# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5245 | 0 | 0.9615 | Antimicrobial Resistance in U.S. Retail Ground Beef with and without Label Claims Regarding Antibiotic Use. ABSTRACT: Antibiotics used during food animal production account for approximately 77% of U.S. antimicrobial consumption by mass. Ground beef products labeled as raised without antibiotics (RWA) are perceived to harbor lower levels of antimicrobial-resistant bacteria than conventional (CONV) products with no label claims regarding antimicrobial use. Retail ground beef samples were obtained from six U.S. cities. Samples with an RWA or U.S. Department of Agriculture Organic claim (n = 299) were assigned to the RWA production system. Samples lacking these claims (n = 300) were assigned to the CONV production system. Each sample was cultured for the detection of five antimicrobial-resistant bacteria. Genomic DNA was isolated from each sample, and a quantitative PCR assay was used to determine the abundance of 10 antimicrobial resistance (AMR) genes. Prevalence of tetracycline-resistant Escherichia coli (CONV, 46.3%; RWA, 34.4%; P < 0.01) and erythromycin-resistant Enterococcus (CONV, 48.0%; RWA, 37.5%; P = 0.01) was higher in CONV ground beef. Salmonella was detected in 1.2% of samples. The AMR gene blaCTX-M (CONV, 4.1 log-normalized abundance; RWA, 3.8 log-normalized abundance; P < 0.01) was more abundant in CONV ground beef. The AMR genes mecA (CONV, 4.4 log-normalized abundance; RWA, 4.9 log-normalized abundance; P = 0.05), tet(A) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), tet(B) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), and tet(M) (CONV, 5.4 log-normalized abundance; RWA, 5.8 log-normalized abundance; P < 0.01) were more abundant in RWA ground beef. Although these results suggest that antimicrobial use during U.S. cattle production does not increase human exposure to antimicrobial-resistant bacteria via ground beef, quantitative microbiological risk assessments are required for authoritative determination of the human health impacts of the use of antimicrobial agents during beef production. | 2021 | 33302298 |
| 5244 | 1 | 0.9602 | Potentially pathogenic bacteria and antimicrobial resistance in bioaerosols from cage-housed and floor-housed poultry operations. BACKGROUND: Antibiotics are used in animal confinement buildings, such as cage-housed (CH) and floor-housed (FH) poultry operations, to lower the likeliness of disease transmission. In FH facilities, antibiotics may also be used at sub-therapeutic levels for growth promotion. Low levels of antibiotic create a selective pressure toward antimicrobial resistance (AMR) in chicken fecal bacteria. OBJECTIVE: The objective of this study was to compare bacteria and AMR genes in bioaerosols from CH and FH poultry facilities. METHODS: Bioaerosols were collected from 15 CH and 15 FH poultry operations, using stationary area samplers as well as personal sampling devices. Bacteria concentrations were determined by genus- or species-specific quantitative polymerase chain reaction (PCR) and AMR genes were detected using endpoint PCR. RESULTS: Enterococcus spp., Escherichia coli, and Staphylococcus spp. were significantly higher in bioaerosols of FH poultry operations than CH bioaerosols (P < 0.001) while Clostridium perfringens was significantly higher in area bioaerosols of CH operations than FH area bioaerosols (P < 0.05). Campylobacter spp. were detected only in bioaerosols of FH facilities. Zinc bacitracin resistance gene, bcrR, erythromycin resistance gene, ermA, and tetracycline resistance gene, tetA/C, were more prevalent in bioaerosols of FH facilities than CH bioaerosols (P < 0.01, P < 0.01, and P < 0.05, respectively). CONCLUSIONS: Most bacteria are more concentrated and most AMR genes are more prevalent in bioaerosols of FH poultry operations, where growth-promoting antibiotics may be used. | 2012 | 22156572 |
| 7646 | 2 | 0.9599 | Assessment of Bacterial Community and Other Microorganism Along the Lam Takhong Watercourse, Nakhon Ratchasima, Thailand. Lam Takhong, a vital watercourse in Nakhon Ratchasima province, Thailand, supports agricultural, recreational, and urban activities. Originating in a national park, it flows through urban areas before discharging into a dam and running off via the sluice gate. While water quality monitoring is routine, microbial community data have never been reported. This study assesses the microorganism diversity and functional genes in Lam Takhong watercourse using a shotgun sequencing metagenomics approach. Water samples were collected from the upstream, midstream, and downstream sections. The midstream area exhibited the highest abundance of fecal coliform bacteria, plankton, and benthos, suggesting elevated pollution levels. Genes related to metabolism, particularly carbohydrate and amino acid pathways, were predominant. Proteobacteria was the most abundant phylum found in the water, with Limnohabitans as the dominant planktonic bacteria. Bacteria such as Staphylococcus, Mycobacterium, Escherichia, Pseudomonas, Enterococcus, Neisseria, Streptomyces, and Salmonella were detected, along with antibiotic resistance genes, raising public health concerns. These findings emphasize the need for microbial monitoring in the Lam Takhong to determine the potential water quality bioindicator and prevent potential disease spread through the water system. | 2025 | 40244481 |
| 3118 | 3 | 0.9598 | Importance of Microbiome of Fecal Samples Obtained from Adolescents with Different Weight Conditions on Resistance Gene Transfer. Antimicrobial resistance (AMR) is a relevant public health problem worldwide, and microbiome bacteria may contribute to the horizontal gene transfer associated with antimicrobial resistance. The microbiome of fecal samples from Mexican adolescents were analyzed and correlated with eating habits, and the presence of AMR genes on bacteria in the microbiome was evaluated. Fecal samples from adolescents were collected and processed to extract genomic DNA. An Illumina HiSeq 1500 system was used to determine resistance genes and the microbiome of adolescents through the amplification of gene resistance and the V3-V4 regions of RNA, respectively. Analysis of the microbiome from fecal samples taken from 18 obese, overweight, and normal-weight adolescents revealed that the Firmicutes was the most frequent phylum, followed by Bacteroidetes, Actinobacteria, Proteobacteria and Verrucomicrobia. The following species were detected as the most frequent in the samples: F. prausnitzii, P. cori, B. adolescentis, E. coli and A. muciniphila. The presence of Bacteroides, Prevotella and Ruminococcus was used to establish the enterotype; enterotype 1 was more common in women and enterotype 2 was more common in men. Twenty-nine AMR genes were found for β-lactamases, fluoroquinolones, aminoglycosides, macrolide, lincosamides, streptogramin (MLS), tetracyclines and sulfonamides. The presence of microorganisms in fecal samples that harbor AMR genes that work against antimicrobials frequently used for the treatment of microbial infections such as b-lactams, macrolides, aminoglycosides, MLS, and tetracyclines is of great concern, as these organisms may be an important reservoir for horizontal AMR gene transfer. | 2022 | 36296271 |
| 3535 | 4 | 0.9595 | Bacillus licheniformis-fermented products and enramycin differentially modulate microbiota and antibiotic resistome in the cecal digesta of broilers. Since antibiotic resistance is a global health issues, the use of antibiotics in animal feed for growth promotion has been restricted in many countries. Bacillus licheniformis probiotic is a potential alternative to antibiotics for increasing poultry performance. Through metagenomic sequencing, this study investigated the effects of B. licheniformis-fermented products (BLFPs) and enramycin on the microbial community composition and antibiotic resistance gene (ARG) distribution in the cecal digesta of broilers at the age of 35 d. In total, 144 one-day-old male broiler chicks (Ross 308) were randomly assigned to 4 dietary treatments as follows: basal diet (control [C] group), basal diet plus 10 mg/kg enramycin (E group), basal diet plus 1 g/kg BLFPs (L group), and basal diet plus 3 g/kg BLFPs (H group), with 6 replicate cages per treatment group and 6 birds per cage. The results indicated that the cecal alpha diversity (richness and evenness) of bacterial species was higher in the H group than in the C group. Principal coordinate analysis of microbiota and the ARG composition indicated clear differences among the cecal samples of the groups. In the cecal digesta, the abundance of active bacteria associated with probiotic properties, such as Lactobacillus crispatus and Akkermansia muciniphila, was higher in the H group than in the other groups. Enramycin treatment promoted the expression of peptide (bcrA), glycopeptide (vanRI), and lincosamide (lsaE) resistance genes but inhibited the expression of aminocoumarin (parY) and pleuromutilin (TaeA) resistance genes. BLFP (1 and 3 g/kg) treatment suppressed the expression of aminoglycoside (ANT(6)-Ib), streptogramin (vatB), and peptide (ugd) resistance genes but enhanced the expression of macrolide (efrA) and aminocoumarin (novA) resistance genes. The abundance of peptide resistance genes in Bacteroides spp. was lower in the H group than in the C group. The abundance of lincosamide resistance genes in Lactobacillus spp. was higher in the E group than in the other groups. These results demonstrated that differential changes in the structure of 3 g/kg BLFPs and enramycin-induced cecal microbial communities accompany changes in the abundance of bacterial hosts carrying specific ARGs in the cecal microbiota of broilers. | 2022 | 35841645 |
| 5247 | 5 | 0.9594 | Similar Levels of Antimicrobial Resistance in U.S. Food Service Ground Beef Products with and without a "Raised without Antibiotics" Claim. U.S. ground beef with "raised without antibiotics" (RWA) label claims are perceived as harboring fewer bacteria with antimicrobial resistance (AMR) than are found in conventional (CONV) ground beef with no such label claim. A total of 370 ground beef samples from CONV ( n = 191) and RWA ( n = 179) production systems were collected over 13 months from three food service suppliers. The following bacteria were cultured: Escherichia coli, tetracycline-resistant (TET(r)) E. coli, third-generation cephalosporin-resistant (3GC(r)) E. coli, Salmonella enterica, TET(r) S. enterica, 3GC(r) S. enterica, nalidixic acid-resistant S. enterica, Enterococcus spp., erythromycin-resistant Enterococcus spp., TET(r) Enterococcus spp., Staphylococcus aureus, and methicillin-resistant S. aureus. TET(r) E. coli was more frequently detected in CONV ground beef (CONV, 54.2%; RWA, 35.2%; P < 0.01), but supplier ( P < 0.01) and production system × suppler interaction ( P < 0.01) effects were also significant. Metagenomic DNA was isolated from each sample, and equal amounts of metagenomic DNA were pooled by supplier, month, and production system for 75 pooled samples (38 CONV, 37 RWA). The abundance of aac(6')-Ie-aph(2″)-Ia, aadA1, bla(CMY-2), bla(CTX-M), bla(KPC-2), erm(B), mecA, tet(A), tet(B), and tet(M) genes was assessed by quantitative PCR. The tet(A) (2.9-log(2)-fold change, P = 0.04) and tet(B) (5.6-log(2)-fold change) ( P = 0.03) genes were significantly more abundant in RWA ground beef. Phylogenetic analyses revealed that ground beef microbiomes differed more by supplier than by production system. These results were consistent with prior research suggesting antimicrobial use in U.S. beef cattle has minimal impact on the AMR of bacteria found in these products. These results should spur a reevaluation of assumptions regarding the impact of antimicrobial use during U.S. beef production on the AMR of bacteria in ground beef. | 2018 | 30476443 |
| 7131 | 6 | 0.9594 | Longitudinal study of the short- and long-term effects of hospitalisation and oral trimethoprim-sulfadiazine administration on the equine faecal microbiome and resistome. BACKGROUND: Hospitalisation and antimicrobial treatment are common in horses and significantly impact the intestinal microbiota. Antimicrobial treatment might also increase levels of resistant bacteria in faeces, which could spread to other ecological compartments, such as the environment, other animals and humans. In this study, we aimed to characterise the short- and long-term effects of transportation, hospitalisation and trimethoprim-sulfadiazine (TMS) administration on the faecal microbiota and resistome of healthy equids. METHODS: In a longitudinal experimental study design, in which the ponies served as their own control, faecal samples were collected from six healthy Welsh ponies at the farm (D0-D13-1), immediately following transportation to the hospital (D13-2), during 7 days of hospitalisation without treatment (D14-D21), during 5 days of oral TMS treatment (D22-D26) and after discharge from the hospital up to 6 months later (D27-D211). After DNA extraction, 16S rRNA gene sequencing was performed on all samples. For resistome analysis, shotgun metagenomic sequencing was performed on selected samples. RESULTS: Hospitalisation without antimicrobial treatment did not significantly affect microbiota composition. Oral TMS treatment reduced alpha-diversity significantly. Kiritimatiellaeota, Fibrobacteres and Verrucomicrobia significantly decreased in relative abundance, whereas Firmicutes increased. The faecal microbiota composition gradually recovered after discontinuation of TMS treatment and discharge from the hospital and, after 2 weeks, was more similar to pre-treatment composition than to composition during TMS treatment. Six months later, however, microbiota composition still differed significantly from that at the start of the study and Spirochaetes and Verrucomicrobia were less abundant. TMS administration led to a significant (up to 32-fold) and rapid increase in the relative abundance of resistance genes sul2, tetQ, ant6-1a, and aph(3")-lb. lnuC significantly decreased directly after treatment. Resistance genes sul2 (15-fold) and tetQ (six-fold) remained significantly increased 6 months later. CONCLUSIONS: Oral treatment with TMS has a rapid and long-lasting effect on faecal microbiota composition and resistome, making the equine hindgut a reservoir and potential source of resistant bacteria posing a risk to animal and human health through transmission. These findings support the judicious use of antimicrobials to minimise long-term faecal presence, excretion and the spread of antimicrobial resistance in the environment. Video Abstract. | 2023 | 36850017 |
| 7239 | 7 | 0.9592 | Full-scale mesophilic biogas plants using manure as C-source: bacterial community shifts along the process cause changes in the abundance of resistance genes and mobile genetic elements. The application of manure, typically harboring bacteria carrying resistance genes (RGs) and mobile genetic elements (MGEs), as co-substrate in biogas plants (BGPs) might be critical when digestates are used as fertilizers. In the present study, the relative abundance of RGs and MGEs in total community (TC-) DNA from manure, fermenters and digestate samples taken at eight full-scale BGPs co-fermenting manure were determined by real-time PCR. In addition, the bacterial community composition of all digestates as well as manure and fermenter material from one BGP (BGP3) was characterized by 454-pyrosequencing of 16S rRNA amplicons from TC-DNA. Compared to respective input manures, relative abundances determined for sul1, sul2, tet(M), tet(Q), intI1, qacEΔ1, korB and traN were significantly lower in fermenters, whereas relative abundances of tet(W) were often higher in fermenters. The bacterial communities in all digestates were dominated by Firmicutes and Bacteroidetes while Proteobacteria were low in abundance and no Enterobacteriaceae were detected. High-throughput sequencing revealed shifts in bacterial communities during treatment for BGP3. Although in comparison to manure, digestate bacteria had lower relative abundances of RGs and MGEs except for tet(W), mesophilic BGPs seem not to be effective for prevention of the spread of RGs and MGEs via digestates into arable soils. | 2016 | 26772986 |
| 7214 | 8 | 0.9592 | Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China. The aim of this study was to compare the occurrence, abundance, and diversity of tetracycline resistance genes (tet) in agricultural soils after 6 years' application of fresh or composted swine manure. Soil samples were collected from fresh or composted manure-treated farmland at three depths (0-5 cm, 5-10 cm, and 10-20 cm). Nine classes of tet genes [tetW, tetB(P), tetO, tetS, tetC, tetG, tetZ, tetL, and tetX] were detected; tetG, tetZ, tetL, and tetB(P) were predominant in the manure-treated soil. The abundances of tetB(P), tetW, tetC, and tetO were reduced, while tetG and tetL were increased by fertilizing with composted versus fresh manure; thus, the total abundance of tet genes was not significantly reduced by compost manuring. tetG was the most abundant gene in manure-treated soil; the predominant tetG genotypes shared high homology with pathogenic bacteria. The tetG isolates were more diverse in soils treated with fresh versus composted manure, although the residual tet genes in composted manure remain a pollutant and produce a different influence on the tet gene resistome in field soil. | 2015 | 25460961 |
| 8030 | 9 | 0.9591 | Application of manure containing tetracyclines slowed down the dissipation of tet resistance genes and caused changes in the composition of soil bacteria. Manure application contributes to the increased environmental burden of antibiotic resistance genes (ARGs). We investigated the response of tetracycline (tet) resistance genes and bacterial taxa to manure application amended with tetracyclines over two months. Representative tetracyclines (oxytetracycline, chlorotetracycline and doxycycline), tet resistance genes (tet(M), tet(O), tet(W), tet(S), tet(Q) and tet(X)) and bacterial taxa in the untreated soil, +manure, and +manure+tetracyclines groups were analyzed. The abundances of all tet resistance genes in the +manure group were significantly higher than those in the untreated soil group on day 1. The abundances of all tet resistance genes (except tet(Q) and tet(X)) were significantly lower in the +manure group than those in the +manure+tetracyclines group on day 30 and 60. The dissipation rates were higher in the +manure group than those in the +manure+tetracyclines group. Disturbance of soil bacterial community composition imposed by tetracyclines was also observed. The results indicated that tetracyclines slowed down the dissipation of tet resistance genes in arable soil after manure application. Application of manure amended with tetracyclines may provide a significant selective advantage for species affiliated to the taxonomical families of Micromonosporaceae, Propionibacteriaceae, Streptomycetaceae, Nitrospiraceae and Clostridiaceae. | 2018 | 28898804 |
| 7009 | 10 | 0.9591 | Antibiotic resistance genes and bacterial communities in cornfield and pasture soils receiving swine and dairy manures. Land application of animal manure could change the profiles of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and bacterial communities in receiving soils. Using high-throughput real-time quantitative PCR and 16S rRNA amplicon sequencing techniques, this study investigated the ARGs and bacterial communities in field soils under various crop (corn and pasture) and manure (swine and dairy) managements, which were compared with those of two non-manured reference soils from adjacent golf course and grassland. In total 89 unique ARG subtypes were found in the soil samples and they conferred resistance via efflux pump, cellular protection and antibiotic deactivation. Compared to the ARGs in the golf course and grassland soils (28 and 34 subtypes respectively), manured soils generally had greater ARG diversity (36-55 subtypes). Cornfield soil frequently receiving raw swine manure had the greatest ARG abundance. The short-term (one week) application of composted and liquid swine manures increased the diversity and total abundance of ARGs in cornfield soils. Intriguingly the composted swine manure only marginally increased the total abundance of ARGs, but substantially increased the number of ARG subtypes in the cornfield soils. The network analysis revealed three major network modules in the co-occurrence patterns of ARG subtypes, and the hubs of these major modules (intl1-1, vanC, and pncA) may be candidates for selecting indicator genes for surveillance of ARGs in manured soils. The network analyses between ARGs and bacteria taxa revealed the potential host bacteria for the detected ARGs (e.g., aminoglycoside resistance gene aacC4 may be mainly carried by Acidobacteriaceae). Overall, this study highlighted the potentially varying impact of various manure management on antibiotic resistome and microbiome in cornfield and pasture soils. | 2019 | 30861417 |
| 7128 | 11 | 0.9590 | Composting of chicken litter from commercial broiler farms reduces the abundance of viable enteric bacteria, Firmicutes, and selected antibiotic resistance genes. We examined the ability of composting to remove ARGs and enteric bacteria in litter obtained from broiler chickens fed with a diet supplemented with Bacitracin methylene disalicylate (BDM) (conventional chicken litter), or an antibiotic-free diet (raised without antibiotic (RWA) chicken litter). This was done by evaluating the litter before and after composting for the abundance of ten gene targets associated with antibiotic resistance or horizontal gene transfer, the composition of the bacterial communities, and the abundance of viable enteric bacteria. The abundance of gene targets was determined by qPCR and the microbial community composition of chicken litter determined by 16S rRNA gene amplicon sequencing. Enteric bacteria were enumerated by viable plate count. A majority of the gene targets were more abundant in conventional than in RWA litter. In both litter types, the absolute abundance of all of the target genes decreased after composting except sul1, intI1, incW and erm(F) that remained stable. Composting significantly reduced the abundance of enteric bacteria, including those carrying antibiotic resistance. The major difference in bacterial community composition between conventional and RWA litter was due to members affiliated to the genus Pseudomonas, which were 28% more abundant in conventional than in RWA litter. Composting favoured the presence of thermophilic bacteria, such as those affiliated with the genus Truepera, but decreased the abundance of those bacterial genera associated with cold-adapted species, such as Carnobacterium, Psychrobacter and Oceanisphaera. The present study shows that chicken litter from broilers fed with a diet supplemented with antibiotic has an increased abundance of some ARGs, even after composting. However, we can conclude that fertilization with composted litter represents a reduced risk of transmission of antibiotic resistance genes and enteric bacteria of poultry origin to soil and crops than will fertilization with raw litter. | 2020 | 32768779 |
| 7490 | 12 | 0.9590 | Effect of Phorate on the Development of Hyperglycaemia in Mouse and Resistance Genes in Intestinal Microbiota. Phorate is a systemic, broad-spectrum organophosphorus insecticide. Although it is commonly used worldwide, phorate, like other pesticides, not only causes environmental pollution but also poses serious threats to human and animal health. Herein, we measured the blood glucose concentrations of high-fat-diet-fed mice exposed to various concentrations of phorate (0, 0.005, 0.05, or 0.5 mg/kg); we also assessed the blood glucose concentrations of high-fat-diet-fed mice exposed to phorate; we also assessed the distribution characteristics of the resistance genes in the intestinal microbiota of these mice. We found that 0.005 and 0.5 mg/kg of phorate induced obvious hyperglycaemia in the high-fat-diet-fed mice. Exposure to phorate markedly reduced the abundance of Akkermansia muciniphila in the mouse intestine. The resistance genes vanRG, tetW/N/W, acrD, and evgS were significantly upregulated in the test group compared with the control group. Efflux pumping was the primary mechanism of drug resistance in the Firmicutes, Proteobacteria, Bacteroidetes, Verrucomicrobia, Synergistetes, Spirochaetes, and Actinobacteria found in the mouse intestine. Our findings indicate that changes in the abundance of the intestinal microbiota are closely related to the presence of antibiotic-resistant bacteria in the intestinal tract and the metabolic health of the host. | 2022 | 36358236 |
| 2824 | 13 | 0.9590 | Zoo animal manure as an overlooked reservoir of antibiotic resistance genes and multidrug-resistant bacteria. Animal fecal samples collected in the summer and winter from 11 herbivorous animals, including sable antelope (SA), long-tailed goral (LTG), and common eland (CE), at a public zoo were examined for the presence of antibiotic resistance genes (ARGs). Seven antibiotics, including meropenem and azithromycin, were used to isolate culturable multidrug-resistant (MDR) strains. The manures from three animals (SA, LTG, and CE) contained 10(4)-fold higher culturable MDR bacteria, including Chryseobacterium, Sphingobacterium, and Stenotrophomonas species, while fewer MDR bacteria were isolated from manure from water buffalo, rhinoceros, and elephant against all tested antibiotics. Three MDR bacteria-rich samples along with composite samples were further analyzed using nanopore-based technology. ARGs including lnu(C), tet(Q), and mef(A) were common and often associated with transposons in all tested samples, suggesting that transposons carrying ARGs may play an important role for the dissemination of ARGs in our tested animals. Although several copies of ARGs such as aph(3')-IIc, bla(L1), bla(IND-3), and tet(42) were found in the sequenced genomes of the nine MDR bacteria, the numbers and types of ARGs appeared to be less than expected in zoo animal manure, suggesting that MDR bacteria in the gut of the tested animals had intrinsic resistant phenotypes in the absence of ARGs. | 2023 | 35906519 |
| 5246 | 14 | 0.9589 | Food Service Pork Chops from Three U.S. Regions Harbor Similar Levels of Antimicrobial Resistance Regardless of Antibiotic Use Claims. Pork products from animals "raised without antibiotics" (RWA) are assumed to harbor lower levels of antimicrobial resistance (AMR) than conventional (CONV) pork products with no claims regarding use of antimicrobial agents during production. A total of 372 pork chop samples from CONV (n = 190) and RWA (n = 182) production systems were collected over 13 months from three food service suppliers. The following bacteria were cultured: Escherichia coli, tetracycline-resistant (TET(r)) E. coli, third-generation cephalosporin-resistant (3GC(r)) E. coli, Salmonella enterica, TET(r) Salmonella, 3GC(r) Salmonella, nalidixic acid-resistant Salmonella, Enterococcus spp., TET(r) Enterococcus, erythromycin-resistant Enterococcus, Staphylococcus aureus, and methicillin-resistant S. aureus. Production system did not significantly impact the detection of cultured bacteria (P > 0.05). Metagenomic DNA was isolated from each sample, and equal amounts of metagenomic DNA were pooled by supplier, month, and production system for 75 pooled samples (38 CONV, 37 RWA). Quantitative PCR was used to assess the abundances of the following 10 AMR genes: aac(6')-Ie-aph(2″)-Ia, aadA1, bla(CMY-2), bla(CTX-M), bla(KPC-2), erm(B), mecA, tet(A), tet(B), and tet(M). For all 10 AMR genes, abundances did not differ significantly (P > 0.05) between production systems. These results suggest that use of antimicrobial agents during swine production minimally impacts the AMR of bacteria in pork chops. | 2019 | 31532250 |
| 7061 | 15 | 0.9589 | Dissemination of antibiotic resistance genes through soil-plant-earthworm continuum in the food production environment. Treated municipal wastewater (TMW) can provide a reliable source of irrigation water for crops, which is especially important in arid areas where water resources are limited or prone to drought. Nonetheless, TMW may contain residual antibiotics, potentially exposing the crops to these substances. The goal of this study was to investigate the dissemination of antibiotics resistance genes (ARGs) in the soil-plant-earthworm continuum after irrigation of spinach and radish plants with TMW containing trimethoprim, sulfamethoxazole, and sulfapyridine in a greenhouse experiment, followed by feeding of earthworms with harvested plant materials. Our results showed that antibiotic resistance genes (ARGs) were enriched in the soil-plant-earthworm microbiomes irrigated with TMW and TMW spiked with higher concentrations of antibiotics. The number of ARGs and antibiotic-resistant bacteria (ARB) enrichment varied with plant type, with spinach harboring a significantly higher amount of ARGs and ARB compared to radish. Our data showed that bulk and rhizosphere soils of spinach and radish plants irrigated with MilliQ water, TMW, TMW10, or TMW100 had significant differences in bacterial community (p < 0.001), ARG (p < 0.001), and virulence factor gene (VFG) (p < 0.001) diversities. The abundance of ARGs significantly decreased from bulk soil to rhizosphere to phyllosphere and endosphere. Using metagenome assembled genomes (MAGs), we recovered many bacterial MAGs and a near complete genome (>90 %) of bacterial MAG of genus Leclercia adecarboxylata B from the fecal microbiome of earthworm that was fed harvested radish tubers and spinach leaves grown on TMW10 irrigated waters, and this bacterium has been shown to be an emerging pathogen causing infection in immunocompromised patients that may lead to health complications and death. Therefore, crops irrigated with TMW containing residual antibiotics and ARGs may lead to increased incidences of enrichment of ARB in the soil-plant-earthworm continuum. | 2024 | 38101104 |
| 6790 | 16 | 0.9589 | Overlooked dissemination risks of antimicrobial resistance through green tide proliferation. Green tides, particularly those induced by Enteromorpha, pose significant environmental challenges, exacerbated by climate change, coastal eutrophication, and other anthropogenic impacts. More concerningly, these blooms may influence the spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) within ecosystems. However, the manner in which Enteromorpha blooms affect the distribution and spread of antimicrobial resistance (AMR) remains uncertain. This study investigated ARG profiles, dynamic composition, and associated health risks within the Enteromorpha phycosphere and surrounding seawater in typical bays (Jiaozhou, Aoshan, and Lingshan) in the South Yellow Sea. The Enteromorpha phycosphere exhibited significantly higher ARG abundance (p < 0.05) but lower diversity compared to the surrounding seawater. Source-tracking and metagenomic analyses revealed that the phycosphere was the main contributor to the resistome of surrounding seawater. Moreover, resistant pathogens, especially ESKAPE pathogens, with horizontal gene transfer (HGT) potential, were more abundant in the phycosphere than in the surrounding seawater. The phycosphere released high-risk ARGs to the surrounding seawater during Enteromorpha blooms, posing serious health and ecological AMR risks in marine environments. This study highlights the significant role of Enteromorpha blooms in ARG spread and associated risks, urging a reassessment of AMR burden from a public health perspective. | 2025 | 39488061 |
| 5322 | 17 | 0.9589 | Broad dissemination of plasmid-mediated quinolone resistance genes in sediments of two urban coastal wetlands. Contamination of soil and water with antibiotic-resistant bacteria may create reservoirs of antibiotic resistance genes that have the potential to negatively impact future public health through horizontal gene transfer. The plasmid-mediated quinolone resistance genes qnrA, qnrB, qnrS, qepA, and aac(6')-Ib-cr were detected by PCR amplification of metagenomic DNA from surface sediments of the Tijuana River Estuary, a sewage-impacted coastal wetland along the U.S.-Mexico border; sediments of Famosa Slough, a nearby urban wetland that is largely unaffected by sewage, contained only qnrB, qnrS, and qepA. The number of PCR-positive sites and replicates increased in both wetlands after rainfall. Real-time quantitative PCR revealed a significant increase (p < 0.0005) in qnrA abundance (copies per gram sediment or per 16S rDNA copy) in Tijuana River Estuary sediments immediately following rainfall, but no significant change was measured at Famosa Slough (p > 0.1). Nucleotide sequences of cloned qnrA amplicons were all affiliated with qnrA genes found on plasmids of clinical isolates with one exception that was most similar to the chromosomal qnrA gene found in Shewanella algae. Our results suggest that urban wetlands may become reservoirs of antibiotic resistance genes, particularly where wastewater is improperly managed. | 2011 | 21141884 |
| 6587 | 18 | 0.9589 | Diminution of the gut resistome after a gut microbiota-targeted dietary intervention in obese children. The gut microbiome represents an important reservoir of antibiotic resistance genes (ARGs). Effective methods are urgently needed for managing the gut resistome to fight against the antibiotic resistance threat. In this study, we show that a gut microbiota-targeted dietary intervention, which shifts the dominant fermentation of gut bacteria from protein to carbohydrate, significantly diminished the gut resistome and alleviated metabolic syndrome in obese children. Of the non-redundant metagenomic gene catalog of ~2 × 10(6) microbial genes, 399 ARGs were identified in 131 gene types and conferred resistance to 47 antibiotics. Both the richness and diversity of the gut resistome were significantly reduced after the intervention. A total of 201 of the 399 ARGs were carried in 120 co-abundance gene groups (CAGs) directly binned from the gene catalog across both pre-and post-intervention samples. The intervention significantly reduced several CAGs in Klebsiella, Enterobacter and Escherichia, which were the major hubs for multiple resistance gene types. Thus, dietary intervention may become a potentially effective method for diminishing the gut resistome. | 2016 | 27044409 |
| 3105 | 19 | 0.9588 | Organic Houttuynia cordata Thunb harbors higher abundance and diversity of antibiotic resistance genes than non-organic origin, suggesting a potential food safe risk. The organic agricultural products has been growing rapidly in recent years. However, a potential food safe risk, resulted by introduction more antibiotic resistant genes (ARGs) accompanied with animal manure using to organic farming, has long been overlooked. In current study, the bacterial community, 22 tetracycline, 3 aminoglycoside and 4 β-lactams ARGs were respectively investigated in the organic, chemical and wild Houttuynia cordata Thunb (HCT). A total of 9 tetracycline, 3 aminoglycoside and 2 β-lactam ARG subtypes were detected, and the organic HCT harbored more ARG subtypes. The absolute and relative abundance of total ARGs in organic HCT was strikingly higher than that in chemical and wild HCT. The Enterobacteriaceae, Aeromonadaceae, Pseudomonadceae, Moraxellaceae and Oxalobacteraceae were the dominant taxa in the chemical and wild HCT, but in the organic HCT, only Enterobacteriaceae posed 83.23% - 87.40% of bacterial community. Fourteen bacterial families might be the possible hosts of ARG subtypes in the HCT. Enterobacteriaceae was a possible host of most ARG subtypes, including tetA, tetB, tetC, tetE and aadA, and it was the main bacteria affecting the behavior of ARGs in the HCT. Additionally, the tetracycline ARG subtypes had more possible hosts. These results help to better understand the ARG potential food safe risk and develop effective measures to prevent the ARG dissemination in organic agricultural product. | 2019 | 31000292 |