NOTEWORTHY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
349200.9928A metagenomic study of antibiotic resistance genes in a hypereutrophic subtropical lake contaminated by anthropogenic sources. Antibiotic resistance genes (ARGs) are a major threat to human and environmental health. This study investigated the occurrence and distribution of ARGs in Lake Cajititlán, a hypereutrophic subtropical lake in Mexico contaminated by anthropogenic sources (urban wastewater and runoff from crop and livestock production). ARGs (a total of 475 genes) were detected in 22 bacterial genera, with Pseudomonas (144 genes), Stenotrophomonas (88 genes), Mycobacterium (54 genes), and Rhodococcus (27 genes) displaying the highest frequencies of ARGs. Among these, Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed the highest number of ARGs. The results revealed a diverse array of ARGs, including resistance to macrolides (11.55 %), aminoglycosides (8.22 %), glycopeptides (6.22 %), tetracyclines (4 %), sulfonamides (4 %), carbapenems (1.11 %), phenicols (0.88 %), fluoroquinolones (0.44 %), and lincosamides (0.22 %). The most frequently observed ARGs were associated with multidrug resistance (63.33 %), with MexF (42 genes), MexW (36 genes), smeD (31 genes), mtrA (25 genes), and KHM-1 (22 genes) being the most common. Lake Cajititlán is a recreational area for swimming, fishing, and boating, while also supporting irrigation for agriculture and potentially acting as a drinking water source for some communities. This raises concerns about the potential for exposure to antibiotic-resistant bacteria through these activities. The presence of ARGs in Lake Cajititlán poses a significant threat to both human and environmental health. Developing strategies to mitigate the risks of antibiotic resistance, including improving wastewater treatment, and promoting strategic antibiotic use and disposal, is crucial. This study represents a significant advancement in the understanding of antibiotic resistance dynamics in a hypereutrophic subtropical lake in a developing country, providing valuable insights for the scientific community and policymakers.202438583614
343410.9928Insights into microbial contamination and antibiotic resistome traits in pork wholesale market: An evaluation of the disinfection effect of sodium hypochlorite. Chlorine and its derivatives, such as sodium hypochlorite (NaClO) and chlorine dioxide, are frequently employed as disinfectants throughout the pork supply chain in China. Nevertheless, the extensive use of NaClO has the potential to cause the creation of 'chlorine-tolerant bacteria' and accelerate the evolution of antibiotic resistance. This study evaluated the efficacy of NaClO disinfection by examining alterations in the microbiome and resistome of a pork wholesale market (PWM), and bacteria isolation and analysis were performed to validate the findings. As expected, the taxonomic compositions of bacteria was significantly different before and after disinfection. Notably, Salmonella enterica (S. enterica), Salmonella bongori (S. bongori), Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), and Pseudomonas aeruginosa (P. aeruginosa) were observed on all surfaces, indicating that the application of NaClO disinfection treatment in PWM environments for pathogenic bacteria is limited. Correlations were identified between antibiotic resistance genes (ARGs) associated with aminoglycosides (aph(3'')-I, aph(6')-I), quinolone (qnrB, abaQ), polymyxin (arnA, mcr-4) and disinfectant resistance genes (emrA/BD, mdtA/B/C/E/F). Furthermore, correlations were found between risk Rank I ARGs associated with aminoglycoside (aph(3')-I), tetracycline (tetH), beta_lactam (TEM-171), and disinfectant resistance genes (mdtB/C/E/F, emrA, acrB, qacG). Importantly, we found that Acinetobacter and Salmonella were the main hosts of disinfectant resistance genes. The resistance mechanisms of the ARGs identified in PWM were dominated by antibiotic deactivation (38.7%), antibiotic efflux (27.2%), and antibiotic target protection (14.4%). The proportion of genes encoding efflux pumps in the PWM resistome increased after disinfection. Microbial cultures demonstrated that the traits of microbial contamination and antibiotic resistane were consistent with those observed by metagenomic sequencing. This study highlights the possibility of cross-resistance between NaClO disinfectants and antibiotics, which should not be ignored.202438382341
316720.9928Assessing Antibiotic-Resistant Genes in University Dormitory Washing Machines. University dormitories represent densely populated environments, and washing machines are potential sites for the spread of bacteria and microbes. However, the extent of antibiotic resistance gene (ARG) variation in washing machines within university dormitories and their potential health risks are largely unknown. To disclose the occurrence of ARGs and antibiotic-resistant bacteria from university dormitories, we collected samples from washing machines in 10 dormitories and used metagenomic sequencing technology to determine microbial and ARG abundance. Our results showed abundant microbial diversity, with Proteobacteria being the dominant microorganism that harbors many ARGs. The majority of the existing ARGs were associated with antibiotic target alteration and efflux, conferring multidrug resistance. We identified tnpA and IS91 as the most abundant mobile genetic elements (MGEs) in washing machines and found that Micavibrio aeruginosavorus, Aquincola tertiaricarbonis, and Mycolicibacterium iranicum had high levels of ARGs. Our study highlights the potential transmission of pathogens from washing machines to humans and the surrounding environment. Pollution in washing machines poses a severe threat to public health and demands attention. Therefore, it is crucial to explore effective methods for reducing the reproduction of multidrug resistance.202438930496
717630.9927Significant higher airborne antibiotic resistance genes and the associated inhalation risk in the indoor than the outdoor. Inhalation of airborne antibiotic resistance genes (ARGs) can lead to antimicrobial resistance and potential health risk. In modern society, increasing individuals stay more indoors, however, studies regarding the exposure to airborne ARGs in indoor environments and the associated risks remain limited. Here, we compared the variance of aerosol-associated ARGs, bacterial microbiomes, and their daily intake (DI) burden in dormitory, office, and outdoor environments in a university in Tianjin. The results indicated that compared to outdoor aerosols, indoors exhibited significantly higher absolute abundance of both ARG subtypes and mobile genetic elements (MGEs) (1-7 orders of magnitude), 16S rRNA genes (2-3 orders), and total culturable bacteria (1-3 orders). Furthermore, we observed that significantly different airborne bacterial communities are the major drivers contributing to the variance of aerosol-associated ARGs in indoor and outdoor aerosols. Notably, the high abundances of total bacteria, potential pathogenic genera, and ARGs (particularly those harbored by pathogens) in indoor and outdoor aerosols, especially in indoors, may pose an increased exposure risk via inhalation. The successful isolation of human pathogens such as Elizabethkingia anopheles, Klebsiella pneumonia, and Delftia lacustris resistant to the "last-resort" antibiotics carbapenems and polymyxin B from indoor aerosols further indicated an increased exposure risk in indoors. Together, this study highlights the potential risks associated with ARGs and their inhalation to human health in indoor environments.202133120141
320240.9926Cockroach Microbiome Disrupts Indoor Environmental Microbial Ecology with Potential Public Health Implications. Cockroaches pose a significant global public health concern. However, besides the well-recognized cockroach-induced allergy, the potential impact of the cockroach microbiome on human health through various means is not yet fully elucidated. This study aimed to clarify the health impacts of cockroaches by investigating the microbial interactions among cockroaches, the indoor environment, and humans. We simultaneously collected cockroach, indoor environment (indoor air and floor dust), and human (exhaled breath condensate and skin) samples from residential areas in five cities representing distinct climate zones in China. The 16S rDNA sequencing results revealed that cockroaches harbor diverse bacterial populations that vary across different cities. The prevalence of potential pathogenic bacteria (PPB) in cockroaches ranged from 1.1% to 58.9%, with dominant resistance genes conferring resistance to tetracycline, macrolide, and beta-lactam. The relationships between the cockroach microbiome and the associated environmental and human microbiomes were explored by using fast expectation-maximization microbial source tracking (FEAST). The potential contribution of cockroach bacteria to the floor dust-borne microbiome and indoor airborne microbiome was estimated to be 5.6% and 1.3%, respectively. Similarly, the potential contribution of cockroach PPB to the floor dust-borne microbiome and indoor airborne microbiome was calculated to be 4.0% and 1.2%, respectively. In residences with cockroach infestations, the contribution of other sources to the indoor environment was slightly increased. Collectively, the role of cockroaches in the transmission of microorganisms, particularly pathogenic bacteria and antibiotic resistance genes, cannot be overlooked.202540270532
680250.9926Distinct species turnover patterns shaped the richness of antibiotic resistance genes on eight different microplastic polymers. Elucidating the formation mechanism of plastisphere antibiotic resistance genes (ARGs) on different polymers is necessary to understand the ecological risks of plastisphere ARGs. Here, we explored the turnover and assembly mechanism of plastisphere ARGs on 8 different microplastic polymers (4 biodegradable (bMPs) and 4 non-biodegradable microplastics (nMPs)) by metagenomic sequencing. Our study revealed the presence of 479 ARGs with abundance ranging from 41.37 to 58.17 copies/16S rRNA gene in all plastispheres. These ARGs were predominantly multidrug resistance genes. The richness of plastisphere ARGs on different polymers had a significant correlation with the contribution of species turnover to plastisphere ARGs β diversity. Furthermore, polymer type was the most critical factor affecting the composition of plastisphere ARGs. More opportunistic pathogens carrying diverse ARGs on BMPs (PBAT, PBS, and PHA) with higher horizontal gene transfer potential may further magnify the ecological risks and human health threats. For example, the opportunistic pathogens Riemerella anatipestifer, Vibrio campbellii, and Vibrio cholerae are closely related to human production and life, which were the important potential hosts of many plastisphere ARGs and mobile genetic elements on BMPs. Thus, we emphasize the urgency of developing the formation mechanism of plastisphere ARGs and the necessity of controlling BMPs and ARG pollution, especially BMPs, with ever-increasing usage in daily life.202438971360
327760.9926Airborne antibiotic resistome and human health risk in railway stations during COVID-19 pandemic. Antimicrobial resistance is recognized as one of the greatest public health concerns. It is becoming an increasingly threat during the COVID-19 pandemic due to increasing usage of antimicrobials, such as antibiotics and disinfectants, in healthcare facilities or public spaces. To explore the characteristics of airborne antibiotic resistome in public transport systems, we assessed distribution and health risks of airborne antibiotic resistome and microbiome in railway stations before and after the pandemic outbreak by culture-independent and culture-dependent metagenomic analysis. Results showed that the diversity of airborne antibiotic resistance genes (ARGs) decreased following the pandemic, while the relative abundance of core ARGs increased. A total of 159 horizontally acquired ARGs, predominantly confering resistance to macrolides and aminoglycosides, were identified in the airborne bacteria and dust samples. Meanwhile, the abundance of horizontally acquired ARGs hosted by pathogens increased during the pandemic. A bloom of clinically important antibiotic (tigecycline and meropenem) resistant bacteria was found following the pandemic outbreak. 251 high-quality metagenome-assembled genomes (MAGs) were recovered from 27 metagenomes, and 86 genera and 125 species were classified. Relative abundance of ARG-carrying MAGs, taxonomically assigned to genus of Bacillus, Pseudomonas, Acinetobacter, and Staphylococcus, was found increased during the pandemic. Bayesian source tracking estimated that human skin and anthropogenic activities were presumptive resistome sources for the public transit air. Moreover, risk assessment based on resistome and microbiome data revealed elevated airborne health risks during the pandemic.202336731187
513470.9926Genomic analysis and antibiotic resistance of a multidrug-resistant bacterium isolated from pharmaceutical wastewater treatment plant sludge. Pharmaceutical wastewater treatment plants (PWWTPs) serve as reservoirs for antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). In this study, a multiantibiotic-resistant strain of Acinetobacter lwoffii (named N4) was isolated from the dewatered sludge of a PWWTP. N4 exhibited high resistance to both antibiotics and metals, with minimum inhibitory concentrations (MICs) of chloramphenicol and cefazolin reaching 1024 mg·L(-1) and MICs of Cu(2+) and Zn(2+) reaching 512 mg·L(-1). Co-sensitization experiments revealed that when antibiotics are co-existing with heavy metal ions (such as TET and Cd(2+), AMP and Cu(2+)) could enhance the resistance of N4 to them. Whole-genome sequencing of N4 revealed a genome size of 0.37 Mb encoding 3359 genes. Among these, 23 ARGs were identified, including dfrA26, bl2be(CTXM), catB3, qnrB, rosB, tlrC, smeD, smeE, mexE, ceoB, oprN, acrB, adeF, ykkC, ksgA and sul2, which confer resistance through mechanisms such as efflux pumps, enzyme modification and target bypass. Additionally, the N4 genome contained 187 genes associated with human disease and 249 virulence factors, underscoring its potential pathogenicity. Overall, this study provides valuable insights into ARBs in PWWTPs and highlights the potential risks posed by multidrug-resistant strains such as N4.202539626482
527780.9926Antibiotic resistance of bacteria isolated from shrimp hatcheries and cultural ponds on Donghai Island, China. The resistance of bacteria to 12 different antibiotics was investigated in shrimp farms on Donghai Island, China. Antibiotic-resistant bacteria were found to be widespread in shrimp farms, indicating a high environmental risk. Further, significant differences were found in bacterial strains among farms (ANOVA, p<0.05), showing resistance to antibiotics such as ampicillin, trimethoprim, compound sinomi, tetracycline, chloramphenicol and cefazolin. No significant differences in antibiotic resistance were found among 6 hatcheries evaluated in this study (ANOVA, p>0.05), between exalted and traditional shrimp ponds (ANOVA, p>0.05), and between cultural ponds and corresponding control water source sites (T-test, p>0.05). In cultural ponds, no significant difference in bacterial resistance to antibiotics was found between water and sediment (T-test, p>0.05), and antibiotic resistance of bacteria from water showed a significant positive correlation with that from sediment (p<0.05). Therefore, our study indicates that bacterial multiple antibiotic resistance (MAR) is more widespread in shrimp hatcheries than ponds.201121945557
309090.9925Networking and co-occurrence of virulent and multidrug resistant environmental bacteria in different aquatic systems: A gap in MDR-virulence transfer? Co-occurrence of resistance and virulence is often overlooked in aquatic bacteria as environmental reservoirs, while transmission of these characteristics to clinically significant strains present unforeseen problems in future. In this investigation, environmental bacteria identified concurrently from multiple aquatic habitats viz., groundwater, canal, river and coastal waters were profiled for antibiotic resistance, metal tolerance, virulence factors and genes coding for these determinants. Strains from polluted river and canal exhibited higher resistance and virulence, especially Pseudomonas gessardii and P. fluorescens displayed high antibiotic resistance index (ARI > 0.6-0.8) with Alkaline Protease and Phospholipase production. Opportunistic pathogens including Vibrio parahaemolyticus, V. alginolyticus, V. vulnificus, Corynebacterium and Comamonas testosteroni expressed all three virulence factors with relatively low resistance. However, V. vulnificus and V. alginolyticus exhibited multiclass antibiotic resistance (5/6 classes). Metagenomic analysis revealed that genes corresponding to beta-lactam resistance were significantly higher (p < 0.05) in freshwater than seawater, while multidrug resistance gene were higher (p < 0.05) in seawater. In all aquatic bodies, abundant virulence genes belonged to secretion system proteins followed by motility related genes. Culturable bacteria revealed differential distribution of positive and negative correlation between 31 targeted genes with expressed resistance and virulence. Among Acinetobacter, significant positive correlation was found between Phospholipase production, other virulence genes (OVGs) and resistance to DNA Synthesis Inhibitors (DSI). In Pseudomonas, positive correlation was detected between toxin genes (toxA, eta, hlyA and stx) and resistance to cell wall synthesis inhibitors (CSI) as well as with OVGs and adhesion genes (eae, afa, papC and papA). Network analysis displayed unique clustering of genes ncc, arsB, strA, merA and intI dominated by non-pathogens and distinct clustering of genes pho, erm, nfsA, trh, lasB, tdh and invA by Vibrio. This investigation extends insight on co-occurring resistance and virulence in aquatic reservoir bacteria that could pose serious threats to public health in future.202336206910
3093100.9925Prevalence of antibiotic resistance and virulence genes in the biofilms from an aquifer recharged with stormwater. An improved understanding of the diversity and composition of microbial communities carrying antibiotic resistance genes (ARGs) and virulence genes (VGs) in aquifers recharged with stormwater is essential to comprehend potential human health risks from water reuse. A high-throughput functional gene array was used to study the prevalence of ARGs and VGs in aquifer biofilms (n = 27) taken from three boreholes over three months. Bacterial genera annotated as opportunistic pathogens such as Aeromonas, Burkholderia, Pseudomonas, Shewanella, and Vibrio were ubiquitous and abundant in all biofilms. Bacteria from clinically relevant genera, Campylobacter, Enterobacter, Klebsiella, Mycobacterium, Mycoplasma, and Salmonella were detected in biofilms. The mean travel time of stormwater from the injection well to P1 and P3 boreholes was 260 and 360 days respectively. The presence of ARGs and VGs in the biofilms from these boreholes suggest a high spatial movement of ARGs and VGs in the aquifer. The ARGs with the highest abundance were small multidrug resistance efflux pumps (SMR) and multidrug efflux (Mex) followed by β-lactamase C genes. β- lactamase C encoding genes were primarily detected in Enterobacteriaceae, Pseudomonadaceae, Bacillaceae, and Rhodobacteraceae families. The VGs encoding siderophores, including aerobactin (iro and iuc genes), followed by pilin, hemolysin, and type III secretion were ubiquitous. Canonical correspondence analysis suggested that Total Organic Carbon (TOC), Dissolved Organic Carbon (DOC), turbidity, and Fe concentration has a significant impact on the microbial community structure of bacteria carrying ARGs and VGs. Post abstraction treatment of groundwater may be prudent to improve water security and reduce potential health risks.202032798893
3174110.9925Spatio-temporal variation of the microbiome and resistome repertoire along an anthropogenically dynamic segment of the Ganges River, India. Aquatic ecosystems are regarded as a hub of antibiotic and metal resistance genes. River Ganges is a unique riverine system in India with socio-cultural and economic significance. However, it remains underexplored for its microbiome and associated resistomes along its anthropogenically impacted course. The present study utilized a nanopore sequencing approach to depict the microbial community structure in the sediments of the river Ganges harboring antibiotic and metal resistance genes (A/MRGs) in lower stretches known for anthropogenic impact. Comprehensive microbiome analyses revealed resistance genes against 23 different types of metals and 28 classes of antibiotics. The most dominant ARG category was multidrug resistance, while the most prevalent MRGs conferred resistance against copper and zinc. Seasonal differences dismally affected the microbiota of the Ganges. However, resistance genes for fosmidomycin and tetracycline varied with season ANOVA, p < 0.05. Interestingly, 333 and 334 ARG subtypes were observed at all the locations in pre-monsoon and post-monsoon, respectively. The taxa associated with the dominant ARGs and MRGs were Pseudomonas and Burkholderia, which are important nosocomial pathogens. A substantial phage diversity for pathogenic and putrefying bacteria at all locations attracts attention for its use to tackle the dissemination of antibiotic and metal-resistant bacteria. This study suggests the accumulation of antibiotics and metals as the driving force for the emergence of resistance genes and the affiliated bacteria trafficking them. The present metagenomic assessment highlights the need for comprehensive, long-term biological and physicochemical monitoring and mitigation strategies toward the contaminants associated with ARGs and MRGs in this nationally important river.202336773904
3850120.9925Molecular Evidence for Occurrence of Heavy Metal and Antibiotic Resistance Genes Among Predominant Metal Tolerant Pseudomonas sp. and Serratia sp. Prevalent in the Teesta River. Riverine ecosystems polluted by pharmaceutical and metal industries are potential incubators of bacteria with dual resistance to heavy metals and antibiotics. The processes of co-resistance and cross resistance that empower bacteria to negotiate these challenges, strongly endorse dangers of antibiotic resistance generated by metal stress. Therefore, investigation into the molecular evidence of heavy metal and antibiotic resistance genes was the prime focus of this study. The selected Pseudomonas and Serratia species isolates evinced by their minimum inhibitory concentration and multiple antibiotic resistance (MAR) index showed significant heavy metal tolerance and multi-antibiotic resistance capability, respectively. Consequently, isolates with higher tolerance for the most toxic metal cadmium evinced high MAR index value (0.53 for Pseudomonas sp., and 0.46 for Serratia sp.) in the present investigation. Metal tolerance genes belonging to P(IB)-type and resistance nodulation division family of proteins were evident in these isolates. The antibiotic resistance genes like mexB, mexF and mexY occurred in Pseudomonas isolates while sdeB genes were present in Serratia isolates. Phylogenetic incongruency and GC composition analysis of P(IB)-type genes suggested that some of these isolates had acquired resistance through horizontal gene transfer (HGT). Therefore, the Teesta River has become a reservoir for resistant gene exchange or movement via selective pressure exerted by metals and antibiotics. The resultant adaptive mechanisms and altered phenotypes are potential tools to track metal tolerant strains with clinically significant antibiotic resistance traits.202337227565
3183130.9925The microbiome, resistome, and their co-evolution in sewage at a hospital for infectious diseases in Shanghai, China. The emergence of antibiotic-resistant bacteria (ARB) caused by the overuse of antibiotics severely threatens human health. Hospital sewage may be a key transmission hub for ARB. However, the complex link between the microbiome and resistomeresistance in hospital sewage remains unclear. In this study, metagenomic assembly and binning methods were used to investigate the microbial community, resistome, and association of antibiotic resistance genes (ARGs) with ARB in sewage from 10 representative sites (outpatient building, surgery building, internal medicine buildings [IMB1-4], staff dormitory, laboratory animal building, tuberculosis building [TBB], and hospital wastewater treatment plant) of a hospital in Shanghai from June 2021 to February 2022. A total of 252 ARG subtypes, belonging to 17 antibiotic classes, were identified. The relative abundance of KPC-2 was higher at IMBs and TBB than at other sites. Of the ARG-carrying contigs, 47.3%-62.6% were associated with mobile genetic elements, and the proportion of plasmid-associated ARGs was significantly higher than that of chromosome-associated ARGs. Although a similar microbiome composition was shared, certain bacteria were enriched at different sites. Potential pathogens Enterococcus B faecium and Klebsiella pneumoniae were primarily enriched in IMB2 and IMB4, respectively. The same ARGs were identified in diverse bacterial hosts (especially pathogenic bacteria), and accordingly, the latter possessed multiple ARGs. Furthermore, gene flow was frequently observed in the sewage of different buildings. The results provide crucial information on the characterization profiles of resistomes in hospital sewage in Shanghai.IMPORTANCEEnvironmental antibiotic resistance genes (ARGs) play a critical role in the emergence and spread of antimicrobial resistance, which poses a global health threat. Wastewater from healthcare facilities serves as a significant reservoir for ARGs. Here, we characterized the microbial community along with the resistome (comprising all antibiotic resistance genes) in wastewater from a specialized hospital for infectious diseases in Shanghai. Potential pathogenic bacteria (e.g., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterococcus B faecium) were frequently detected in hospital wastewater and carried multiple ARGs. A complex link between microbiome and resistome was observed in the wastewater of this hospital. The monitoring of ARGs and antibiotic-resistant bacteria (ARB) in hospital wastewater might be of great significance for preventing the spread of ARB.202438132570
6858140.9925Antibiotic resistance genes risks in relation to host pathogenicity and mobility in a typical hospital wastewater treatment process. Hospital wastewaters (HWWs) serve as critical reservoirs for disseminating antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). However, the dynamics and noteworthy shifts of ARGs and their associated pathogenicity, mobility, and resistome risks during HWWs treatment processes remain poorly understood. Utilizing metagenomic sequencing and assembly, we identified 817 ARG subtypes conferring resistance to 20 classes of antibiotics across 18 HWW samples from influent to effluent. Genes encoding resistance to multidrug, aminoglycoside and beta_lactam were the most prevalent ARG types, reflecting patterns observed in clinical settings. On-site treatment efforts decreased the relative abundance of ARGs by 77.4% from influent to secondary sedimentation, whereas chlorine disinfection significantly increased their abundance in the final effluent. Deterministic processes primarily drove the taxonomic assembly, with Proteobacteria being the most abundant phylum and serving as the primary host for 15 ARG types. Contig-based analysis further revealed 114 pathogenic ARB, with Escherichia coli, Pseudomonas alcaligenes, and Pseudomonas aeruginosa exhibiting multidrug-resistant. The contributions of host bacteria and pathogenic ARB varied throughout wastewater treatment. In addition, 7.10%-31.0 % ARGs were flanked by mobile genetic elements (MGEs), predominantly mediated by transposase (74.1%). Notably, tnpA exhibited the highest potential for ARG dissemination, frequently co-occurring with beta-lactam resistance genes (35.2%). Considering ARG profiles, pathogenic hosts, and transferability, raw influent exhibited the highest antibiotic resistome risk index (ARRI), followed by the final effluent. Chlorine disinfection exacerbated resistome risks by inducing potential pathogenic ARB and mobile ARGs, posing threats to the receiving environment. This study delineates ARG occurrence patterns, highlights mechanisms of ARG carriage and horizontal gene transfer, and provides insights for assessing resistance risks and prioritizing interventions in clinical settings.202438964571
6796150.9925Assessing the pig microbial health impacts of smallholder farming. The livestock industry has long been a hotspot environment for antibiotic resistance genes, with smallholder farming still holding a significant position in pig farming. However, the microbial antibiotic resistance and pathogen risks in pigs under the smallholder farming model remain unclear. We systematically analyzed the antibiotic resistance and microbial composition of pig feces from smallholder and large-scale farming models in Sichuan. The results indicated a lower abundance of antibiotic resistance genes (ARGs) and similar microbial composition in smallholder farming compared to large-scale farming. Beneficial bacteria were more abundant in small-scale farming, whereas large-scale farming exhibited more ARGs, virulence genes, and human pathogenic bacteria (HPBs), including ESBL Escherichia coli strains closely related to human strains, indicating higher zoonotic risk. The findings suggest that smallholder farming presents a relatively better microbial composition and resistance profile, highlighting its advantages over large-scale farming in terms of pig and human health. It is noteworthy that a considerable proportion of HPBs carrying ARGs still exist in the feces from smallholder farming, and given the openness of fecal handling, there remains a high risk of transmitting ARGs and pathogens to humans.202439454358
3377160.9925Pharmaceutical industrial wastewater exhibiting the co-occurrence of biofilm-forming genes in the multidrug-resistant bacterial community poses a novel environmental threat. The interaction of the environment with the effluent of wastewater treatment plants, having antibiotics, multidrug-resistant (MDR) bacteria, and biofilm-forming genes (BFGs), has vast environmental risks. Antibiotic pollution bottlenecks environmental bacteria and has the potential to significantly lower the biodiversity of environmental bacteria, causing an alteration in ecological equilibrium. It can induce selective pressure for antibiotic resistance (AR) and can transform the non-resistant environmental bacteria into a resistant form through HGT. This study investigated the occurrence of MDR bacteria, showing phenotypic and genotypic characteristics of biofilm. The bacteria were isolated from the pharmaceutical wastewater treatment plants (WWTPs) of Dehradun and Haridwar (India), located in the pharmaceutical areas. The findings of this study demonstrate the coexistence of BFGs and MDR clinical bacteria in the vicinity of pharmaceutical industrial wastewater treatment plants. A total of 47 bacteria were isolated from both WWTPs and tested for antibiotic resistance to 13 different antibiotics; 16 isolates (34.04 %) tested positive for MDR. 5 (31.25 %) of these 16 MDR isolates were producing biofilm and identified as Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Burkholderia cepacia. The targeted BFGs in this study were ompA, bap and pslA. The most common co-occurring gene was ompA (80 %), with pslA (40 %) being the least common. A. baumannii contains all three targeted genes, whereas B. cepacia only has bap. Except for B. cepacia, all the biofilm-forming MDR isolates show AR to all the tested antibiotics and prove that the biofilm enhances the AR potential. The samples of both wastewater treatment plants also showed the occurrence of tetracycline, ampicillin, erythromycin and chloramphenicol, along with high levels of BOD, COD, PO(4)(-3), NO(3)(-), heavy metals and organic pollutants. The co-occurrence of MDR and biofilm-forming tendency in the clinical strain of bacteria and its environmental dissemination may have an array of hazardous impacts on human and environmental health.202439002428
2784170.9925Characteristics of antibiotic resistance of airborne Staphylococcus isolated from metro stations. This study focused on the presence of antibiotic-resistant bacteria in a metro system as an example of a public transportation system. The molecular characteristics of Staphylococcus were investigated to discern which strains were isolated from metro stations in Shanghai. These were compared with strains isolated from hospital treatment rooms and parks. Airborne Staphylococcus samples in the metro were resistant to an average of 2.64 antibiotic types, and 58.0% of the strain samples were resistant to at least three antibiotics; this was a significantly higher rate than strains from the park, but was lower than those from hospitals. The presence of two antibiotic resistance genes of Staphylococcus strains, mecA (28.0%) and qac (40.0%), were also found at significantly higher levels in metro samples than park samples, but did not differ significantly from hospital samples. Furthermore, 22.0% of the metro Staphylococcus samples were found to be biofilm-positive. The high rate of antibiotic resistance found in Staphylococcus samples collected from metro stations, and the discovery of antibiotic-resistant genes, indicate that the closed indoor environment and crowded passengers may accelerate the spread of antibiotic resistant strains. More attention should be paid to the inspection and control of antibiotic resistant strains in public transportation systems.201323765189
7174180.9925Metagenomic analysis deciphers airborne pathogens with enhanced antimicrobial resistance and virulence factors in composting facilities. The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR remains unknown, particularly with regard to human-pathogenic antibiotic-resistant bacteria (HPARB). In this study, air and paired compost samples were collected from a full-scale composting facility, and the antibiotic resistome, microbiome, and HPARB were systematically analyzed in both two habitats using metagenomic analysis. Current result uncovered the profiles of HPARB in air, showing that significantly more airborne HPARB were assembled than that in compost samples. Airborne pathogens harboredan increased abundance and diversity of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in comparison with compost-borne HPARB. The core antibiotic resistome represents 18.58% of overall ARG subtypes, contributing to 86.31% of ARG abundance. A higher number of enriched core ARGs (2.16- to 13.36-times higher), including mexF, tetW, and vanS, were observed in air samples compared to compost samples. As an important human pathogen, Mycobacterium tuberculosis was prevalent in the air and carried more ARG (6) and VFG (130) subtypes than those in compost. A significantly higher risk score was detected for airborne AMR in the composting facility compared to that in hospital and urban environments. This study revealed the enhanced airborne HPARB through comparative experiments between air and composting habitats. It highlighted the unrecognized AMR risks associated with air in composting site and provided a scientific basis for accurately assessing health outcomes caused by occupational exposure.202540472755
7169190.9925Distributions of pathogenic bacteria, antibiotic resistance genes, and virulence factors in pig farms in China. The abundance of antibiotic resistance genes (ARGs) in pig feces can lead to their dissemination in the pig farm environment, posing a serious risk to human health through potential exposure and transmission. However, the extent of microbial contamination in pig farms, including ARGs, virulence factor genes (VFGs), mobile genetic elements (MGEs), and human bacterial pathogens (HBPs), is still largely unknown. In this study, metagenomics was employed to identify the composition and characteristics of microorganism communities, ARGs, VFGs, MGEs and HBPs in pig farm environments from seven different regions of China. The results showed that there were significant differences in the composition of microorganisms and Firmicutes, Bacteroides, Proteobacteriahe Spirochaetes were the dominant phyla in the pig farm environment. The abundance and composition of ARGs, VFGs, MGEs and HBPs varied significantly in pig farm environments in different regions, with the abundance in Fujian being significantly higher than that in other regions. In total, 216 ARGs, 479 VFGs, 143 MGEs and 78 HBPs were identified across all pig feces, soil, and wastewater samples. The most prominent ARGs were those related to tetracycline, aminoglycoside, and MLS resistance. Escherichia coli, Arcobacter cryaerophilus, Corynebacterium xerosis, Aerococcus viridans, and Collinsella aerofaciens were the most commonly found HBPs in the pig farm environment. Procrustes analysis and Mantel test results showed a strong correlation between ARGs and HBPs, VFGs and HBPs, and ARGs and VFGs. ARGs were mainly harbored by E. coli, Klebsiella pneumoniae, and Enterococcus faecalis in the pig farm environments. The random forest model indicated that the presence of MGEs (intI1, IS91, and tnpA) was significantly correlated with the total abundance of resistance genes, which can be utilized as an important indicator for measuring resistance genes. The study establishes a foundational understanding of the prevalence and diversity of ARGs, VFGs, and HBPs in pig farm environments, aiding in the development of effective management strategies to mitigate ecological and public health risks.202540609272