NITRIC - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
54900.9755Extracytoplasmic function sigma factor σ(D) confers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures in Corynebacterium glutamicum. Mycolates are α-branched, β-hydroxylated, long-chain fatty acid specifically synthesized in bacteria in the suborder Corynebacterineae of the phylum Actinobacteria. They form an outer membrane, which functions as a permeability barrier and confers pathogenic mycobacteria to resistance to antibiotics. Although the mycolate biosynthetic pathway has been intensively studied, knowledge of transcriptional regulation of genes involved in this pathway is limited. Here, we report that the extracytoplasmic function sigma factor σ(D) is a key regulator of the mycolate synthetic genes in Corynebacterium glutamicum in the suborder. Chromatin immunoprecipitation with microarray analysis detected σ(D) -binding regions in the genome, establishing a consensus promoter sequence for σ(D) recognition. The σ(D) regulon comprised acyl-CoA carboxylase subunits, acyl-AMP ligase, polyketide synthase and mycolyltransferases; they were involved in mycolate synthesis. Indeed, deletion or overexpression of sigD encoding σ(D) modified the extractable mycolate amount. Immediately downstream of sigD, rsdA encoded anti-σ(D) and was under the control of a σ(D) -dependent promoter. Another σ(D) regulon member, l,d-transpeptidase, conferred lysozyme resistance. Thus, σ(D) modifies peptidoglycan cross-linking and enhances mycolate synthesis to provide resistance to environmental stress.201829148103
54710.9748Dual role of OhrR as a repressor and an activator in response to organic hydroperoxides in Streptomyces coelicolor. Organic hydroperoxide resistance in bacteria is achieved primarily through reducing oxidized membrane lipids. The soil-inhabiting aerobic bacterium Streptomyces coelicolor contains three paralogous genes for organic hydroperoxide resistance: ohrA, ohrB, and ohrC. The ohrA gene is transcribed divergently from ohrR, which encodes a putative regulator of MarR family. Both the ohrA and ohrR genes were induced highly by various organic hydroperoxides. The ohrA gene was induced through removal of repression by OhrR, whereas the ohrR gene was induced through activation by OhrR. Reduced OhrR bound to the ohrA-ohrR intergenic region, which contains a central (primary) and two adjacent (secondary) inverted-repeat motifs that overlap with promoter elements. Organic peroxide decreased the binding affinity of OhrR for the primary site, with a concomitant decrease in cooperative binding to the adjacent secondary sites. The single cysteine C28 in OhrR was involved in sensing oxidants, as determined by substitution mutagenesis. The C28S mutant of OhrR bound to the intergenic region without any change in binding affinity in response to organic peroxides. These results lead us to propose a model for the dual action of OhrR as a repressor and an activator in S. coelicolor. Under reduced conditions, OhrR binds cooperatively to the intergenic region, repressing transcription from both genes. Upon oxidation, the binding affinity of OhrR decreases, with a concomitant loss of cooperative binding, which allows RNA polymerase to bind to both the ohrA and ohrR promoters. The loosely bound oxidized OhrR can further activate transcription from the ohrR promoter.200717586628
60920.9741A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses. In nutrient-starved bacteria, RelA and SpoT proteins have key roles in reducing cell growth and overcoming stresses. Here we identify functional SpoT orthologs in metazoa (named Mesh1, encoded by HDDC3 in human and Q9VAM9 in Drosophila melanogaster) and reveal their structures and functions. Like the bacterial enzyme, Mesh1 proteins contain an active site for ppGpp hydrolysis and a conserved His-Asp-box motif for Mn(2+) binding. Consistent with these structural data, Mesh1 efficiently catalyzes hydrolysis of guanosine 3',5'-diphosphate (ppGpp) both in vitro and in vivo. Mesh1 also suppresses SpoT-deficient lethality and RelA-induced delayed cell growth in bacteria. Notably, deletion of Mesh1 (Q9VAM9) in Drosophila induces retarded body growth and impaired starvation resistance. Microarray analyses reveal that the amino acid-starved Mesh1 null mutant has highly downregulated DNA and protein synthesis-related genes and upregulated stress-responsible genes. These data suggest that metazoan SpoT orthologs have an evolutionarily conserved function in starvation responses.201020818390
54330.9741OxyR2 Modulates OxyR1 Activity and Vibrio cholerae Oxidative Stress Response. Bacteria have developed capacities to deal with different stresses and adapt to different environmental niches. The human pathogen Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, utilizes the transcriptional regulator OxyR to activate genes related to oxidative stress resistance, including peroxiredoxin PrxA, in response to hydrogen peroxide. In this study, we identified another OxyR homolog in V. cholerae, which we named OxyR2, and we renamed the previous OxyR OxyR1. We found that OxyR2 is required to activate its divergently transcribed gene ahpC, encoding an alkylhydroperoxide reductase, independently of H(2)O(2) A conserved cysteine residue in OxyR2 is critical for this function. Mutation of either oxyR2 or ahpC rendered V. cholerae more resistant to H(2)O(2) RNA sequencing analyses indicated that OxyR1-activated oxidative stress-resistant genes were highly expressed in oxyR2 mutants even in the absence of H(2)O(2) Further genetic analyses suggest that OxyR2-activated AhpC modulates OxyR1 activity by maintaining low intracellular concentrations of H(2)O(2) Furthermore, we showed that ΔoxyR2 and ΔahpC mutants were less fit when anaerobically grown bacteria were exposed to low levels of H(2)O(2) or incubated in seawater. These results suggest that OxyR2 and AhpC play important roles in the V. cholerae oxidative stress response.201728138024
4740.9739LTP3 contributes to disease susceptibility in Arabidopsis by enhancing abscisic acid (ABA) biosynthesis. Several plant lipid transfer proteins (LTPs) act positively in plant disease resistance. Here, we show that LTP3 (At5g59320), a pathogen and abscisic acid (ABA)-induced gene, negatively regulates plant immunity in Arabidopsis. The overexpression of LTP3 (LTP3-OX) led to an enhanced susceptibility to virulent bacteria and compromised resistance to avirulent bacteria. On infection of LTP3-OX plants with Pseudomonas syringae pv. tomato, genes involved in ABA biosynthesis, NCED3 and AAO3, were highly induced, whereas salicylic acid (SA)-related genes, ICS1 and PR1, were down-regulated. Accordingly, in LTP3-OX plants, we observed increased ABA levels and decreased SA levels relative to the wild-type. We also showed that the LTP3 overexpression-mediated enhanced susceptibility was partially dependent on AAO3. Interestingly, loss of function of LTP3 (ltp3-1) did not affect ABA pathways, but resulted in PR1 gene induction and elevated SA levels, suggesting that LTP3 can negatively regulate SA in an ABA-independent manner. However, a double mutant consisting of ltp3-1 and silent LTP4 (ltp3/ltp4) showed reduced susceptibility to Pseudomonas and down-regulation of ABA biosynthesis genes, suggesting that LTP3 acts in a redundant manner with its closest homologue LTP4 by modulating the ABA pathway. Taken together, our data show that LTP3 is a novel negative regulator of plant immunity which acts through the manipulation of the ABA-SA balance.201626123657
5750.9738Functional analysis of NtMPK2 uncovers its positive role in response to Pseudomonas syringae pv. tomato DC3000 in tobacco. Mitogen-activated protein kinase cascades are highly conserved signaling modules downstream of receptors/sensors and play pivotal roles in signaling plant defense against pathogen attack. Extensive studies on Arabidopsis MPK4 have implicated that the MAP kinase is involved in multilayered plant defense pathways. In this study, we identified tobacco NtMPK2 as an ortholog of AtMPK4. Transgenic tobacco overexpressing NtMPK2 markedly enhances resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) virulent and avirulent strains. Transcriptome analysis of NtMPK2-dependent genes shows that possibly the basal resistance system is activated by NtMPK2 overexpression. In addition to NtMPK2-mediated resistance, multiple pathways are involved in response to the avirulent bacteria based on analysis of Pst-responding genes, including SA and ET pathways. Notably, it is possible that biosynthesis of antibacterial compounds is responsible for inhibition of Pst DC3000 avirulent strain when programmed cell death processes in the host. Our results uncover that NtMPK2 positively regulate tobacco defense response to Pst DC3000 and improve our understanding of plant molecular defense mechanism.201626482478
60860.9736Entamoeba histolytica Adaption to Auranofin: A Phenotypic and Multi-Omics Characterization. Auranofin (AF), an antirheumatic agent, targets mammalian thioredoxin reductase (TrxR), an important enzyme controlling redox homeostasis. AF is also highly effective against a diversity of pathogenic bacteria and protozoan parasites. Here, we report on the resistance of the parasite Entamoeba histolytica to 2 µM of AF that was acquired by gradual exposure of the parasite to an increasing amount of the drug. AF-adapted E. histolytica trophozoites (AFAT) have impaired growth and cytopathic activity, and are more sensitive to oxidative stress (OS), nitrosative stress (NS), and metronidazole (MNZ) than wild type (WT) trophozoites. Integrated transcriptomics and redoxomics analyses showed that many upregulated genes in AFAT, including genes encoding for dehydrogenase and cytoskeletal proteins, have their product oxidized in wild type trophozoites exposed to AF (acute AF trophozoites) but not in AFAT. We also showed that the level of reactive oxygen species (ROS) and oxidized proteins (OXs) in AFAT is lower than that in acute AF trophozoites. Overexpression of E. histolytica TrxR (EhTrxR) did not protect the parasite against AF, which suggests that EhTrxR is not central to the mechanism of adaptation to AF.202134439488
5670.9736Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae. Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance.201728062592
5080.9734OsNPR1 Enhances Rice Resistance to Xanthomonas oryzae pv. oryzae by Upregulating Rice Defense Genes and Repressing Bacteria Virulence Genes. The bacteria pathogen Xanthomonas oryzae pv. oryzae (Xoo) infects rice and causes the severe disease of rice bacteria blight. As the central regulator of the salic acid (SA) signaling pathway, NPR1 is responsible for sensing SA and inducing the expression of pathogen-related (PR) genes in plants. Overexpression of OsNPR1 significantly increases rice resistance to Xoo. Although some downstream rice genes were found to be regulated by OsNPR1, how OsNPR1 affects the interaction of rice-Xoo and alters Xoo gene expression remains unknown. In this study, we challenged the wild-type and OsNPR1-OE rice materials with Xoo and performed dual RNA-seq analyses for the rice and Xoo genomes simultaneously. In Xoo-infected OsNPR1-OE plants, rice genes involved in cell wall biosynthesis and SA signaling pathways, as well as PR genes and nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes, were significantly upregulated compared to rice variety TP309. On the other hand, Xoo genes involved in energy metabolism, oxidative phosphorylation, biosynthesis of primary and secondary metabolism, and transportation were repressed. Many virulence genes of Xoo, including genes encoding components of type III and other secretion systems, were downregulated by OsNPR1 overexpression. Our results suggest that OsNPR1 enhances rice resistance to Xoo by bidirectionally regulating gene expression in rice and Xoo.202337240026
790.9731An EDS1 heterodimer signalling surface enforces timely reprogramming of immunity genes in Arabidopsis. Plant intracellular NLR receptors recognise pathogen interference to trigger immunity but how NLRs signal is not known. Enhanced disease susceptibility1 (EDS1) heterodimers are recruited by Toll-interleukin1-receptor domain NLRs (TNLs) to transcriptionally mobilise resistance pathways. By interrogating the Arabidopsis EDS1 ɑ-helical EP-domain we identify positively charged residues lining a cavity that are essential for TNL immunity signalling, beyond heterodimer formation. Mutating a single, conserved surface arginine (R493) disables TNL immunity to an oomycete pathogen and to bacteria producing the virulence factor, coronatine. Plants expressing a weakly active EDS1(R493A) variant have delayed transcriptional reprogramming, with severe consequences for resistance and countering bacterial coronatine repression of early immunity genes. The same EP-domain surface is utilised by a non-TNL receptor RPS2 for bacterial immunity, indicating that the EDS1 EP-domain signals in resistance conferred by different NLR receptor types. These data provide a unique structural insight to early downstream signalling in NLR receptor immunity.201930770836
48100.9731Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Boosted responsiveness of plant cells to stress at the onset of pathogen- or chemically induced resistance is called priming. The chemical β-aminobutyric acid (BABA) enhances Arabidopsis thaliana resistance to hemibiotrophic bacteria through the priming of the salicylic acid (SA) defence response. Whether BABA increases Arabidopsis resistance to the necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) is not clear. In this work, we show that treatment with BABA protects Arabidopsis against the soft-rot pathogen Pcc. BABA did not prime the expression of the jasmonate/ethylene-responsive gene PLANT DEFENSIN 1.2 (PDF1.2), the up-regulation of which is usually associated with resistance to necrotrophic pathogens. Expression of the SA marker gene PATHOGENESIS RELATED 1 (PR1) on Pcc infection was primed by BABA treatment, but SA-defective mutants demonstrated a wild-type level of BABA-induced resistance against Pcc. BABA primed the expression of the pattern-triggered immunity (PTI)-responsive genes FLG22-INDUCED RECEPTOR-LIKE KINASE 1 (FRK1), ARABIDOPSIS NON-RACE SPECIFIC DISEASE RESISTANCE GENE (NDR1)/HAIRPIN-INDUCED GENE (HIN1)-LIKE 10 (NHL10) and CYTOCHROME P450, FAMILY 81 (CYP81F2) after inoculation with Pcc or after treatment with purified bacterial microbe-associated molecular patterns, such as flg22 or elf26. PTI-mediated callose deposition was also potentiated in BABA-treated Arabidopsis, and BABA boosted Arabidopsis stomatal immunity to Pcc. BABA treatment primed the PTI response in the SA-defective mutants SA induction deficient 2-1 (sid2-1) and phytoalexin deficient 4-1 (pad4-1). In addition, BABA priming was associated with open chromatin configurations in the promoter region of PTI marker genes. Our data indicate that BABA primes the PTI response upon necrotrophic bacterial infection and suggest a role for the PTI response in BABA-induced resistance.201322947164
54110.9730Strigolactones Modulate Salicylic Acid-Mediated Disease Resistance in Arabidopsis thaliana. Strigolactones are low-molecular-weight phytohormones that play several roles in plants, such as regulation of shoot branching and interactions with arbuscular mycorrhizal fungi and parasitic weeds. Recently, strigolactones have been shown to be involved in plant responses to abiotic and biotic stress conditions. Herein, we analyzed the effects of strigolactones on systemic acquired resistance induced through salicylic acid-mediated signaling. We observed that the systemic acquired resistance inducer enhanced disease resistance in strigolactone-signaling and biosynthesis-deficient mutants. However, the amount of endogenous salicylic acid and the expression levels of salicylic acid-responsive genes were lower in strigolactone signaling-deficient max2 mutants than in wildtype plants. In both the wildtype and strigolactone biosynthesis-deficient mutants, the strigolactone analog GR24 enhanced disease resistance, whereas treatment with a strigolactone biosynthesis inhibitor suppressed disease resistance in the wildtype. Before inoculation of wildtype plants with pathogenic bacteria, treatment with GR24 did not induce defense-related genes; however, salicylic acid-responsive defense genes were rapidly induced after pathogenic infection. These findings suggest that strigolactones have a priming effect on Arabidopsis thaliana by inducing salicylic acid-mediated disease resistance.202235563637
607120.9729A novel copper-sensing two-component system for inducing Dsb gene expression in bacteria. In nature, bacteria must sense copper and tightly regulate gene expression to evade copper toxicity. Here, we identify a new copper-responsive two-component system named DsbRS in the important human pathogen Pseudomonas aeruginosa; in this system, DsbS is a sensor histidine kinase, and DsbR, its cognate response regulator, directly induces the transcription of genes involved in protein disulfide bond formation (Dsb) (i.e., the dsbDEG operon and dsbB). In the absence of copper, DsbS acts as a phosphatase toward DsbR, thus blocking the transcription of Dsb genes. In the presence of copper, the metal ion directly binds to the sensor domain of DsbS, and the Cys82 residue plays a critical role in this process. The copper-binding behavior appears to inhibit the phosphatase activity of DsbS, leading to the activation of DsbR. The copper resistance of the dsbRS knock-out mutant is restored by the ectopic expression of the dsbDEG operon, which is a DsbRS major target. Strikingly, cognates of the dsbRS-dsbDEG pair are widely distributed across eubacteria. In addition, a DsbR-binding site, which contains the consensus sequence 5'-TTA-N(8)-TTAA-3', is detected in the promoter region of dsbDEG homologs in these species. These findings suggest that the regulation of Dsb genes by DsbRS represents a novel mechanism by which bacterial cells cope with copper stress.202236546013
605130.9728Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. The extreme radiation resistance of Deinococcus bacteria requires the radiation-stimulated cleavage of protein DdrO by a specific metalloprotease called IrrE. DdrO is the repressor of a predicted radiation/desiccation response (RDR) regulon, composed of radiation-induced genes having a conserved DNA motif (RDRM) in their promoter regions. Here, we showed that addition of zinc ions to purified apo-IrrE, and short exposure of Deinococcus cells to zinc ions, resulted in cleavage of DdrO in vitro and in vivo, respectively. Binding of IrrE to RDRM-containing DNA or interaction of IrrE with DNA-bound DdrO was not observed. The data are in line with IrrE being a zinc peptidase, and indicate that increased zinc availability, caused by oxidative stress, triggers the in vivo cleavage of DdrO unbound to DNA. Transcriptomics and proteomics of Deinococcus deserti confirmed the IrrE-dependent regulation of predicted RDR regulon genes and also revealed additional members of this regulon. Comparative analysis showed that the RDR regulon is largely well conserved in Deinococcus species, but also showed diversity in the regulon composition. Notably, several RDR genes with an important role in radiation resistance in Deinococcus radiodurans, for example pprA, are not conserved in some other radiation-resistant Deinococcus species.201728397370
8140.9728The hawthorn CpLRR-RLK1 gene targeted by ACLSV-derived vsiRNA positively regulate resistance to bacteria disease. Virus-derived small interfering RNAs (vsiRNAs) can target not only viruses but also plant genes. Apple chlorotic leaf spot virus (ACLSV) is an RNA virus that infects Rosaceae plants extensively, including apple, pear and hawthorn. Here, we report an ACLSV-derived vsiRNA [vsiR1360(-)] that targets and down-regulates the leucine-rich repeat receptor-like kinase 1 (LRR-RLK1) gene of hawthorn (Crataegus pinnatifida). The targeting and cleavage of the CpLRR-RLK1 gene by vsiR1360(-) were validated by RNA ligase-mediated 5' rapid amplification of cDNA ends and tobacco transient transformation assays. And the CpLRR-RLK1 protein fused to green fluorescent protein localized to the cell membrane. Conserved domain and phylogenetic tree analyses showed that CpLRR-RLK1 is closely related to the proteins of the LRRII-RLK subfamily. The biological function of CpLRR-RLK1 was explored by heterologous overexpression of CpLRR-RLK1 gene in Arabidopsis. The results of inoculation of Pst DC3000 in Arabidopsis leaves showed that the symptoms of CpLRR-RLK1 overexpression plants infected with Pst DC3000 were significantly reduced compared with the wild type. In addition, the detection of reactive oxygen species and callose deposition and the expression analysis of defense-related genes showed that the CpLRR-RLK1 gene can indeed enhance the resistance of Arabidopsis to bacteria disease.202033180701
583150.9727MarR family proteins sense sulfane sulfur in bacteria. Members of the multiple antibiotic resistance regulator (MarR) protein family are ubiquitous in bacteria and play critical roles in regulating cellular metabolism and antibiotic resistance. MarR family proteins function as repressors, and their interactions with modulators induce the expression of controlled genes. The previously characterized modulators are insufficient to explain the activities of certain MarR family proteins. However, recently, several MarR family proteins have been reported to sense sulfane sulfur, including zero-valent sulfur, persulfide (R-SSH), and polysulfide (R-SnH, n ≥ 2). Sulfane sulfur is a common cellular component in bacteria whose levels vary during bacterial growth. The changing levels of sulfane sulfur affect the expression of many MarR-controlled genes. Sulfane sulfur reacts with the cysteine thiols of MarR family proteins, causing the formation of protein thiol persulfide, disulfide bonds, and other modifications. Several MarR family proteins that respond to reactive oxygen species (ROS) also sense sulfane sulfur, as both sulfane sulfur and ROS induce the formation of disulfide bonds. This review focused on MarR family proteins that sense sulfane sulfur. However, the sensing mechanisms reviewed here may also apply to other proteins that detect sulfane sulfur, which is emerging as a modulator of gene regulation.202438948149
88160.9727Constitutive expression of mammalian nitric oxide synthase in tobacco plants triggers disease resistance to pathogens. Nitric oxide (NO) is known for its role in the activation of plant defense responses. To examine the involvement and mode of action of NO in plant defense responses, we introduced calmodulin-dependent mammalian neuronal nitric oxide synthase (nNOS), which controls the CaMV35S promoter, into wild-type and NahG tobacco plants. Constitutive expression of nNOS led to NO production and triggered spontaneous induction of leaf lesions. Transgenic plants accumulated high amounts of H(2)O(2), with catalase activity lower than that in the wild type. nNOS transgenic plants contained high levels of salicylic acid (SA), and they induced an array of SA-, jasmonic acid (JA)-, and/or ethylene (ET)-related genes. Consequently, NahG co-expression blocked the induction of systemic acquired resistance (SAR)-associated genes in transgenic plants, implying SA is involved in NO-mediated induction of SAR genes. The transgenic plants exhibited enhanced resistance to a spectrum of pathogens, including bacteria, fungi, and viruses. Our results suggest a highly ranked regulatory role for NO in SA-, JA-, and/or ET-dependent pathways that lead to disease resistance.201223124383
21170.9727miR159a modulates poplar resistance against different fungi and bacteria. Trees are inevitably attacked by different kinds of pathogens in their life. However, little is known about the regulatory factors in poplar response to different pathogen infections. MicroRNA159 (miR159) is a highly conserved microRNA (miRNA) in plants and regulates plant development and stress responses. Here, transgenic poplar overexpressing pto-miR159a (OX-159) showed antagonistic regulation mode to poplar stem disease caused by fungi Cytospora chrysosperma and bacteria Lonsdalea populi. OX-159 lines exhibited a higher susceptibility after inoculation with bacterium L. populi, whereas enhanced disease resistance to necrotrophic fungi C. chrysosperma compared with wild-type (WT) poplars. Intriguingly, further disease assay found that OX159 line rendered the poplar susceptible to hemi-biotrophic fungi Colletotrichum gloeosporioide, exhibiting larger necrosis and lower ROS accumulation than WT lines. Transcriptome analyses revealed that more down-regulated differentially expressed genes with disease-resistant domains in OX-159 line compared with WT line. Moreover, the central mediator NPR1 of salicylic acid (SA) pathway showed a decrease in expression level, while jasmonic acid/ethylene (JA/ET) signal pathway marker genes ERF, as well as PR3, MPK3, and MPK6 genes showed an increase level in OX159-2 and OX159-5 compared with WT lines. Further spatio-temporal expression analysis revealed JA/ET signaling was involved in the dynamic response process to C. gloeosporioides in WT and OX159 lines. These results demonstrate that overexpression of pto-miR159a resulted in the crosstalk changes of the downstream hub genes, thereby controlling the disease resistance of poplars, which provides clues for understanding pto-miR159a role in coordinating poplar-pathogen interactions.202337494825
546180.9727Resistance to organic hydroperoxides requires ohr and ohrR genes in Sinorhizobium meliloti. BACKGROUND: Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Medicago sativa. During nodule formation bacteria have to withstand oxygen radicals produced by the plant. Resistance to H2O2 and superoxides has been extensively studied in S. meliloti. In contrast resistance to organic peroxides has not been investigated while S. meliloti genome encodes putative organic peroxidases. Organic peroxides are produced by plants and are highly toxic. The resistance to these oxygen radicals has been studied in various bacteria but never in plant nodulating bacteria. RESULTS: In this study we report the characterisation of organic hydroperoxide resistance gene ohr and its regulator ohrR in S. meliloti. The inactivation of ohr affects resistance to cumene and ter-butyl hydroperoxides but not to hydrogen peroxide or menadione in vitro. The expression of ohr and ohrR genes is specifically induced by organic peroxides. OhrR binds to the intergenic region between the divergent genes ohr and ohrR. Two binding sites were characterised. Binding to the operator is prevented by OhrR oxidation that promotes OhrR dimerisation. The inactivation of ohr did not affect symbiosis and nitrogen fixation, suggesting that redundant enzymatic activity exists in this strain. Both ohr and ohrR are expressed in nodules suggesting that they play a role during nitrogen fixation. CONCLUSIONS: This report demonstrates the significant role Ohr and OhrR proteins play in bacterial stress resistance against organic peroxides in S. meliloti. The ohr and ohrR genes are expressed in nodule-inhabiting bacteroids suggesting a role during nodulation.201121569462
541190.9727A Teleost Bactericidal Permeability-Increasing Protein Kills Gram-Negative Bacteria, Modulates Innate Immune Response, and Enhances Resistance against Bacterial and Viral Infection. Bactericidal/permeability-increasing protein (BPI) is an important factor of innate immunity that in mammals is known to take part in the clearance of invading Gram-negative bacteria. In teleost, the function of BPI is unknown. In the present work, we studied the function of tongue sole (Cynoglossus semilaevis) BPI, CsBPI. We found that CsBPI was produced extracellularly by peripheral blood leukocytes (PBL). Recombinant CsBPI (rCsBPI) was able to bind to a number of Gram-negative bacteria but not Gram-positive bacteria. Binding to bacteria led to bacterial death through membrane permeabilization and structural destruction, and the bound bacteria were more readily taken up by PBL. In vivo, rCsBPI augmented the expression of a wide arrange of genes involved in antibacterial and antiviral immunity. Furthermore, rCsBPI enhanced the resistance of tongue sole against bacterial as well as viral infection. These results indicate for the first time that a teleost BPI possesses immunoregulatory effect and plays a significant role in antibacterial and antiviral defense.201627105425