# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6008 | 0 | 0.8994 | Photopolymerized keratin-PGLa hydrogels for antibiotic resistance reversal and enhancement of infectious wound healing. Infectious wounds have become serious challenges for both treatment and management in clinical practice, so development of new antibiotics has been considered an increasingly difficult task. Here, we report the design and synthesis of keratin 31 (K31)-peptide glycine-leucine-amide (PGLa) photopolymerized hydrogels to rescue the antibiotic activity of antibiotics for infectious wound healing promotion. K31-PGLa displayed an outstanding synergistic effect with commercial antibiotics against drug-resistant bacteria by down-regulating the synthesis genes of efflux pump. Furthermore, the photopolymerized K31-PGLa/PEGDA hydrogels effectively suppressed drug-resistant bacteria growth and enhanced skin wound closure in murine. This study provided a promising alternative strategy for infectious wound treatment. | 2023 | 37810750 |
| 8433 | 1 | 0.8925 | Thermoresponsive Nanostructures: From Mechano-Bactericidal Action to Bacteria Release. Overuse of antibiotics can increase the risk of notorious antibiotic resistance in bacteria, which has become a growing public health concern worldwide. Featured with the merit of mechanical rupture of bacterial cells, the bioinspired nanopillars are promising alternatives to antibiotics for combating bacterial infections while avoiding antibacterial resistance. However, the resident dead bacterial cells on nanopillars may greatly impair their bactericidal capability and ultimately impede their translational potential toward long-term applications. Here, we show that the functions of bactericidal nanopillars can be significantly broadened by developing a hybrid thermoresponsive polymer@nanopillar-structured surface, which retains all of the attributes of pristine nanopillars and adds one more: releasing dead bacteria. We fabricate this surface through coaxially decorating mechano-bactericidal ZnO nanopillars with thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) brushes. Combining the benefits of ZnO nanopillars and PNIPAAm chains, the antibacterial performances can be controllably regulated between ultrarobust mechano-bactericidal action (∼99%) and remarkable bacteria-releasing efficiency (∼98%). Notably, both the mechanical sterilization against the live bacteria and the controllable release for the pinned dead bacteria solely stem from physical actions, stimulating the exploration of intelligent structure-based bactericidal surfaces with persistent antibacterial properties without the risk of triggering drug resistance. | 2021 | 34905683 |
| 8138 | 2 | 0.8924 | Xanthomonas and the TAL Effectors: Nature's Molecular Biologist. Agrobacterium, due to the transfer of T-DNA to the host genome, is known as nature's genetic engineer. Once again, bacteria have led the way to newfound riches in biotechnology. Xanthomonas has emerged as nature's molecular biologist as the functional domains of the sequence-specific DNA transcription factors known as TAL effectors were characterized and associated with the cognate disease susceptibility and resistance genes of plants. | 2016 | 26443209 |
| 9991 | 3 | 0.8912 | A bifunctional dihydrofolate synthetase--folylpolyglutamate synthetase in Plasmodium falciparum identified by functional complementation in yeast and bacteria. Folate metabolism in the human malaria parasite Plasmodium falciparum is an essential activity for cell growth and replication, and the target of an important class of therapeutic agents in widespread use. However, resistance to antifolate drugs is a major health problem in the developing world. To date, only two activities in this complex pathway have been targeted by antimalarials. To more fully understand the mechanisms of antifolate resistance and to identify promising targets for new chemotherapies, we have cloned genes encoding as yet uncharacterised enzymes in this pathway. By means of complementation experiments using 1-carbon metabolism mutants of both Escherichia coli and Saccharomyces cerevisiae, we demonstrate here that one of these parasite genes encodes both dihydrofolate synthetase (DHFS) and folylpolyglutamate synthetase (FPGS) activities, which catalyse the synthesis and polyglutamation of folate derivatives, respectively. The malaria parasite is the first known example of a eukaryote encoding both DHFS and FPGS activities in a single gene. DNA sequencing of this gene in antifolate-resistant strains of P. falciparum, as well as drug-inhibition assays performed on yeast and bacteria expressing PfDHFS--FPGS, indicate that current antifolate regimes do not target this enzyme. As PfDHFS--FPGS harbours two activities critical to folate metabolism, one of which has no human counterpart, this gene product offers a novel chemotherapeutic target with the potential to deliver a powerful blockage to parasite growth. | 2001 | 11223131 |
| 6721 | 4 | 0.8894 | Aldehyde-resistant mycobacteria bacteria associated with the use of endoscope reprocessing systems. Bacteria can develop resistance to antibiotics, but little is known about their ability to increase resistance to chemical disinfectants. This study randomly sampled 3 automated endoscope reprocessors in the United States using aldehydes for endoscope disinfection. Bacterial contamination was found after disinfection in all automated endoscope reprocessors, and some mycobacteria isolates demonstrated significant resistance to glutaraldehyde and ortho-phthaldehyde disinfectants. Bacteria can survive aldehyde-based disinfection and may pose a cross-contamination risk to patients. | 2012 | 22325730 |
| 6009 | 5 | 0.8893 | Efflux pump inhibitor chlorpromazine effectively increases the susceptibility of Escherichia coli to antimicrobial peptide Brevinin-2CE. Aim: The response of E. coli ATCC8739 to Brevinin-2CE (B2CE) was evaluated as a strategy to prevent the development of antimicrobial peptide (AMP)-resistant bacteria. Methods: Gene expression levels were detected by transcriptome sequencing and RT-PCR. Target genes were knocked out using CRISPR-Cas9. MIC was measured to evaluate strain resistance. Results: Expression of acrZ and sugE were increased with B2CE stimulation. ATCC8739ΔacrZ and ATCC8739ΔsugE showed twofold and fourfold increased sensitivity, respectively. The survival rate of ATCC8739 was reduced in the presence of B2CE/chlorpromazine (CPZ). Combinations of other AMPs with CPZ also showed antibacterial effects. Conclusion: The results indicate that combinations of AMPs/efflux pump inhibitors (EPIs) may be a potential approach to combat resistant bacteria. | 2024 | 38683168 |
| 8155 | 6 | 0.8892 | Gut bacteria enable prostate cancer growth. Testosterone-synthetizing gut bacteria drive resistance to therapy. | 2021 | 34618567 |
| 8832 | 7 | 0.8892 | Pharyngeal Pumping and Tissue-Specific Transgenic P-Glycoprotein Expression Influence Macrocyclic Lactone Susceptibility in Caenorhabditis elegans. Macrocyclic lactones (MLs) are widely used drugs to treat and prevent parasitic nematode infections. In many nematode species including a major pathogen of foals, Parascaris univalens, resistance against MLs is widespread, but the underlying resistance mechanisms and ML penetration routes into nematodes remain unknown. Here, we examined how the P-glycoprotein efflux pumps, candidate genes for ML resistance, can modulate drug susceptibility and investigated the role of active drug ingestion for ML susceptibility in the model nematode Caenorhabditis elegans. Wildtype or transgenic worms, modified to overexpress P. univalens PGP-9 (Pun-PGP-9) at the intestine or epidermis, were incubated with ivermectin or moxidectin in the presence (bacteria or serotonin) or absence (no specific stimulus) of pharyngeal pumping (PP). Active drug ingestion by PP was identified as an important factor for ivermectin susceptibility, while moxidectin susceptibility was only moderately affected. Intestinal Pun-PGP-9 expression elicited a protective effect against ivermectin and moxidectin only in the presence of PP stimulation. Conversely, epidermal Pun-PGP-9 expression protected against moxidectin regardless of PP and against ivermectin only in the absence of active drug ingestion. Our results demonstrate the role of active drug ingestion by nematodes for susceptibility and provide functional evidence for the contribution of P-glycoproteins to ML resistance in a tissue-specific manner. | 2021 | 33668460 |
| 8137 | 8 | 0.8888 | Modulation of Bacterial Fitness and Virulence Through Antisense RNAs. Regulatory RNAs contribute to gene expression control in bacteria. Antisense RNAs (asRNA) are a class of regulatory RNAs that are transcribed from opposite strands of their target genes. Typically, these untranslated transcripts bind to cognate mRNAs and rapidly regulate gene expression at the post-transcriptional level. In this article, we review asRNAs that modulate bacterial fitness and increase virulence. We chose examples that underscore the variety observed in nature including, plasmid- and chromosome-encoded asRNAs, a riboswitch-regulated asRNA, and asRNAs that require other RNAs or RNA-binding proteins for stability and activity. We explore how asRNAs improve bacterial fitness and virulence by modulating plasmid acquisition and maintenance, regulating transposon mobility, increasing resistance against bacteriophages, controlling flagellar production, and regulating nutrient acquisition. We conclude with a brief discussion on how this knowledge is helping to inform current efforts to develop new therapeutics. | 2020 | 33747974 |
| 8135 | 9 | 0.8887 | Harnessing Genome Editing Techniques to Engineer Disease Resistance in Plants. Modern genome editing (GE) techniques, which include clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system, transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs) and LAGLIDADG homing endonucleases (meganucleases), have so far been used for engineering disease resistance in crops. The use of GE technologies has grown very rapidly in recent years with numerous examples of targeted mutagenesis in crop plants, including gene knockouts, knockdowns, modifications, and the repression and activation of target genes. CRISPR/Cas9 supersedes all other GE techniques including TALENs and ZFNs for editing genes owing to its unprecedented efficiency, relative simplicity and low risk of off-target effects. Broad-spectrum disease resistance has been engineered in crops by GE of either specific host-susceptibility genes (S gene approach), or cleaving DNA of phytopathogens (bacteria, virus or fungi) to inhibit their proliferation. This review focuses on different GE techniques that can potentially be used to boost molecular immunity and resistance against different phytopathogens in crops, ultimately leading to the development of promising disease-resistant crop varieties. | 2019 | 31134108 |
| 577 | 10 | 0.8884 | The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genomic silencing is a fundamental mechanism of transcriptional regulation, yet little is known about conserved mechanisms of silencing. We report here the discovery of four Saccharomyces cerevisiae homologs of the SIR2 silencing gene (HSTs), as well as conservation of this gene family from bacteria to mammals. At least three HST genes can function in silencing; HST1 overexpression restores transcriptional silencing to a sir2 mutant and hst3 hst4 double mutants are defective in telomeric silencing. In addition, HST3 and HST4 together contribute to proper cell cycle progression, radiation resistance, and genomic stability, establishing new connections between silencing and these fundamental cellular processes. | 1995 | 7498786 |
| 588 | 11 | 0.8884 | Enhanced aphid detoxification when confronted by a host with elevated ROS production. Reactive oxygen species (ROS) plays an important role in plant defense responses against bacteria, fungi and insect pests. Most recently, we have demonstrated that loss of Arabidopsis thaliana BOTRYTIS-INDUCED KINASE1 (BIK1) function releases its suppression of aphid-induced H2O2 production and cell death, rendering the bik1 mutant more resistant to green peach aphid (Myzus persicae) than wild-type plants. However, little is known regarding how ROS-related gene expression is correlated with bik1-mediated resistance to aphids, or whether these aphids biochemically respond to the oxidative stress. Here, we show that the bik1 mutant exhibited elevated basal expression of ROS-generating and -responsive genes, but not ROS-metabolizing genes. Conversely, we detected enhanced detoxification enzymatic activities in aphids reared on bik1 plants compared to those on wild-type plants, suggesting that aphids counter the oxidative stress associated with bik1 through elevated metabolic resistance. | 2015 | 25932782 |
| 506 | 12 | 0.8873 | A kiss of death--proteasome-mediated membrane fusion and programmed cell death in plant defense against bacterial infection. Eukaryotes have evolved various means for controlled and organized cellular destruction, known as programmed cell death (PCD). In plants, PCD is a crucial regulatory mechanism in multiple physiological processes, including terminal differentiation, senescence, and disease resistance. In this issue of Genes & Development, Hatsugai and colleagues (pp. 2496-2506) demonstrate a novel plant defense strategy to trigger bacteria-induced PCD, involving proteasome-dependent tonoplast and plasma membrane fusion followed by discharge of vacuolar antimicrobial and death-inducing contents into the apoplast. | 2009 | 19884251 |
| 33 | 13 | 0.8869 | Transgenic Silkworms Overexpressing Relish and Expressing Drosomycin Confer Enhanced Immunity to Multiple Pathogens. The sericulture industry faces substantial economic losses due to severe pathogenic infections caused by fungi, viruses, and bacteria. The development of transgenic silkworms against specific pathogens has been shown to enhance disease resistance against a particular infection. A single gene or its products that can confer protection against multiple pathogens is required. In an attempt to develop silkworms with enhanced immunity against multiple pathogens, we generated transgenic silkworm lines with an overexpressed NF-kB transcription factor, Relish 1, under two different promoters. Separately, a potent anti-fungal gene, Drosomycin, was also expressed in transgenic silkworms. Both Relish 1 and Drosomycin transgenic silkworms had single copy genomic integration, and their mRNA expression levels were highly increased after infection with silkworm pathogens. The overexpression of the Relish 1 in transgenic silkworms resulted in the upregulation of several defense-related genes, Cecropin B, Attacin, and Lebocin, and showed enhanced resistance to Nosema bombycis (microsporidian fungus), Nucleopolyhedrovirus (BmNPV), and bacteria. The Drosomycin expressing transgenic silkworms showed elevated resistance to N. bombycis and bacteria. These findings demonstrate the role of Relish 1 in long-lasting protection against multiple pathogens in silkworms. Further, the successful introduction of a foreign gene, Drosomycin, also led to improved disease resistance in silkworms. | 2022 | 35098482 |
| 558 | 14 | 0.8868 | Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Thiamine metabolism genes are regulated in numerous bacteria by a riboswitch class that binds the coenzyme thiamine pyrophosphate (TPP). We demonstrate that the antimicrobial action of the thiamine analog pyrithiamine (PT) is mediated by interaction with TPP riboswitches in bacteria and fungi. For example, pyrithiamine pyrophosphate (PTPP) binds the TPP riboswitch controlling the tenA operon in Bacillus subtilis. Expression of a TPP riboswitch-regulated reporter gene is reduced in transgenic B. subtilis or Escherichia coli when grown in the presence of thiamine or PT, while mutant riboswitches in these organisms are unresponsive to these ligands. Bacteria selected for PT resistance bear specific mutations that disrupt ligand binding to TPP riboswitches and derepress certain TPP metabolic genes. Our findings demonstrate that riboswitches can serve as antimicrobial drug targets and expand our understanding of thiamine metabolism in bacteria. | 2005 | 16356850 |
| 329 | 15 | 0.8866 | Effect of NlpE overproduction on multidrug resistance in Escherichia coli. NlpE, an outer membrane lipoprotein, functions during envelope stress responses in Gram-negative bacteria. In this study, we report that overproduction of NlpE increases multidrug and copper resistance through activation of the genes encoding the AcrD and MdtABC multidrug efflux pumps in Escherichia coli. | 2010 | 20211889 |
| 576 | 16 | 0.8866 | Caenorhabditis elegans defective-pharynx and constipated mutants are resistant to Orsay virus infection. C. elegans animals with a compromised pharynx accumulate bacteria in their intestinal lumen and activate a transcriptional response that includes anti-bacterial response genes. In this study, we demonstrate that animals with defective pharynxes are resistant to Orsay virus (OrV) infection. This resistance is observed for animals grown on Escherichia coli OP50 and on Comamonas BIGb0172, a bacterium naturally associated with C. elegans . The viral resistance observed in defective-pharynx mutants does not seem to result from constitutive transcriptional immune responses against viruses. OrV resistance is also observed in mutants with defective defecation, which share with the pharynx-defective perturbations in the regulation of their intestinal contents and altered lipid metabolism. The underlying mechanisms of viral resistance in pharynx- and defecation-defective mutants remain elusive. | 2024 | 38590801 |
| 757 | 17 | 0.8865 | Regulation of antibiotic-resistance by non-coding RNAs in bacteria. Antibiotic resistance genes are commonly regulated by sophisticated mechanisms that activate gene expression in response to antibiotic exposure. Growing evidence suggest that cis-acting non-coding RNAs play a major role in regulating the expression of many resistance genes, specifically those which counteract the effects of translation-inhibiting antibiotics. These ncRNAs reside in the 5'UTR of the regulated gene, and sense the presence of the antibiotics by recruiting translating ribosomes onto short upstream open reading frames (uORFs) embedded in the ncRNA. In the presence of translation-inhibiting antibiotics ribosomes arrest over the uORF, altering the RNA structure of the regulator and switching the expression of the resistance gene to 'ON'. The specificity of these riboregulators is tuned to sense-specific classes of antibiotics based on the length and composition of the respective uORF. Here we review recent work describing new types of antibiotic-sensing RNA-based regulators and elucidating the molecular mechanisms by which they function to control antibiotic resistance in bacteria. | 2017 | 28414973 |
| 24 | 18 | 0.8865 | Environmental History Modulates Arabidopsis Pattern-Triggered Immunity in a HISTONE ACETYLTRANSFERASE1-Dependent Manner. In nature, plants are exposed to a fluctuating environment, and individuals exposed to contrasting environmental factors develop different environmental histories. Whether different environmental histories alter plant responses to a current stress remains elusive. Here, we show that environmental history modulates the plant response to microbial pathogens. Arabidopsis thaliana plants exposed to repetitive heat, cold, or salt stress were more resistant to virulent bacteria than Arabidopsis grown in a more stable environment. By contrast, long-term exposure to heat, cold, or exposure to high concentrations of NaCl did not provide enhanced protection against bacteria. Enhanced resistance occurred with priming of Arabidopsis pattern-triggered immunity (PTI)-responsive genes and the potentiation of PTI-mediated callose deposition. In repetitively stress-challenged Arabidopsis, PTI-responsive genes showed enrichment for epigenetic marks associated with transcriptional activation. Upon bacterial infection, enrichment of RNA polymerase II at primed PTI marker genes was observed in environmentally challenged Arabidopsis. Finally, repetitively stress-challenged histone acetyltransferase1-1 (hac1-1) mutants failed to demonstrate enhanced resistance to bacteria, priming of PTI, and increased open chromatin states. These findings reveal that environmental history shapes the plant response to bacteria through the development of a HAC1-dependent epigenetic mark characteristic of a primed PTI response, demonstrating a mechanistic link between the primed state in plants and epigenetics. | 2014 | 24963055 |
| 7 | 19 | 0.8864 | An EDS1 heterodimer signalling surface enforces timely reprogramming of immunity genes in Arabidopsis. Plant intracellular NLR receptors recognise pathogen interference to trigger immunity but how NLRs signal is not known. Enhanced disease susceptibility1 (EDS1) heterodimers are recruited by Toll-interleukin1-receptor domain NLRs (TNLs) to transcriptionally mobilise resistance pathways. By interrogating the Arabidopsis EDS1 ɑ-helical EP-domain we identify positively charged residues lining a cavity that are essential for TNL immunity signalling, beyond heterodimer formation. Mutating a single, conserved surface arginine (R493) disables TNL immunity to an oomycete pathogen and to bacteria producing the virulence factor, coronatine. Plants expressing a weakly active EDS1(R493A) variant have delayed transcriptional reprogramming, with severe consequences for resistance and countering bacterial coronatine repression of early immunity genes. The same EP-domain surface is utilised by a non-TNL receptor RPS2 for bacterial immunity, indicating that the EDS1 EP-domain signals in resistance conferred by different NLR receptor types. These data provide a unique structural insight to early downstream signalling in NLR receptor immunity. | 2019 | 30770836 |