seven isolates carrying the virulence gene (CNF1). This study yielded the following findings: (1) a gene for extended-spectrum β-lactamase was transferred from a child to other children and a teacher; (2) a nalidixic acid-resistant isolate was transferred from a teacher to a child; and (3) a virulent bacterium was transferred between children. | 2019 | 30786697 |