# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7876 | 0 | 0.9453 | Sulfamethoxazole impact on pollutant removal and microbial community of aerobic granular sludge with filamentous bacteria. In this study, sulfamethoxazole (SMX) was employed to investigate its impact on the process of aerobic granule sludge with filamentous bacteria (FAGS). FAGS has shown great tolerance ability. FAGS in a continuous flow reactor (CFR) could keep stable with 2 μg/L of SMX addition during long-term operation. The NH(4)(+), chemical oxygen demand (COD), and SMX removal efficiencies kept higher than 80%, 85%, and 80%, respectively. Both adsorption and biodegradation play important roles in SMX removal for FAGS. The extracellular polymeric substances (EPS) might play important role in SMX removal and FAGS tolerance to SMX. The EPS content increased from 157.84 mg/g VSS to 328.22 mg/g VSS with SMX addition. SMX has slightly affected on microorganism community. A high abundance of Rhodobacter, Gemmobacter, and Sphaerotilus of FAGS may positively correlate to SMX. The SMX addition has led to the increase in the abundance of the four sulfonamide resistance genes in FAGS. | 2023 | 36871701 |
| 8110 | 1 | 0.9449 | Removal of chlortetracycline and antibiotic resistance genes in soil by earthworms (epigeic Eisenia fetida and endogeic Metaphire guillelmi). The impacts of two ecological earthworms on the removal of chlortetracycline (CTC, 0.5 and 15 mg kg(-1)) and antibiotic resistance genes (ARGs) in soil were explored through the soil column experiments. The findings showed that earthworm could significantly accelerate the degradation of CTC and its metabolites (ECTC) in soil (P < 0.05), with epigeic Eisenia fetida promoting degradation rapidly and endogeic Metaphire guillelmi exhibiting a slightly better elimination effect. Earthworms alleviated the abundances of tetR, tetD, tetPB, tetG, tetA, sul1, TnpA, ttgB and intI1 in soil, with the total relative abundances of ARGs decreasing by 35.0-44.2% in earthworm treatments at the 28th day of cultivation. High throughput sequencing results displayed that the structure of soil bacteria community was modified apparently with earthworm added, and some possible CTC degraders, Aeromonas, Flavobacterium and Luteolibacter, were promoted by two kinds of earthworms. Redundancy analysis demonstrated that the reduction of CTC residues, Actinobacteria, Acidobacteria and Gemmatimonadetes owing to earthworm stimulation was responsible for the removal of ARGs and intI1 in soil. Additionally, intI1 declined obviously in earthworm treatments, which could weaken the risk of horizontal transmission of ARGs. Therefore, earthworm could restore the CTC-contaminated soil via enhancing the removal of CTC, its metabolites and ARGs. | 2021 | 33798888 |
| 7940 | 2 | 0.9433 | Microplastics affect the ammonia oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes. Microplastics (MPs) and antibiotic resistance genes (ARGs), as emerging pollutants, are frequently detected in wastewater treatment plants, and their threats to the environment have received extensive attentions. However, the effects of MPs on the nitrification of aerobic granular sludge (AGS) and the spread patterns of intracellular and extracellular ARGs (iARGs and eARGs) in AGS were still unknown. In this study, the responses of AGS to the exposure of 1, 10 and 100 mg/L of typical MPs (polyvinyl chloride (PVC), polyamide (PA), polystyrene (PS) and polyethylene (PE)) and tetracycline were focused on in 3 L nitrifying sequencing batch reactors. 10 mg/L MPs decreased the nitrification function, but nitrification could recover. Furthermore, MPs inhibited ammonia-oxidizing bacteria and enriched nitrite-oxidizing bacteria, leading partial nitrification to losing stability. PVC, PA and PS stimulated the secretion of extracellular polymeric substances and reactive oxygen species. PE had less negative effect on AGS than PVC, PA and PS. The abundances of iARGs and eARGs (tetW, tetE and intI1) increased significantly and the intracellular and extracellular microbial communities obviously shifted in AGS system under MPs stress. Potential pathogenic bacteria might be the common hosts of iARGs and eARGs in AGS system and were enriched in AGS and MPs biofilms. | 2021 | 33387747 |
| 523 | 3 | 0.9429 | Sulfide-carbonate-mineralized functional bacterial consortium for cadmium removal in flue gas. Sulfide-carbonate-mineralized functional bacterial consortium was constructed for flue gas cadmium biomineralization. A membrane biofilm reactor (MBfR) using the bacterial consortium containing sulfate reducing bacteria (SRB) and denitrifying bacteria (DNB) was investigated for flue gas cadmium (Cd) removal. Cadmium removal efficiency achieved 90%. The bacterial consortium containing Citrobacter, Desulfocurvus and Stappia were dominated for cadmium resistance-nitrate-sulfate reduction. Under flue gas cadmium stress, ten cadmium resistance genes (czcA, czcB, czcC, czcD, cadA, cadB, cadC, cueR, copZ, zntA), and seven genes related to sulfate reduction, increased in abundance; whereas others, nine genes related to denitrification, decreased, indicating that cadmium stress was advantageous to sulfate reduction in the competition with denitrification. A bacterial consortium could capable of simultaneously cadmium resistance, sulfate reduction and denitrification. Microbial induced carbonate precipitation (MICP) and biological adsorption process would gradually yield to sulfide-mineralized process. Flue gas cadmium could transform to Cd-EPS, cadmium carbonate (CdCO(3)) and cadmium sulfide (CdS) bioprecipitate. The functional bacterial consortium was an efficient and eco-friendly bifunctional bacterial consortium for sulfide-carbonate-mineralized of cadmium. This provides a green and low-carbon advanced treatment technology using sulfide-carbonate-mineralized functional bacterial consortium for the removal of cadmium or other hazardous heavy metal contaminants in flue gas. | 2024 | 39019186 |
| 7745 | 4 | 0.9426 | Iron-modified biochar boosts anaerobic digestion of sulfamethoxazole pharmaceutical wastewater: Performance and microbial mechanism. The accumulation of volatile fatty acids (VFAs) caused by antibiotic inhibition significantly reduces the treatment efficiency of sulfamethoxazole (SMX) wastewater. Few studies have been conducted to study the VFAs gradient metabolism of extracellular respiratory bacteria (ERB) and hydrogenotrophic methanogen (HM) under high-concentration sulfonamide antibiotics (SAs). And the effects of iron-modified biochar on antibiotics are unknown. Here, the iron-modified biochar was added to an anaerobic baffled reactor (ABR) to intensify the anaerobic digestion of SMX pharmaceutical wastewater. The results demonstrated that ERB and HM were developed after adding iron-modified biochar, promoting the degradation of butyric, propionic and acetic acids. The content of VFAs reduced from 1166.0 mg L(-1) to 291.5 mg L(-1). Therefore, chemical oxygen demand (COD) and SMX removal efficiency were improved by 22.76% and 36.51%, and methane production was enhanced by 6.19 times. Furthermore, the antibiotic resistance genes (ARGs) such as sul1, sul2, intl1 in effluent were decreased by 39.31%, 43.33%, 44.11%. AUTHM297 (18.07%), Methanobacterium (16.05%), Geobacter (6.05%) were enriched after enhancement. The net energy after enhancement was 0.7122 kWh m(-3). These results confirmed that ERB and HM were enriched via iron-modified biochar to achieve high efficiency of SMX wastewater treatment. | 2023 | 37030222 |
| 7884 | 5 | 0.9425 | Underlying the inhibition mechanisms of sulfate and lincomycin on long-term anaerobic digestion: Microbial response and antibiotic resistance genes distribution. This study evaluated the resilience of a long-term anaerobic treatment system exposed to sulfate, lincomycin (LCM) and their combined stress. LCM was found to impede anaerobic propionate degradation, while sulfate for restraining methanogenic acetate utilization. The combined stress, with influent LCM of 200 mg/L and sulfate of 1404 mg/L, revealed severer inhibition on anaerobic digestion than individual inhibition, leading to 73.9 % and 38.5 % decrease in methane production and sulfate removal, respectively. Suppression on propionate-oxidizing bacteria like unclassified_f__Anaerolineae and unclassified_f__Syntrophaceae further demonstrated LCM's inhibitory effect on propionate degradation. Besides, the down-regulation of genes encoding dissimilatory sulfate reduction enzymes caused by LCM triggered great inhibition on sulfate reduction. A notable increase in ARGs was detected under sulfate-stressed condition, owing to its obvious enrichment of tetracycline-resistant genes. Genera including unclassified_f__Syntrophaceae, unclassified_f__Geobacteraceae and unclassified_f__Anaerolineaceae were identified as dominant host of ARGs and enriched by sulfate addition. Overall, these results could provide the theoretical basis for further enhancement on anaerobic digestion of pharmaceutical wastewater containing sulfate and lincomycin. | 2024 | 38185146 |
| 7886 | 6 | 0.9424 | Resistance of anammox granular sludge to copper nanoparticles and oxytetracycline and restoration of performance. Nanoparticles and antibiotics, the two most frequently detected emerging pollutants from different wastewater sources, are eventually discharged into wastewater treatment plants. In this study, the widely used materials CuNPs and oxytetracycline (OTC) were selected as target pollutants to investigate their joint effects on anaerobic ammonium oxidation (anammox). The results indicated that the environmental concentration slightly inhibited the performance of the reactors, while the performance rapidly deteriorated within a week under high-level combined shocks (5.0 mg L(-1) CuNPs and 2.0 mg L(-1) OTC). After the second shock (2.5 mg L(-1) CuNPs and 2.0 mg L(-1) OTC), the resistance of anammox bacteria was enhanced, with an elevated relative abundance of Candidatus Kuenenia and absolute abundance of hzsA, nirS, and hdh. Moreover, the extracellular polymeric substance (EPS) content and specific anammox activity (SAA) showed corresponding changes. Improved sludge resistance was observed with increasing CuNP and OTC doses, which accelerated the recovery of performance. | 2020 | 32244076 |
| 7969 | 7 | 0.9423 | Metagenomic insights into the influence of pH on antibiotic removal and antibiotic resistance during nitritation: Regulations on functional genus and genes. The changes in pH and the resulting presence of free nitrous acid (FNA) or free ammonia (FA) often inhibit antibiotic biodegradation during nitritation. However, the specific mechanisms through which pH, FNA and FA influence antibiotic removal and the fate of antibiotic resistance genes (ARGs) are not yet fully understood. In this study, the effects of pH, FNA, and FA on the removal of cefalexin and amoxicillin during nitritation were investigated. The results revealed that the decreased antibiotic removal under both acidic condition (pH 4.5) and alkaline condition (pH 9.5) was due to the inhibition of the expression of amoA in ammonia-oxidizing bacteria and functional genes (hydrolase-encoding genes, transferase-encoding genes, lyase-encoding genes, and oxidoreductase-encoding genes) in heterotrophs. Furthermore, acidity was the primary inhibitor of antibiotic removal at pH 4.5, followed by FNA. Antibiotic removal was primarily inhibited by alkalinity at pH 9.5, followed by FA. The proliferation of ARGs mediated by mobile genetic element was promoted under both acidic and alkaline conditions, attributed to the promotion of FNA and FA, respectively. Overall, this study highlights the inhibitory effects of acidity and alkalinity on antibiotic removal during nitritation. | 2024 | 39068965 |
| 8047 | 8 | 0.9422 | Simultaneous elimination of antibiotics and antibiotics resistance genes in nitritation of source-separated urine. Antibiotics in human urine could accelerate dissemination of antibiotics resistance genes (ARGs), posing potential threat to sewage. The nitritation of source-separated urine was a critical step to realize the urine resourcelization and nitrogen stabilization. However, the synergic control on antibiotics and ARGs during urine nitritation was unrevealed. This study investigated the removal profiles of five typical antibiotics and the shifts of microbial community and ARGs during stable nitritation. The result showed that sulfamethoxazole and roxithromycin were effectively eliminated with high removal efficiency of (95 ± 5) % and (90 ± 10) %, followed by enrofloxacin with removal efficiency of (60 ± 5) %, whereas trimethoprim and chloramphenicol showed low removal efficiency of less than 40 %. Ammonia oxidation bacteria and heterotrophic bacteria equally contributed to elimination of sulfamethoxazole with a high biodegradation rate of 0.1534 L/gVSS·h, while sorption and biodegradation jointly promoted other antibiotics removal. The total relative abundance of top 25 bacteria genera was decreased by 10 %. The total relative abundance of top 30 ARGs was decreased by more than 20 %, which was corresponding to the variation of bacterial community. The findings in this research would get a deeper insight into the eliminating antibiotics and controlling ARGs dissemination during nitritation of source-separated urine. | 2022 | 35897182 |
| 8064 | 9 | 0.9422 | Removal of sulfamethoxazole and antibiotic resistance genes in paddy soil by earthworms (Pheretima guillelmi): Intestinal detoxification and stimulation of indigenous soil bacteria. Vermiremediation, which use earthworms to remove contaminants from soil, has been proven to be an alternative, low-cost technology. However, the effects of earthworm activity, especially the degraders in earthworm intestines, on the fate of sulfamethoxazole (SMX), and the effects of intestinal bacteria on degrading bacteria in soil are unclear. In this study, the effects of earthworms on the fate of SMX and related antibiotic resistance genes (ARGs) were investigated. Special attention was paid to the impact of earthworms on SMX degradation efficiency, degradation products, related ARGs, and degraders in both soil and earthworm intestines; the effect of intestinal bacteria on soil bacteria associated with SMX was also studied. Earthworms significantly accelerated SMX degradation by both intestinal detoxification and the stimulation of indigenous soil bacteria. Compared with the treatment without earthworms, the treatment with earthworms reduced SMX residues by 25.1 %, 49.2 %, 35.7 %, 34.2 %, and 35.7 % on the 10th, 20th, 30th, 60th, and 90th days, respectively. Compared with those in soil (treated with earthworms), the SMX residues in wormcasts were further reduced by 12.2-29.0 % from the 2nd to the 20th day, producing some unique anaerobic degradation products that were distinct from those in the soil. In earthworm intestines, SMX degradation was enhanced by bacteria of the genera Microvirga, Sphingomonas, Methylobacterium, Bacillus, and Tumebacillus. All of these bacteria (except Bacillus spp.) entered and colonised the soil with wormcasts, further promoting SMX degradation. Additionally, earthworms removed a significant number of ARGs by increasing the fraction of potential SMX degraders and inhibiting the potential hosts of ARGs and int1. This study demonstrated that earthworms could remediate SMX-contaminated soil by enhancing the removal of SMX and ARGs. | 2022 | 35985593 |
| 7899 | 10 | 0.9421 | Removal of sulfamethoxazole in an algal-bacterial membrane aerated biofilm reactor: Microbial responses and antibiotic resistance genes. Antibiotics are frequently detected in wastewater, but often are poorly removed in conventional wastewater treatment processes. Combining microalgal and nitrifying bacterial processes may provide synergistic removal of antibiotics and ammonium. In this research, we studied the removal of the antibiotic sulfamethoxazole (SMX) in two different reactors: a conventional nitrifying bacterial membrane aerated biofilm reactor (bMABR) and algal-bacterial membrane aerated biofilm reactor (abMABR) systems. We investigated the synergistic removal of antibiotics and ammonium, antioxidant activity, microbial communities, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and their potential hosts. Our findings show that the abMABR maintained a high sulfamethoxazole (SMX) removal efficiency, with a minimum of 44.6 % and a maximum of 75.8 %, despite SMX inhibition, it maintained a consistent 25.0 % ammonium removal efficiency compared to the bMABR. Through a production of extracellular polymeric substances (EPS) with increased proteins/polysaccharides (PN/PS), the abMABR possibly allowed the microalgae-bacteria consortium to protect the bacteria from SMX inactivation. The activity of antioxidant enzymes caused by SMX was reduced by 62.1-98.5 % in the abMABR compared to the bMABR. Metagenomic analysis revealed that the relative abundance of Methylophilus, Pseudoxanthomonas, and Acidovorax in the abMABR exhibited a significant positive correlation with SMX exposure and reduced nitrate concentrations and SMX removal. Sulfonamide ARGs (sul1 and sul2) appeared to be primarily responsible for defense against SMX stress, and Hyphomicrobium and Nitrosomonas were the key carriers of ARGs. This study demonstrated that the abMABR system has great potential for removing SMX and reducing the environmental risks of ARGs. | 2025 | 39423786 |
| 7874 | 11 | 0.9421 | Phenacetin promoted the rapid start-up and stable maintenance of partial nitrification: Responses of nitrifiers and antibiotic resistance genes. Phenacetin (PNCT) belongs to one of the earliest synthetic antipyretics. However, impact of PNCT on nitrifying microorganisms in wastewater treatment plants and its potential microbial mechanism was still unclear. In this study, PN could be initiated within six days by PNCT anaerobic soaking treatment (8 mg/L). In order to improve the stable performance of PN, 21 times of PNCT aerobic soaking treatment every three days was conducted and PN was stabilized for 191 days. After PN was damaged, ten times of PNCT aerobic soaking treatment every three days was conducted and PN was recovered after once soaking, maintained over 88 days. Ammonia oxidizing bacteria might change the dominant oligotype to gradually adjust to PNCT, and the increase of abundance and activity of Nitrosomonas promoted the initiation of PN. For nitrite-oxidizing bacteria (NOB), the increase of Candidatus Nitrotoga and Nitrospira destroyed PN, but PN could be recovered after once aerobic soaking illustrating NOB was not resistant to PNCT. KEGG and COG analysis suggested PNCT might disrupt rTCA cycle of Nitrospira, resulting in the decrease of relative abundance of Nitrospira. Moreover, PNCT did not lead to the sharp increase of absolute abundances of antibiotic resistance genes (ARGs), and the risk of ARGs transmission was negligible. | 2024 | 38744392 |
| 7875 | 12 | 0.9421 | Phenacetin enhanced the inorganic nitrogen removal performance of anammox bacteria naturally in-situ enriched system. Among the earliest synthetic antipyretic drugs, phenacetin (PNCT) could be used as the novel partial nitrification (PN) inhibitor to effectively inhibit nitrite-oxidizing bacteria (NOB). In practical application, the rapidly starting of PN could provide stable source of nitrite for anaerobic ammonium oxidation (anammox) process. However, impact of PNCT on anaerobic ammonia oxidizing bacteria (AnAOB) and its underlying mechanisms were not clear. In this research, totally 14 times of PNCT aerobic soaking treatment were performed in the AnAOB naturally enrichment system to improve total inorganic nitrogen removal efficiency (TINRE). After once of PNCT treatment, TINRE rose from 61.89 % to 79.93 %. After 14 times of PNCT treatment, NOB Nitrospira relative abundance decreased from 9.82 % to 0.71 %, though Candidatus Brocadia relative abundance also declined, it might gradually adjust to PNCT by converting the leading oligotype species. The activity and relative abundances of NOB were reduced by PNCT via decreasing the abundances of genes amoA and nxrB, enzymes NxrA and NxrB. Moreover, Candidatus Jettenia and Ca. Brocadia might be the potential host of qacH-01 and they played the crucial role in the shaping profile of antibiotic resistance genes (ARGs). The explosive propagation or transmission of ARGs might not take place after PNCT treatment. | 2024 | 39566627 |
| 8111 | 13 | 0.9421 | Effect of alkaline-thermal pretreatment on biodegradable plastics degradation and dissemination of antibiotic resistance genes in co-compost system. Biodegradable plastics (BDPs) are an eco-friendly alternative to traditional plastics in organic waste, but their microbial degradation and impact on antibiotic resistance genes (ARGs) transmission during co-composting remain poorly understood. This study examines how alkaline-thermal pretreatment enhances BDPs degradation and influences the fate of ARGs and mobile genetic elements (MGEs) in co-composting. Pretreatment with 0.1 mol/L NaOH at 100℃ for 40 minutes increased the surface roughness and hydrophilicity of BDPs while reducing their molecular weight and thermal stability. Incorporating pretreated BDPs film (8 g/kg-TS) into the compost reduced the molecular weight of the BDPs by 59.70 % during the maturation stage, facilitating compost heating and prolonging the thermophilic stage. However, incomplete degradation of BDPs releases numerous smaller-sized microplastics, which can act as carriers for microorganisms, facilitating the dissemination of ARGs across environments and posing significant ecological and public health risks. Metagenomic analysis revealed that pretreatment enriched plastic-degrading bacteria, such as Thermobifida fusca, on BDPs surfaces and accelerated microbial plastic degradation during the thermophilic stage, but also increased ARGs abundance. Although pretreatment significantly reduced MGEs abundance (tnpA, IS19), the risk of ARGs dissemination remained. Three plastic-degrading bacteria (Pigmentiphaga sp002188465, Bacillus clausii, and Bacillus altitudinis) were identified as ARGs hosts, underscoring the need to address the risk of horizontal gene transfer of ARGs associated with pretreatment in organic waste management. | 2025 | 39970645 |
| 7888 | 14 | 0.9420 | Microecology of aerobic denitrification system construction driven by cyclic stress of sulfamethoxazole. The construction of aerobic denitrification (AD) systems in an antibiotic-stressed environment is a serious challenge. This study investigated strategy of cyclic stress with concentration gradient (5-30 mg/L) of sulfamethoxazole (SMX) in a sequencing batch reactor (SBR), to achieve operation of AD. Total nitrogen removal efficiency of system increased from about 10 % to 95 %. Original response of abundant-rare genera to antibiotics was changed by SMX stress, particularly conditionally rare or abundant taxa (CRAT). AD process depends on synergistic effect of heterotrophic nitrifying aerobic denitrification bacteria (Paracoccus, Thauera, Hypomicrobium, etc). AmoABC, napA, and nirK were functionally co-expressed with multiple antibiotic resistance genes (ARGs) (acrR, ereAB, and mdtO), facilitating AD process. ARGs and TCA cycling synergistically enhance the antioxidant and electron transport capacities of AD process. Antibiotic efflux pump mechanism played an important role in operation of AD. The study provides strong support for regulating activated sludge to achieve in situ AD function. | 2024 | 38710419 |
| 8057 | 15 | 0.9420 | SiO(2) nanoparticles can enhance nitrogen retention and reduce copper resistance genes during aerobic composting of swine manure. SiO(2) nanoparticles (SiO(2) NPs) are low-cost, environmentally friendly materials with significant potential to remove pollutants from complex environments. In this study, SiO(2) NPs were used for the first time as an additive in aerobic composting to enhance nitrogen retention and reduce the expression of copper resistance genes. The addition of 0.5 g kg(-1) SiO(2) NPs effectively reduced nitrogen loss by 72.33 % by decreasing denitrification genes (nosZ, nirK, and napA) and increasing nitrogen fixation gene (nifH). The dominant factors affecting nitrification and denitrification genes were Firmicutes and C/N ratio. Additionally, SiO(2) NPs decreased copper resistance genes by 28.96 % - 37.52 % in compost products. Copper resistance genes decreased most in the treatment with 0.5 g kg(-1) SiO(2) NPs. In summary, 0.5 g kg(-1) SiO(2) NPs have the potential to reduce copper resistance genes and enhance nitrogen retention during aerobic composting, which may be used to improve compost quality. | 2024 | 39374833 |
| 7848 | 16 | 0.9419 | Simultaneous Removal of Antibiotic Resistant Bacteria, Antibiotic Resistance Genes, and Micropollutants by FeS(2)@GO-Based Heterogeneous Photo-Fenton Process. The co-occurrence of various chemical and biological contaminants of emerging concerns has hindered the application of water recycling. This study aims to develop a heterogeneous photo-Fenton treatment by fabricating nano pyrite (FeS(2)) on graphene oxide (FeS(2)@GO) to simultaneously remove antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and micropollutants (MPs). A facile and solvothermal process was used to synthesize new pyrite-based composites. The GO coated layer forms a strong chemical bond with nano pyrite, which enables to prevent the oxidation and photocorrosion of pyrite and promote the transfer of charge carriers. Low reagent doses of FeS(2)@GO catalyst (0.25 mg/L) and H(2)O(2) (1.0 mM) were found to be efficient for removing 6-log of ARB and 7-log of extracellular ARG (e-ARG) after 30 and 7.5 min treatment, respectively, in synthetic wastewater. Bacterial regrowth was not observed even after a two-day incubation. Moreover, four recalcitrant MPs (sulfamethoxazole, carbamazepine, diclofenac, and mecoprop at an environmentally relevant concentration of 10 μg/L each) were completely removed after 10 min of treatment. The stable and recyclable composite generated more reactive species, including hydroxyl radicals (HO(•)), superoxide radicals (O(2)(• -)), singlet oxygen ((1)O(2)). These findings highlight that the synthesized FeS(2)@GO catalyst is a promising heterogeneous photo-Fenton catalyst for the removal of emerging contaminants. | 2022 | 35759741 |
| 8065 | 17 | 0.9417 | Synergistic enhancement effect of straw-earthworms in the reduction of sulfamethoxazole and antibiotic resistance genes. Soil antibiotic pollution is a global concern. It has been confirmed that straw or earthworm can enhance microbial degradation of antibiotics in soil. However, in the C/N transformation processes of soil ecosystems, straw and earthworms are closely interconnected. Whether their interaction can further enhance microbial degradation of antibiotic pollution and the underlying mechanisms remain to be explored. This study conducted a 90 days co-incubation experiment with four treatments: straw + earthworms + sulfamethoxazole (RS-EW-SMX), straw + SMX (RS-SMX), earthworms + SMX (EW-SMX), and SMX alone (SMX). Residual SMX, its degradation intermediates, and microbial communities were monitored at multiple timepoints. Results indicated an exponential decline in SMX degradation rates across treatments. By day 90, SMX was nearly completely degraded in all treatment groups. However, the combined effect of straw and earthworms significantly enhanced the degradation efficiency of SMX. During the rapid degradation phase, SMX in above four treatments decreased from 20.0 mg kg(-1) to 0.93, 1.88, 5.26 and 7.02 mg kg(-1), respectively at day 10. Furthermore, the RS-EW-SMX treatment promoted SMX transformation into low-molecular-weight intermediates and increased the relative abundance of SMX-degrading bacteria by 1.35, 2.01, and 2.17-fold compared to RS-SMX, EW-SMX, and SMX, respectively. SMX degradation efficiency exhibited a strong positive linear correlation with the relative abundance of degrading bacteria across all treatments (R(2) = 0.961). Concurrently, analysis revealed that straw presence facilitated the targeted enrichment of SMX-degrading bacteria within the earthworm gut, concomitant with a reduction in associated antibiotic resistance genes (ARGs). This synergistic interaction between straw and earthworms, mediated through the gut microbiome and carbon utilization, constitutes a primary mechanism underpinning the accelerated SMX degradation observed. These findings reveal a novel macrofauna-plant residues interaction mechanism for improved in situ antibiotic bioremediation, providing practical solutions for soil pollution mitigation. | 2025 | 40914087 |
| 8112 | 18 | 0.9417 | Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment. The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency. | 2016 | 26970692 |
| 7919 | 19 | 0.9417 | Bioaugmentation using HN-AD consortia for high salinity wastewater treatment: Synergistic effects of halotolerant bacteria and nitrogen removal bacteria. Bioaugmentation shows promise in enhancing nitrogen removal efficiency of high-salt wastewater, yet the impact of microbial associations on ecosystem function and community stability remains unclear. This study innovatively introduced a novel heterotrophic nitrification-aerobic denitrification bacterial consortium to improve the performance of SBR reactor for removing nitrogen from saline wastewater. The results revealed that the bioaugmented reactor (R2) exhibited superior removal performance, achieving maximum removal efficiencies of 87.8 % for COD and 97.8 % for NH(4)(+)-N. Moreover, proper salinity (2 % and 4 %) promoted the secretion of EPS and ectoine, further enhancing the resistance and stability of bacterial consortia. 16S rRNA gene sequencing and metagenomics analysis revealed the key denitrifying bacteria Pseudomonas and salt-tolerant bacteria Halomonas were successfully coexistence and the relative abundances of crucial genes (napB, nirS, norB, norC and nosZ) were increased obviously, which were benefit for the excellent nitrogen removal performance in R2. These findings elucidate microbial interactions in response to salinity in bioaugmentation, providing a valuable reference for the efficient treatment of high-saline wastewater. | 2025 | 40233618 |