# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8348 | 0 | 0.9935 | Role of RelA-synthesized (p)ppGpp and ROS-induced mutagenesis in de novo acquisition of antibiotic resistance in E. coli. The stringent response of bacteria to starvation and stress also fulfills a role in addressing the threat of antibiotics. Within this stringent response, (p)ppGpp, synthesized by RelA or SpoT, functions as a global alarmone. However, the effect of this (p)ppGpp on resistance development is poorly understood. Here, we show that knockout of relA or rpoS curtails resistance development against bactericidal antibiotics. The emergence of mutated genes associated with starvation and (p)ppGpp, among others, indicates the activation of stringent responses. The growth rate is decreased in ΔrelA-resistant strains due to the reduced ability to synthesize (p)ppGpp and the persistence of deacylated tRNA impeding protein synthesis. Sluggish cellular activity causes decreased production of reactive oxygen species (ROS), thereby reducing oxidative damage, leading to weakened DNA mismatch repair, potentially reducing the generation of mutations. These findings offer new targets for mitigating antibiotic resistance development, potentially achieved through inhibiting (p)ppGpp or ROS synthesis. | 2024 | 38617560 |
| 750 | 1 | 0.9935 | Mutations in Genes with a Role in Cell Envelope Biosynthesis Render Gram-Negative Bacteria Highly Susceptible to the Anti-Infective Small Molecule D66. Anti-infectives include molecules that target microbes in the context of infection but lack antimicrobial activity under conventional growth conditions. We previously described D66, a small molecule that kills the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) within cultured macrophages and murine tissues, with low host toxicity. While D66 fails to inhibit bacterial growth in standard media, the compound is bacteriostatic and disrupts the cell membrane voltage gradient without lysis under growth conditions that permeabilize the outer membrane or reduce efflux pump activity. To gain insights into specific bacterial targets of D66, we pursued two genetic approaches. Selection for resistance to D66 revealed spontaneous point mutations that mapped within the gmhB gene, which encodes a protein involved in the biosynthesis of the lipopolysaccharide core molecule. E. coli and S. Typhimurium gmhB mutants exhibited increased resistance to antibiotics, indicating a more robust barrier to entry. Conversely, S. Typhimurium transposon insertions in genes involved in outer membrane permeability or efflux pump activity reduced fitness in the presence of D66. Together, these observations underscore the significance of the bacterial cell envelope in safeguarding Gram-negative bacteria from small molecules. | 2025 | 40732029 |
| 8347 | 2 | 0.9935 | Molecular mechanisms underlying glyphosate resistance in bacteria. Glyphosate is a nonselective herbicide that kills weeds and other plants competing with crops. Glyphosate specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase, thereby depleting the cell of EPSP serving as a precursor for biosynthesis of aromatic amino acids. Glyphosate is considered to be toxicologically safe for animals and humans. Therefore, it became the most-important herbicide in agriculture. However, its intensive application in agriculture is a serious environmental issue because it may negatively affect the biodiversity. A few years after the discovery of the mode of action of glyphosate, it has been observed that bacteria evolve glyphosate resistance by acquiring mutations in the EPSP synthase gene, rendering the encoded enzyme less sensitive to the herbicide. The identification of glyphosate-resistant EPSP synthase variants paved the way for engineering crops tolerating increased amounts of the herbicide. This review intends to summarize the molecular mechanisms underlying glyphosate resistance in bacteria. Bacteria can evolve glyphosate resistance by (i) reducing glyphosate sensitivity or elevating production of the EPSP synthase, by (ii) degrading or (iii) detoxifying glyphosate and by (iv) decreasing the uptake or increasing the export of the herbicide. The variety of glyphosate resistance mechanisms illustrates the adaptability of bacteria to anthropogenic substances due to genomic alterations. | 2021 | 33876549 |
| 585 | 3 | 0.9934 | Genetic susceptibility to intracellular infections: Nramp1, macrophage function and divalent cations transport. Nramp1 is one of the few host resistance genes that have been characterized at the molecular level. Nramp1 is an integral membrane protein expressed in the lysosomal compartment of macrophages and is recruited to the membrane of bacterial phagosomes where it affects intracellular microbial replication. Nramp1 is part of a very large gene family conserved from bacteria and man that codes for transporters of divalent cations transporters. We propose that Nramp1 affects the intraphagosomal microbial replication by modulating divalent cations content in this organelle. Both mammalian and bacterial transporters may compete for the same substrate in the phagosomal space. | 2000 | 10679418 |
| 728 | 4 | 0.9933 | Surviving Reactive Chlorine Stress: Responses of Gram-Negative Bacteria to Hypochlorous Acid. Sodium hypochlorite (NaOCl) and its active ingredient, hypochlorous acid (HOCl), are the most commonly used chlorine-based disinfectants. HOCl is a fast-acting and potent antimicrobial agent that interacts with several biomolecules, such as sulfur-containing amino acids, lipids, nucleic acids, and membrane components, causing severe cellular damage. It is also produced by the immune system as a first-line of defense against invading pathogens. In this review, we summarize the adaptive responses of Gram-negative bacteria to HOCl-induced stress and highlight the role of chaperone holdases (Hsp33, RidA, Cnox, and polyP) as an immediate response to HOCl stress. We also describe the three identified transcriptional regulators (HypT, RclR, and NemR) that specifically respond to HOCl. Besides the activation of chaperones and transcriptional regulators, the formation of biofilms has been described as an important adaptive response to several stressors, including HOCl. Although the knowledge on the molecular mechanisms involved in HOCl biofilm stimulation is limited, studies have shown that HOCl induces the formation of biofilms by causing conformational changes in membrane properties, overproducing the extracellular polymeric substance (EPS) matrix, and increasing the intracellular concentration of cyclic-di-GMP. In addition, acquisition and expression of antibiotic resistance genes, secretion of virulence factors and induction of the viable but nonculturable (VBNC) state has also been described as an adaptive response to HOCl. In general, the knowledge of how bacteria respond to HOCl stress has increased over time; however, the molecular mechanisms involved in this stress response is still in its infancy. A better understanding of these mechanisms could help understand host-pathogen interactions and target specific genes and molecules to control bacterial spread and colonization. | 2020 | 32796669 |
| 8192 | 5 | 0.9933 | Resisting the Heat: Bacterial Disaggregases Rescue Cells From Devastating Protein Aggregation. Bacteria as unicellular organisms are most directly exposed to changes in environmental growth conditions like temperature increase. Severe heat stress causes massive protein misfolding and aggregation resulting in loss of essential proteins. To ensure survival and rapid growth resume during recovery periods bacteria are equipped with cellular disaggregases, which solubilize and reactivate aggregated proteins. These disaggregases are members of the Hsp100/AAA+ protein family, utilizing the energy derived from ATP hydrolysis to extract misfolded proteins from aggregates via a threading activity. Here, we describe the two best characterized bacterial Hsp100/AAA+ disaggregases, ClpB and ClpG, and compare their mechanisms and regulatory modes. The widespread ClpB disaggregase requires cooperation with an Hsp70 partner chaperone, which targets ClpB to protein aggregates. Furthermore, Hsp70 activates ClpB by shifting positions of regulatory ClpB M-domains from a repressed to a derepressed state. ClpB activity remains tightly controlled during the disaggregation process and high ClpB activity states are likely restricted to initial substrate engagement. The recently identified ClpG (ClpK) disaggregase functions autonomously and its activity is primarily controlled by substrate interaction. ClpG provides enhanced heat resistance to selected bacteria including pathogens by acting as a more powerful disaggregase. This disaggregase expansion reflects an adaption of bacteria to extreme temperatures experienced during thermal based sterilization procedures applied in food industry and medicine. Genes encoding for ClpG are transmissible by horizontal transfer, allowing for rapid spreading of extreme bacterial heat resistance and posing a threat to modern food production. | 2021 | 34017857 |
| 653 | 6 | 0.9932 | Connecting Algal Polysaccharide Degradation to Formaldehyde Detoxification. Formaldehyde is a toxic metabolite that is formed in large quantities during bacterial utilization of the methoxy sugar 6-O-methyl-d-galactose, an abundant monosaccharide in the red algal polysaccharide porphyran. Marine bacteria capable of metabolizing porphyran must therefore possess suitable detoxification systems for formaldehyde. We demonstrate here that detoxification of formaldehyde in the marine Flavobacterium Zobellia galactanivorans proceeds via the ribulose monophosphate pathway. Simultaneously, we show that the genes encoding the key enzymes of this pathway are important for maintaining high formaldehyde resistance. Additionally, these genes are upregulated in the presence of porphyran, allowing us to connect porphyran degradation to the detoxification of formed formaldehyde. | 2022 | 35561127 |
| 8269 | 7 | 0.9932 | Molecular genetics of Rhizobium Meliloti symbiotic nitrogen fixation. The application of recombinant DNA techniques to the study of symbiotic nitrogen fixation has yielded a growing list of Rhizobium meliloti genes involved in the processes of nodulation, infection thread formation and nitrogenase activity in nodules on the roots of the host plant, Medicago sativa (alfalfa). Interaction with the plant is initiated by genes encoding sensing and motility systems by which the bacteria recognizes and approaches the root. Signal molecules, such as flavonoids, mediate a complex interplay of bacterial and plant nodulation genes leading to entry of the bacteria through a root hair. As the nodule develops, the bacteria proceed inward towards the cortex within infection threads, the formation of which depends on bacterial genes involved in polysaccharide synthesis. Within the cortex, the bacteria enter host cells and differentiate into forms known as bacteroids. Genes which encode and regulate nitrogenase enzyme are expressed in the mature nodule, together with other genes required for import and metabolism of carbon and energy sources offered by the plant. | 1989 | 14542173 |
| 8283 | 8 | 0.9932 | Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Bacteria encounter a myriad of potentially growth-compromising conditions in nature and in hosts of pathogenic bacteria. These 'stresses' typically elicit protective and/or adaptive responses that serve to enhance bacterial survivability. Because they impact upon many of the same cellular components and processes that are targeted by antimicrobials, adaptive stress responses can influence antimicrobial susceptibility. In targeting and interfering with key cellular processes, antimicrobials themselves are 'stressors' to which protective stress responses have also evolved. Cellular responses to nutrient limitation (nutrient stress), oxidative and nitrosative stress, cell envelope damage (envelope stress), antimicrobial exposure and other growth-compromising stresses, have all been linked to the development of antimicrobial resistance in Gram-negative bacteria - resulting from the stimulation of protective changes to cell physiology, activation of resistance mechanisms, promotion of resistant lifestyles (biofilms), and induction of resistance mutations. | 2012 | 22424589 |
| 8268 | 9 | 0.9932 | Sustained coevolution of phage Lambda and Escherichia coli involves inner- as well as outer-membrane defences and counter-defences. Bacteria often evolve resistance to phage through the loss or modification of cell surface receptors. In Escherichia coli and phage λ, such resistance can catalyze a coevolutionary arms race focused on host and phage structures that interact at the outer membrane. Here, we analyse another facet of this arms race involving interactions at the inner membrane, whereby E. coli evolves mutations in mannose permease-encoding genes manY and manZ that impair λ's ability to eject its DNA into the cytoplasm. We show that these man mutants arose concurrently with the arms race at the outer membrane. We tested the hypothesis that λ evolved an additional counter-defence that allowed them to infect bacteria with deleted man genes. The deletions severely impaired the ancestral λ, but some evolved phage grew well on the deletion mutants, indicating that they regained infectivity by evolving the ability to infect hosts independently of the mannose permease. This coevolutionary arms race fulfils the model of an inverse gene-for-gene infection network. Taken together, the interactions at both the outer and inner membranes reveal that coevolutionary arms races can be richer and more complex than is often appreciated. | 2021 | 34032565 |
| 8144 | 10 | 0.9932 | Fungal Priming: Prepare or Perish. Priming (also referred to as acclimation, acquired stress resistance, adaptive response, or cross-protection) is defined as an exposure of an organism to mild stress that leads to the development of a subsequent stronger and more protective response. This memory of a previously encountered stress likely provides a strong survival advantage in a rapidly shifting environment. Priming has been identified in animals, plants, fungi, and bacteria. Examples include innate immune priming and transgenerational epigenetic inheritance in animals and biotic and abiotic stress priming in plants, fungi, and bacteria. Priming mechanisms are diverse and include alterations in the levels of specific mRNAs, proteins, metabolites, and epigenetic changes such as DNA methylation and histone acetylation of target genes. | 2022 | 35628704 |
| 8353 | 11 | 0.9932 | Adaptive loss of tRNA gene expression leads to phage resistance in a marine Synechococcus cyanobacterium. Synechococcus is a significant primary producer in the oceans, coexisting with cyanophages, which are important agents of mortality. Bacterial resistance against phage infection is a topic of significant interest, yet little is known for ecologically relevant systems. Here we use exogenous gene expression and gene disruption to investigate mechanisms underlying intracellular resistance of marine Synechococcus WH5701 to the Syn9 cyanophage. The restriction-modification and Gabija defence systems possessed by Synechococcus WH5701 did not contribute to resistance. Instead, resistance was primarily driven by insufficient levels of Leu(TAA) tRNA, preventing translation of key phage genes in a passive, intracellular mode of resistance. Restoring cellular tRNA expression rendered the cyanobacterium sensitive to infection. We propose an evolutionary scenario whereby changes in cell codon usage, acquisition of tRNAs by the phage and loss of cell and phage tRNA expression resulted in an effective means of resistance, highlighting the dynamic interplay between bacteria and phages in shaping their co-evolutionary trajectories. | 2025 | 39753669 |
| 707 | 12 | 0.9932 | Reciprocal control between a bacterium's regulatory system and the modification status of its lipopolysaccharide. Gram-negative bacteria often modify their lipopolysaccharide (LPS), thereby increasing resistance to antimicrobial agents and avoidance of the host immune system. However, it is unclear how bacteria adjust the levels and activities of LPS-modifying enzymes in response to the modification status of their LPS. We now address this question by investigating the major regulator of LPS modifications in Salmonella enterica. We report that the PmrA/PmrB system controls expression of a membrane peptide that inhibits the activity of LpxT, an enzyme responsible for increasing the LPS negative charge. LpxT's inhibition and the PmrA-dependent incorporation of positively charged L-4-aminoarabinose into the LPS decrease Fe(3+) binding to the bacterial cell. Because Fe(3+) is an activating ligand for the sensor PmrB, transcription of PmrA-dependent LPS-modifying genes is reduced. This mechanism enables bacteria to sense their cell surface by its effect on the availability of an inducing signal for the system regulating cell-surface modifications. | 2012 | 22921935 |
| 730 | 13 | 0.9931 | How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. Bacterial pathogens regulate the expression of virulence factors in response to environmental signals. In the case of salmonellae, many virulence factors are regulated via PhoP/PhoQ, a two-component signal transduction system that is repressed by magnesium and calcium in vitro. PhoP/PhoQ-activated genes promote intracellular survival within macrophages, whereas PhoP-repressed genes promote entrance into epithelial cells and macrophages by macropinocytosis and stimulate epithelial cell cytokine production. PhoP-activated genes include those that alter the cell envelope through structural alterations of lipopolysaccharide and lipid A, the bioactive component of lipopolysaccharide. PhoP-activated changes in the bacterial envelope likely promote intracellular survival by increasing resistance to host cationic antimicrobial peptides and decreasing host cell cytokine production. | 1999 | 10081503 |
| 8329 | 14 | 0.9931 | Protozoan predation enhances stress resistance and antibiotic tolerance in Burkholderia cenocepacia by triggering the SOS response. Bacterivorous protists are thought to serve as training grounds for bacterial pathogens by subjecting them to the same hostile conditions that they will encounter in the human host. Bacteria that survive intracellular digestion exhibit enhanced virulence and stress resistance after successful passage through protozoa but the underlying mechanisms are unknown. Here we show that the opportunistic pathogen Burkholderia cenocepacia survives phagocytosis by ciliates found in domestic and hospital sink drains, and viable bacteria are expelled packaged in respirable membrane vesicles with enhanced resistance to oxidative stress, desiccation, and antibiotics, thereby contributing to pathogen dissemination in the environment. Reactive oxygen species generated within the protozoan phagosome promote the formation of persisters tolerant to ciprofloxacin by activating the bacterial SOS response. In addition, we show that genes encoding antioxidant enzymes are upregulated during passage through ciliates increasing bacterial resistance to oxidative radicals. We prove that suppression of the SOS response impairs bacterial intracellular survival and persister formation within protists. This study highlights the significance of protozoan food vacuoles as niches that foster bacterial adaptation in natural and built environments and suggests that persister switch within phagosomes may be a widespread phenomenon in bacteria surviving intracellular digestion. | 2024 | 38366016 |
| 9334 | 15 | 0.9931 | Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Antibiotic resistance, virulence, and other plasmids in bacteria use toxin-antitoxin gene pairs to ensure their persistence during host replication. The toxin-antitoxin system eliminates plasmid-free cells that emerge as a result of segregation or replication defects and contributes to intra- and interspecies plasmid dissemination. Chromosomal homologs of toxin-antitoxin genes are widely distributed in pathogenic and other bacteria and induce reversible cell cycle arrest or programmed cell death in response to starvation or other adverse conditions. The dissection of the interaction of the toxins with intracellular targets and the elucidation of the tertiary structures of toxin-antitoxin complexes have provided exciting insights into toxin-antitoxin behavior. | 2003 | 12970556 |
| 9332 | 16 | 0.9931 | Intercellular nanotubes mediate bacterial communication. Bacteria are known to communicate primarily via secreted extracellular factors. Here we identify a previously uncharacterized type of bacterial communication mediated by nanotubes that bridge neighboring cells. Using Bacillus subtilis as a model organism, we visualized transfer of cytoplasmic fluorescent molecules between adjacent cells. Additionally, by coculturing strains harboring different antibiotic resistance genes, we demonstrated that molecular exchange enables cells to transiently acquire nonhereditary resistance. Furthermore, nonconjugative plasmids could be transferred from one cell to another, thereby conferring hereditary features to recipient cells. Electron microscopy revealed the existence of variously sized tubular extensions bridging neighboring cells, serving as a route for exchange of intracellular molecules. These nanotubes also formed in an interspecies manner, between B. subtilis and Staphylococcus aureus, and even between B. subtilis and the evolutionary distant bacterium Escherichia coli. We propose that nanotubes represent a major form of bacterial communication in nature, providing a network for exchange of cellular molecules within and between species. | 2011 | 21335240 |
| 586 | 17 | 0.9931 | Iron metabolism and resistance to infection by invasive bacteria in the social amoeba Dictyostelium discoideum. Dictyostelium cells are forest soil amoebae, which feed on bacteria and proliferate as solitary cells until bacteria are consumed. Starvation triggers a change in life style, forcing cells to gather into aggregates to form multicellular organisms capable of cell differentiation and morphogenesis. As a soil amoeba and a phagocyte that grazes on bacteria as the obligate source of food, Dictyostelium could be a natural host of pathogenic bacteria. Indeed, many pathogens that occasionally infect humans are hosted for most of their time in protozoa or free-living amoebae, where evolution of their virulence traits occurs. Due to these features and its amenability to genetic manipulation, Dictyostelium has become a valuable model organism for studying strategies of both the host to resist infection and the pathogen to escape the defense mechanisms. Similarly to higher eukaryotes, iron homeostasis is crucial for Dictyostelium resistance to invasive bacteria. Iron is essential for Dictyostelium, as both iron deficiency or overload inhibit cell growth. The Dictyostelium genome shares with mammals many genes regulating iron homeostasis. Iron transporters of the Nramp (Slc11A) family are represented with two genes, encoding Nramp1 and Nramp2. Like the mammalian ortholog, Nramp1 is recruited to phagosomes and macropinosomes, whereas Nramp2 is a membrane protein of the contractile vacuole network, which regulates osmolarity. Nramp1 and Nramp2 localization in distinct compartments suggests that both proteins synergistically regulate iron homeostasis. Rather than by absorption via membrane transporters, iron is likely gained by degradation of ingested bacteria and efflux via Nramp1 from phagosomes to the cytosol. Nramp gene disruption increases Dictyostelium sensitivity to infection, enhancing intracellular growth of Legionella or Mycobacteria. Generation of mutants in other "iron genes" will help identify genes essential for iron homeostasis and resistance to pathogens. | 2013 | 24066281 |
| 8297 | 18 | 0.9930 | Novel RpoS-Dependent Mechanisms Strengthen the Envelope Permeability Barrier during Stationary Phase. Gram-negative bacteria have effective methods of excluding toxic compounds, including a largely impermeable outer membrane (OM) and a range of efflux pumps. Furthermore, when cells become nutrient limited, RpoS enacts a global expression change providing cross-protection against many stresses. Here, we utilized sensitivity to an anionic detergent (sodium dodecyl sulfate [SDS]) to probe changes occurring to the cell's permeability barrier during nutrient limitation. Escherichia coli is resistant to SDS whether cells are actively growing, carbon limited, or nitrogen limited. In actively growing cells, this resistance depends on the AcrAB-TolC efflux pump; however, this pump is not necessary for protection under either carbon-limiting or nitrogen-limiting conditions, suggesting an alternative mechanism(s) of SDS resistance. In carbon-limited cells, RpoS-dependent pathways lessen the permeability of the OM, preventing the necessity for efflux. In nitrogen-limited but not carbon-limited cells, the loss of rpoS can be completely compensated for by the AcrAB-TolC efflux pump. We suggest that this difference simply reflects the fact that nitrogen-limited cells have access to a metabolizable energy (carbon) source that can efficiently power the efflux pump. Using a transposon mutant pool sequencing (Tn-Seq) approach, we identified three genes, sanA, dacA, and yhdP, that are necessary for RpoS-dependent SDS resistance in carbon-limited stationary phase. Using genetic analysis, we determined that these genes are involved in two different envelope-strengthening pathways. These genes have not previously been implicated in stationary-phase stress responses. A third novel RpoS-dependent pathway appears to strengthen the cell's permeability barrier in nitrogen-limited cells. Thus, though cells remain phenotypically SDS resistant, SDS resistance mechanisms differ significantly between growth states. IMPORTANCE: Gram-negative bacteria are intrinsically resistant to detergents and many antibiotics due to synergistic activities of a strong outer membrane (OM) permeability barrier and efflux pumps that capture and expel toxic molecules eluding the barrier. When the bacteria are depleted of an essential nutrient, a program of gene expression providing cross-protection against many stresses is induced. Whether this program alters the OM to further strengthen the barrier is unknown. Here, we identify novel pathways dependent on the master regulator of stationary phase that further strengthen the OM permeability barrier during nutrient limitation, circumventing the need for efflux pumps. Decreased permeability of nutrient-limited cells to toxic compounds has important implications for designing new antibiotics capable of targeting Gram-negative bacteria that may be in a growth-limited state. | 2017 | 27821607 |
| 8333 | 19 | 0.9930 | Role of Extracellular DNA in Bacterial Response to SOS-Inducing Drugs. The SOS response is a conserved stress response pathway that is triggered by DNA damage in the bacterial cell. Activation of this pathway can, in turn, cause the rapid appearance of new mutations, sometimes called hypermutation. We compared the ability of various SOS-inducing drugs to trigger the expression of RecA, cause hypermutation, and produce elongation of bacteria. During this study, we discovered that these SOS phenotypes were accompanied by the release of large amounts of DNA into the extracellular medium. The release of DNA was accompanied by a form of bacterial aggregation in which the bacteria became tightly enmeshed in DNA. We hypothesize that DNA release triggered by SOS-inducing drugs could promote the horizontal transfer of antibiotic resistance genes by transformation or by conjugation. | 2023 | 37107011 |