NEITHER - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
63600.9968Listeria monocytogenes is resistant to lysozyme through the regulation, not the acquisition, of cell wall-modifying enzymes. Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that is highly resistant to lysozyme, a ubiquitous enzyme of the innate immune system that degrades cell wall peptidoglycan. Two peptidoglycan-modifying enzymes, PgdA and OatA, confer lysozyme resistance on L. monocytogenes; however, these enzymes are also conserved among lysozyme-sensitive nonpathogens. We sought to identify additional factors responsible for lysozyme resistance in L. monocytogenes. A forward genetic screen for lysozyme-sensitive mutants led to the identification of 174 transposon insertion mutations that mapped to 13 individual genes. Four mutants were killed exclusively by lysozyme and not other cell wall-targeting molecules, including the peptidoglycan deacetylase encoded by pgdA, the putative carboxypeptidase encoded by pbpX, the orphan response regulator encoded by degU, and the highly abundant noncoding RNA encoded by rli31. Both degU and rli31 mutants had reduced expression of pbpX and pgdA, yet DegU and Rli31 did not regulate each other. Since pbpX and pgdA are also present in lysozyme-sensitive bacteria, this suggested that the acquisition of novel enzymes was not responsible for lysozyme resistance, but rather, the regulation of conserved enzymes by DegU and Rli31 conferred high lysozyme resistance. Each lysozyme-sensitive mutant exhibited attenuated virulence in mice, and a time course of infection revealed that the most lysozyme-sensitive strain was killed within 30 min of intravenous infection, a phenotype that was recapitulated in purified blood. Collectively, these data indicate that the genes required for lysozyme resistance are highly upregulated determinants of L. monocytogenes pathogenesis that are required for avoiding the enzymatic activity of lysozyme in the blood.201425157076
70010.9968The extracytoplasmic function sigma factor SigV plays a key role in the original model of lysozyme resistance and virulence of Enterococcus faecalis. BACKGROUND: Enterococcus faecalis is one of the leading agents of nosocomial infections. To cause diseases, pathogens or opportunistic bacteria have to adapt and survive to the defense systems encountered in the host. One of the most important compounds of the host innate defense response against invading microorganisms is lysozyme. It is found in a wide variety of body fluids, as well as in cells of the innate immune system. Lysozyme could act either as a muramidase and/or as a cationic antimicrobial peptide. Like Staphylococcus aureus, E. faecalis is one of the few bacteria that are completely lysozyme resistant. RESULTS: This study revealed that oatA (O-acetyl transferase) and dlt (D-Alanylation of lipoteicoic acids) genes contribute only partly to the lysozyme resistance of E. faecalis and that a specific transcriptional regulator, the extracytoplasmic function SigV sigma factor plays a key role in this event. Indeed, the sigV single mutant is as sensitive as the oatA/dltA double mutant, and the sigV/oatA/dltA triple mutant displays the highest level of lysozyme sensitivity suggesting synergistic effects of these genes. In S. aureus, mutation of both oatA and dlt genes abolishes completely the lysozyme resistance, whereas this is not the case in E. faecalis. Interestingly SigV does not control neither oatA nor dlt genes. Moreover, the sigV mutants clearly showed a reduced capacity to colonize host tissues, as they are significantly less recovered than the parental JH2-2 strain from organs of mice subjected to intravenous or urinary tract infections. CONCLUSIONS: This work led to the discovery of an original model of lysozyme resistance mechanism which is obviously more complex than those described for other Gram positive pathogens. Moreover, our data provide evidences for a direct link between lysozyme resistance and virulence of E. faecalis.201020300180
823420.9967Contradictory roles for antibody and complement in the interaction of Brucella abortus with its host. The ability of serum complement to kill bacteria has been linked to host resistance to Gram-negative bacteria. A mechanism for killing extracellular organisms during early invasion, following release from infected phagocytic cells, or during bacteremia would contribute to a host's ability to resist disease. In fact, the ability of serum complement to kill bacteria has been linked to disease resistance. Brucella abortus are Gram-negative intracellular pathogens. Resistance to these bacteria involves the coordinated activities of the cellular and humoral immune systems. The existence of serum-resistant forms of B. abortus has been established, and it has been shown that these bacteria can resist the killing action of complement even in the presence of specific antibody. Antibody is usually necessary for complement-mediated killing of smooth (virulent) forms of Gram-negative bacteria. An anomolous situation exists with some isolates of smooth B. abortus. Sera containing high titers of specific antibody do not support killing unless they are diluted. In the bovine, this phenomenon is associated with IgG1 and IgG2 antibodies. This finding may account for the lack of positive correlation between antibody levels and resistance to disease, which has led, perhaps wrongly, to the idea that antibody and complement are not important in resistance to brucellosis. Available evidence suggests that antibody may have contradictory roles in the interactions between a host and bacteria. Avirulent (rough) forms of the organism would be rapidly killed by complement shortly after invasion, but serum-resistant smooth forms of the organism would survive and invade resident phagocytic cells. During the process of invasion and phagocytosis, the bacteria would initiate an immune response. With time, some B. abortus organisms would be released from infected phagocytic cells. In the early stages of this process, the bacteria would encounter IgM antibody and low concentrations of IgG antibody. These would cause complement-mediated killing, and infection would be restricted to resident phagocytic cells. However, the immune response to B. abortus antigens would be intensified, and IgG antibody levels would increase. High concentrations of antibody do no support complement-mediated killing of extracellular B. abortus, but the bacteria would be opsonized by antibody and complement component fragments. This would lead to increased phagocytosis of extracellular B. abortus as they appear, and concomitant extension of disease. Because of high levels of antibody would block complement-mediated killing of B. abortus, resistance to disease at this point would be dependent on cell-mediated immunity.19958845060
67230.9966Trehalose Biosynthesis Gene otsA Protects against Stress in the Initial Infection Stage of Burkholderia-Bean Bug Symbiosis. Trehalose, a nonreducing disaccharide, functions as a stress protectant in many organisms, including bacteria. In symbioses involving bacteria, the bacteria have to overcome various stressors to associate with their hosts; thus, trehalose biosynthesis may be important for symbiotic bacteria. Here, we investigated the role of trehalose biosynthesis in the Burkholderia-bean bug symbiosis. Expression levels of two trehalose biosynthesis genes, otsA and treS, were elevated in symbiotic Burkholderia insecticola cells, and hence mutant ΔotsA and ΔtreS strains were generated to examine the functions of these genes in symbiosis. An in vivo competition assay with the wild-type strain revealed that fewer ΔotsA cells, but not ΔtreS cells, colonized the host symbiotic organ, the M4 midgut, than wild-type cells. The ΔotsA strain was susceptible to osmotic pressure generated by high salt or high sucrose concentrations, suggesting that the reduced symbiotic competitiveness of the ΔotsA strain was due to the loss of stress resistance. We further demonstrated that fewer ΔotsA cells infected the M4 midgut initially but that fifth-instar nymphs exhibited similar symbiont population size as the wild-type strain. Together, these results demonstrated that the stress resistance role of otsA is important for B. insecticola to overcome the stresses it encounters during passage through the midgut regions to M4 in the initial infection stage but plays no role in resistance to stresses inside the M4 midgut in the persistent stage. IMPORTANCE Symbiotic bacteria have to overcome stressful conditions present in association with the host. In the Burkholderia-bean bug symbiosis, we speculated that a stress-resistant function of Burkholderia is important and that trehalose, known as a stress protectant, plays a role in the symbiotic association. Using otsA, the trehalose biosynthesis gene, and a mutant strain, we demonstrated that otsA confers Burkholderia with competitiveness when establishing a symbiotic association with bean bugs, especially playing a role in initial infection stage. In vitro assays revealed that otsA provides the resistance against osmotic stresses. Hemipteran insects, including bean bugs, feed on plant phloem sap, which may lead to high osmotic pressures in the midguts of hemipterans. Our results indicated that the stress-resistant role of otsA is important for Burkholderia to overcome the osmotic stresses present during the passage through midgut regions to reach the symbiotic organ.202336976011
66240.9966Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress. Pseudomonas aeruginosa PAO1 has two differentially expressed methionine sulfoxide reductase genes: msrA (PA5018) and msrB (PA2827). The msrA gene is expressed constitutively at a high level throughout all growth phases, whereas msrB expression is highly induced by oxidative stress, such as sodium hypochlorite (NaOCl) treatment. Inactivation of either msrA or msrB or both genes (msrA msrB mutant) rendered the mutants less resistant than the parental PAO1 strain to oxidants such as NaOCl and H2O2. Unexpectedly, msr mutants have disparate resistance patterns when exposed to paraquat, a superoxide generator. The msrA mutant had a higher paraquat resistance level than the msrB mutant, which had a lower paraquat resistance level than the PAO1 strain. The expression levels of msrA showed an inverse correlation with the paraquat resistance level, and this atypical paraquat resistance pattern was not observed with msrB. Virulence testing using a Drosophila melanogaster model revealed that the msrA, msrB, and, to a greater extent, msrA msrB double mutants had an attenuated virulence phenotype. The data indicate that msrA and msrB are essential genes for oxidative stress protection and bacterial virulence. The pattern of expression and mutant phenotypes of P. aeruginosa msrA and msrB differ from previously characterized msr genes from other bacteria. Thus, as highly conserved genes, the msrA and msrB have diverse expression patterns and physiological roles that depend on the environmental niche where the bacteria thrive.201323687271
30750.9966Escape from Lethal Bacterial Competition through Coupled Activation of Antibiotic Resistance and a Mobilized Subpopulation. Bacteria have diverse mechanisms for competition that include biosynthesis of extracellular enzymes and antibiotic metabolites, as well as changes in community physiology, such as biofilm formation or motility. Considered collectively, networks of competitive functions for any organism determine success or failure in competition. How bacteria integrate different mechanisms to optimize competitive fitness is not well studied. Here we study a model competitive interaction between two soil bacteria: Bacillus subtilis and Streptomyces sp. Mg1 (S. Mg1). On an agar surface, colonies of B. subtilis suffer cellular lysis and progressive degradation caused by S. Mg1 cultured at a distance. We identify the lytic and degradative activity (LDA) as linearmycins, which are produced by S. Mg1 and are sufficient to cause lysis of B. subtilis. We obtained B. subtilis mutants spontaneously resistant to LDA (LDAR) that have visibly distinctive morphology and spread across the agar surface. Every LDAR mutant identified had a missense mutation in yfiJK, which encodes a previously uncharacterized two-component signaling system. We confirmed that gain-of-function alleles in yfiJK cause a combination of LDAR, changes in colony morphology, and motility. Downstream of yfiJK are the yfiLMN genes, which encode an ATP-binding cassette transporter. We show that yfiLMN genes are necessary for LDA resistance. The developmental phenotypes of LDAR mutants are genetically separable from LDA resistance, suggesting that the two competitive functions are distinct, but regulated by a single two-component system. Our findings suggest that a subpopulation of B. subtilis activate an array of defensive responses to counter lytic stress imposed by competition. Coordinated regulation of development and antibiotic resistance is a streamlined mechanism to promote competitive fitness of bacteria.201526647299
481260.9965Production of the Bsa lantibiotic by community-acquired Staphylococcus aureus strains. Lantibiotics are antimicrobial peptides that have been the focus of much attention in recent years with a view to clinical, veterinary, and food applications. Although many lantibiotics are produced by food-grade bacteria or bacteria generally regarded as safe, some lantibiotics are produced by pathogens and, rather than contributing to food safety and/or health, add to the virulence potential of the producing strains. Indeed, genome sequencing has revealed the presence of genes apparently encoding a lantibiotic, designated Bsa (bacteriocin of Staphylococcus aureus), among clinical isolates of S. aureus and those associated with community-acquired methicillin-resistant S. aureus (MRSA) infections in particular. Here, we establish for the first time, through a combination of reverse genetics, mass spectrometry, and mutagenesis, that these genes encode a functional lantibiotic. We also reveal that Bsa is identical to the previously identified bacteriocin staphylococcin Au-26, produced by an S. aureus strain of vaginal origin. Our examination of MRSA isolates that produce the Panton-Valentine leukocidin demonstrates that many community-acquired S. aureus strains, and representatives of ST8 and ST80 in particular, are producers of Bsa. While possession of Bsa immunity genes does not significantly enhance resistance to the related lantibiotic gallidermin, the broad antimicrobial spectrum of Bsa strongly indicates that production of this bacteriocin confers a competitive ecological advantage on community-acquired S. aureus.201020023032
29970.9965Breaking barriers: pCF10 type 4 secretion system relies on a self-regulating muramidase to modulate the cell wall. Conjugative type 4 secretion systems (T4SSs) are the main driver for the spread of antibiotic resistance genes and virulence factors in bacteria. To deliver the DNA substrate to recipient cells, it must cross the cell envelopes of both donor and recipient bacteria. In the T4SS from the enterococcal conjugative plasmid pCF10, PrgK is known to be the active cell wall degrading enzyme. It has three predicted extracellular hydrolase domains: metallo-peptidase (LytM), soluble lytic transglycosylase (SLT), and cysteine, histidine-dependent amidohydrolases/peptidases (CHAP). Here, we report the structure of the LytM domain and show that its active site is degenerate and lacks the active site metal. Furthermore, we show that only the predicted SLT domain is functional in vitro and that it unexpectedly has a muramidase instead of a lytic transglycosylase activity. While we did not observe any peptidoglycan hydrolytic activity for the LytM or CHAP domain, we found that these domains downregulated the SLT muramidase activity. The CHAP domain was also found to be involved in PrgK dimer formation. Furthermore, we show that PrgK interacts with PrgL, which likely targets PrgK to the rest of the T4SS. The presented data provides important information for understanding the function of Gram-positive T4SSs.IMPORTANCEAntibiotic resistance is a large threat to human health and is getting more prevalent. One of the major contributors to the spread of antibiotic resistance among different bacteria is type 4 secretion systems (T4SS). However, mainly T4SSs from Gram-negative bacteria have been studied in detail. T4SSs from Gram-positive bacteria, which stand for more than half of all hospital-acquired infections, are much less understood. The significance of our research is in identifying the function and regulation of a cell wall hydrolase, a key component of the pCF10 T4SS from Enterococcus faecalis. This system is one of the best-studied Gram-positive T4SSs, and this added knowledge aids in our understanding of horizontal gene transfer in E. faecalis as well as other medically relevant Gram-positive bacteria.202438940556
886280.9965Vibrio anguillarum Is Genetically and Phenotypically Unaffected by Long-Term Continuous Exposure to the Antibacterial Compound Tropodithietic Acid. Minimizing the use of antibiotics in the food production chain is essential for limiting the development and spread of antibiotic-resistant bacteria. One alternative intervention strategy is the use of probiotic bacteria, and bacteria of the marine Roseobacter clade are capable of antagonizing fish-pathogenic vibrios in fish larvae and live feed cultures for fish larvae. The antibacterial compound tropodithietic acid (TDA), an antiporter that disrupts the proton motive force, is key in the antibacterial activity of several roseobacters. Introducing probiotics on a larger scale requires understanding of any potential side effects of long-term exposure of the pathogen to the probionts or any compounds they produce. Here we exposed the fish pathogen Vibrio anguillarum to TDA for several hundred generations in an adaptive evolution experiment. No tolerance or resistance arose during the 90 days of exposure, and whole-genome sequencing of TDA-exposed lineages and clones revealed few mutational changes, compared to lineages grown without TDA. Amino acid-changing mutations were found in two to six different genes per clone; however, no mutations appeared unique to the TDA-exposed lineages or clones. None of the virulence genes of V. anguillarum was affected, and infectivity assays using fish cell lines indicated that the TDA-exposed lineages and clones were less invasive than the wild-type strain. Thus, long-term TDA exposure does not appear to result in TDA resistance and the physiology of V. anguillarum appears unaffected, supporting the application of TDA-producing roseobacters as probiotics in aquaculture. IMPORTANCE: It is important to limit the use of antibiotics in our food production, to reduce the risk of bacteria developing antibiotic resistance. We showed previously that marine bacteria of the Roseobacter clade can prevent or reduce bacterial diseases in fish larvae, acting as probiotics. Roseobacters produce the antimicrobial compound tropodithietic acid (TDA), and we were concerned regarding whether long-term exposure to this compound could induce resistance or affect the disease-causing ability of the fish pathogen. Therefore, we exposed the fish pathogen Vibrio anguillarum to increasing TDA concentrations over 3 months. We did not see the development of any resistance to TDA, and subsequent infection assays revealed that none of the TDA-exposed clones had increased virulence toward fish cells. Hence, this study supports the use of roseobacters as a non-risk-based disease control measure in aquaculture.201627235441
70190.9965Antimicrobial Peptide Resistance Genes in the Plant Pathogen Dickeya dadantii. Modification of teichoic acid through the incorporation of d-alanine confers resistance in Gram-positive bacteria to antimicrobial peptides (AMPs). This process involves the products of the dltXABCD genes. These genes are widespread in Gram-positive bacteria, and they are also found in a few Gram-negative bacteria. Notably, these genes are present in all soft-rot enterobacteria (Pectobacterium and Dickeya) whose dltDXBAC operons have been sequenced. We studied the function and regulation of these genes in Dickeya dadantii dltB expression was induced in the presence of the AMP polymyxin. It was not regulated by PhoP, which controls the expression of some genes involved in AMP resistance, but was regulated by ArcA, which has been identified as an activator of genes involved in AMP resistance. However, arcA was not the regulator responsible for polymyxin induction of these genes in this bacterium, which underlines the complexity of the mechanisms controlling AMP resistance in D. dadantii Two other genes involved in resistance to AMPs have also been characterized, phoS and phoH dltB, phoS, phoH, and arcA but not dltD mutants were more sensitive to polymyxin than the wild-type strain. Decreased fitness of the dltB, phoS, and phoH mutants in chicory leaves indicates that their products are important for resistance to plant AMPs. IMPORTANCE: Gram-negative bacteria can modify their lipopolysaccharides (LPSs) to resist antimicrobial peptides (AMPs). Soft-rot enterobacteria (Dickeya and Pectobacterium spp.) possess homologues of the dlt genes in their genomes which, in Gram-positive bacteria, are involved in resistance to AMPs. In this study, we show that these genes confer resistance to AMPs, probably by modifying LPSs, and that they are required for the fitness of the bacteria during plant infection. Two other new genes involved in resistance were also analyzed. These results show that bacterial resistance to AMPs can occur in bacteria through many different mechanisms that need to be characterized.201627565623
8369100.9965Phage-resistant Pseudomonas aeruginosa against a novel lytic phage JJ01 exhibits hypersensitivity to colistin and reduces biofilm production. Pseudomonas aeruginosa, a major cause of nosocomial infections, has been categorized by World Health Organization as a critical pathogen urgently in need of effective therapies. Bacteriophages or phages, which are viruses that specifically kill bacteria, have been considered as alternative agents for the treatment of bacterial infections. Here, we discovered a lytic phage targeting P. aeruginosa, designated as JJ01, which was classified as a member of the Myoviridae family due to the presence of an icosahedral capsid and a contractile tail under TEM. Phage JJ01 requires at least 10 min for 90% of its particles to be adsorbed to the host cells and has a latent period of 30 min inside the host cell for its replication. JJ01 has a relatively large burst size, which releases approximately 109 particles/cell at the end of its lytic life cycle. The phage can withstand a wide range of pH values (3-10) and temperatures (4-60°C). Genome analysis showed that JJ01 possesses a complete genome of 66,346 base pairs with 55.7% of GC content, phylogenetically belonging to the genus Pbunavirus. Genome annotation further revealed that the genome encodes 92 open reading frames (ORFs) with 38 functionally predictable genes, and it contains neither tRNA nor toxin genes, such as drug-resistant or lysogenic-associated genes. Phage JJ01 is highly effective in suppressing bacterial cell growth for 12 h and eradicating biofilms established by the bacteria. Even though JJ01-resistant bacteria have emerged, the ability of phage resistance comes with the expense of the bacterial fitness cost. Some resistant strains were found to produce less biofilm and grow slower than the wild-type strain. Among the resistant isolates, the resistant strain W10 which notably loses its physiological fitness becomes eight times more susceptible to colistin and has its cell membrane compromised, compared to the wild type. Altogether, our data revealed the potential of phage JJ01 as a candidate for phage therapy against P. aeruginosa and further supports that even though the use of phages would subsequently lead to the emergence of phage-resistant bacteria, an evolutionary trade-off would make them more sensitive to antibiotics.202236274728
8198110.9965New insights into how Yersinia pestis adapts to its mammalian host during bubonic plague. Bubonic plague (a fatal, flea-transmitted disease) remains an international public health concern. Although our understanding of the pathogenesis of bubonic plague has improved significantly over the last few decades, researchers have still not been able to define the complete set of Y. pestis genes needed for disease or to characterize the mechanisms that enable infection. Here, we generated a library of Y. pestis mutants, each lacking one or more of the genes previously identified as being up-regulated in vivo. We then screened the library for attenuated virulence in rodent models of bubonic plague. Importantly, we tested mutants both individually and using a novel, "per-pool" screening method that we have developed. Our data showed that in addition to genes involved in physiological adaptation and resistance to the stress generated by the host, several previously uncharacterized genes are required for virulence. One of these genes (ympt1.66c, which encodes a putative helicase) has been acquired by horizontal gene transfer. Deletion of ympt1.66c reduced Y. pestis' ability to spread to the lymph nodes draining the dermal inoculation site--probably because loss of this gene decreased the bacteria's ability to survive inside macrophages. Our results suggest that (i) intracellular survival during the early stage of infection is important for plague and (ii) horizontal gene transfer was crucial in the acquisition of this ability.201424675805
8212120.9964The biosynthesis and functionality of the cell-wall of lactic acid bacteria. The cell wall of lactic acid bacteria has the typical gram-positive structure made of a thick, multilayered peptidoglycan sacculus decorated with proteins, teichoic acids and polysaccharides, and surrounded in some species by an outer shell of proteins packed in a paracrystalline layer (S-layer). Specific biochemical or genetic data on the biosynthesis pathways of the cell wall constituents are scarce in lactic acid bacteria, but together with genomics information they indicate close similarities with those described in Escherichia coli and Bacillus subtilis, with one notable exception regarding the peptidoglycan precursor. In several species or strains of enterococci and lactobacilli, the terminal D-alanine residue of the muramyl pentapeptide is replaced by D-lactate or D-serine, which entails resistance to the glycopeptide antibiotic vancomycin. Diverse physiological functions may be assigned to the cell wall, which contribute to the technological and health-related attributes of lactic acid bacteria. For instance, phage receptor activity relates to the presence of specific substituents on teichoic acids and polysaccharides; resistance to stress (UV radiation, acidic pH) depends on genes involved in peptidoglycan and teichoic acid biosynthesis; autolysis is controlled by the degree of esterification of teichoic acids with D-alanine; mucosal immunostimulation may result from interactions between epithelial cells and peptidoglycan or teichoic acids.199910532377
8937130.9964Proteomic analysis of metronidazole resistance in the human facultative pathogen Bacteroides fragilis. The anaerobic gut bacteria and opportunistic pathogen Bacteroides fragilis can cause life-threatening infections when leaving its niche and reaching body sites outside of the gut. The antimicrobial metronidazole is a mainstay in the treatment of anaerobic infections and also highly effective against Bacteroides spp. Although resistance rates have remained low in general, metronidazole resistance does occur in B. fragilis and can favor fatal disease outcomes. Most metronidazole-resistant Bacteroides isolates harbor nim genes, commonly believed to encode for nitroreductases which deactivate metronidazole. Recent research, however, suggests that the mode of resistance mediated by Nim proteins might be more complex than anticipated because they affect the cellular metabolism, e.g., by increasing the activity of pyruvate:ferredoxin oxidoreductase (PFOR). Moreover, although nim genes confer only low-level metronidazole resistance to Bacteroides, high-level resistance can be much easier induced in the laboratory in the presence of a nim gene than without. Due to these observations, we hypothesized that nim genes might induce changes in the B. fragilis proteome and performed comparative mass-spectrometric analyses with B. fragilis 638R, either with or without the nimA gene. Further, we compared protein expression profiles in both strains after induction of high-level metronidazole resistance. Interestingly, only few proteins were repeatedly found to be differentially expressed in strain 638R with the nimA gene, one of them being the flavodiiron protein FprA, an enzyme involved in oxygen scavenging. After induction of metronidazole resistance, a far higher number of proteins were found to be differentially expressed in 638R without nimA than in 638R with nimA. In the former, factors for the import of hemin were strongly downregulated, indicating impaired iron import, whereas in the latter, the observed changes were not only less numerous but also less specific. Both resistant strains, however, displayed a reduced capability of scavenging oxygen. Susceptibility to metronidazole could be widely restored in resistant 638R without nimA by supplementing growth media with ferrous iron sulfate, but not so in resistant 638R with the nimA gene. Finally, based on the results of this study, we present a novel hypothetic model of metronidazole resistance and NimA function.202337065137
8391140.9964The Analysis of Field Strains Isolated From Food, Animal and Clinical Sources Uncovers Natural Mutations in Listeria monocytogenes Nisin Resistance Genes. Nisin is a commonly used bacteriocin for controlling spoilage and pathogenic bacteria in food products. Strains possessing high natural nisin resistance that reduce or increase the potency of this bacteriocin against Listeria monocytogenes have been described. Our study sought to gather more insights into nisin resistance mechanisms in natural L. monocytogenes populations by examining a collection of 356 field strains that were isolated from different foods, food production environments, animals and human infections. A growth curve analysis-based approach was used to access nisin inhibition levels and assign the L. monocytogenes strains into three nisin response phenotypic categories; resistant (66%), intermediate (26%), and sensitive (8%). Using this categorization isolation source, serotype, genetic lineage, clonal complex (CC) and strain-dependent natural variation in nisin phenotypic resistance among L. monocytogenes field strains was revealed. Whole genome sequence analysis and comparison of high nisin resistant and sensitive strains led to the identification of new naturally occurring mutations in nisin response genes associated with increased nisin resistance and sensitivity in this bacterium. Increased nisin resistance was detected in strains harboring RsbU(G77S) and PBPB3(V240F) amino acid substitution mutations, which also showed increased detergent stress resistance as well as increased virulence in a zebra fish infection model. On the other hand, increased natural nisin sensitivity was detected among strains with mutations in sigB, vir, and dlt operons that also showed increased lysozyme sensitivity and lower virulence. Overall, our study identified naturally selected mutations involving pbpB3 (lm0441) as well as sigB, vir, and dlt operon genes that are associated with intrinsic nisin resistance in L. monocytogenes field strains recovered from various food and human associated sources. Finally, we show that combining growth parameter-based phenotypic analysis and genome sequencing is an effective approach that can be useful for the identification of novel nisin response associated genetic variants among L. monocytogenes field strains.202033123101
6170150.9964Resistance and susceptibility of mice to bacterial infection. IV. Functional specificity in natural resistance to facultative intracellular bacteria. The effect of opsonic antibody on resistance of susceptibility of three strains of mice, C57Bl/10, BALB/c, and CBA to the intracellular bacteria Listeria monocytogenes, Salmonella typhimurium, and Brucella abortus was tested. Bacteria were opsonized by serum treatment before their injection into mice, or the mice were preimmunized by injection with alcohol killed bacteria which induces antibody without macrophage activation. Antibody did not increase the rate of clearance of Listeria from the bloodstream, nor did it affect the subsequent growth of that organism in the spleen and liver. Blood clearance of S. typhimurium and of B. abortus was increased by preopsonization with specific antibody, indicating that opsonins were a limiting factor in resistance to these two bacteria. However, neither opsonization before infection nor immunization with alcohol killed vaccines had any effect on the strain distribution of resistance/susceptibility, which differs for each of the three intracellular pathogens. Thus, even in the presence of adequate opsonization the three strains of mice showed different patterns of resistance/susceptibility to Listeria, S. typhimurium, and B. abortus. This implies that each has a unique cellular mechanism of early nonspecific resistance.19836413682
8863160.9964Resistance and tolerance to tropodithietic acid, an antimicrobial in aquaculture, is hard to select. The antibacterial compound tropodithietic acid (TDA) is produced by bacteria of the marine Roseobacter clade and is thought to explain the fish probiotic properties of some roseobacters. The aim of the present study was to determine the antibacterial spectrum of TDA and the likelihood of development of TDA resistance. A bacterial extract containing 95% TDA was effective against a range of human-pathogenic bacteria, including both Gram-negative and Gram-positive bacteria. TDA was bactericidal against Salmonella enterica serovar Typhimurium SL1344 and Staphylococcus aureus NCTC 12493 and killed both growing and nongrowing cells. Several experimental approaches were used to select mutants resistant to TDA or subpopulations of strains with enhanced tolerance to TDA. No approach (single exposures to TDA extract administered via different methods, screening of a transposon library for resistant mutants, or prolonged exposure to incremental concentrations of TDA) resulted in resistant or tolerant strains. After more than 300 generations exposed to sub-MIC and MIC concentrations of a TDA-containing extract, strains tolerant to 2× the MIC of TDA for wild-type strains were selected, but the tolerance disappeared after one passage in medium without TDA extract. S. Typhimurium mutants with nonfunctional efflux pump and porin genes had the same TDA susceptibility as wild-type strains, suggesting that efflux pumps and porins are not involved in innate tolerance to TDA. TDA is a promising broad-spectrum antimicrobial in part due to the fact that enhanced tolerance is difficult to gain and that the TDA-tolerant phenotype appears to confer only low-level resistance and is very unstable.201121263047
4385170.9964Genes Contributing to the Unique Biology and Intrinsic Antibiotic Resistance of Enterococcus faecalis. The enterococci, which are among the leading causes of multidrug-resistant (MDR) hospital infection, are notable for their environmental ruggedness, which extends to intrinsic antibiotic resistance. To identify genes that confer this unique property, we used Tn-seq to comprehensively explore the genome of MDR Enterococcus faecalis strain MMH594 for genes important for growth in nutrient-containing medium and with low-level antibiotic challenge. As expected, a large core of genes for DNA replication, expression, and central metabolism, shared with other bacteria, are intolerant to transposon disruption. However, genes were identified that are important to E. faecalis that are either absent from or unimportant for Staphylococcus aureus and Streptococcus pneumoniae fitness when similarly tested. Further, 217 genes were identified that when challenged by sub-MIC antibiotic levels exhibited reduced tolerance to transposon disruption, including those previously shown to contribute to intrinsic resistance, and others not previously ascribed this role. E. faecalis is one of the few Gram-positive bacteria experimentally shown to possess a functional Entner-Doudoroff pathway for carbon metabolism, a pathway that contributes to stress tolerance in other microbes. Through functional genomics and network analysis we defined the unusual structure of this pathway in E. faecalis and assessed its importance. These approaches also identified toxin-antitoxin and related systems that are unique and active in E. faecalis Finally, we identified genes that are absent in the closest nonenterococcal relatives, the vagococci, and that contribute importantly to fitness with and without antibiotic selection, advancing an understanding of the unique biology of enterococci.IMPORTANCE Enterococci are leading causes of antibiotic-resistant infection transmitted in hospitals. The intrinsic hardiness of these organisms allows them to survive disinfection practices and then proliferate in the gastrointestinal tracts of antibiotic-treated patients. The objective of this study was to identify the underlying genetic basis for its unusual hardiness. Using a functional genomic approach, we identified traits and pathways of general importance for enterococcal survival and growth that distinguish them from closely related pathogens as well as ancestrally related species. We further identified unique traits that enable them to survive antibiotic challenge, revealing a large set of genes that contribute to intrinsic antibiotic resistance and a smaller set of uniquely important genes that are rare outside enterococci.202033234689
8936180.9964Modulation of Iron Import and Metronidazole Resistance in Bacteroides fragilis Harboring a nimA Gene. Bacteroides fragilis is a commensal of the human gut but can also cause severe infections when reaching other body sites, especially after surgery or intestinal trauma. Bacteroides fragilis is an anaerobe innately susceptible to metronidazole, a 5-nitroimidazole drug that is prescribed against the majority of infections caused by anaerobic bacteria. In most of the cases, metronidazole treatment is effective but a fraction of B. fragilis is resistant to even very high doses of metronidazole. Metronidazole resistance is still poorly understood, but the so-called nim genes have been described as resistance determinants. They have been suggested to encode nitroreductases which reduce the nitro group of metronidazole to a non-toxic aminoimidazole. More recent research, however, showed that expression levels of nim genes are widely independent of the degree of resistance observed. In the search for an alternative model for nim-mediated metronidazole resistance, we screened a strain carrying an episomal nimA gene and its parental strain 638R without a nim gene for physiological differences. Indeed, the 638R daughter strain with the nimA gene had a far higher pyruvate-ferredoxin oxidoreductase (PFOR) activity than the parental strain. High PFOR activity was also observed in metronidazole-resistant clinical isolates, either with or without a nim gene. Moreover, the strain carrying a nimA gene fully retained PFOR activity and other enzyme activities such as thioredoxin reductase (TrxR) after resistance had been induced. In the parental strain 638R, these were lost or very strongly downregulated during the development of resistance. Further, after induction of high-level metronidazole resistance, parental strain 638R was highly susceptible to oxygen whereas the daughter strain with a nimA gene was hardly affected. Ensuing RT-qPCR measurements showed that a pathway for iron import via hemin uptake is downregulated in 638R with induced resistance but not in the resistant nimA daughter strain. We propose that nimA primes B. fragilis toward an alternative pathway of metronidazole resistance by enabling the preservation of normal iron levels in the cell.202235756037
658190.9964Enterococcus faecalis constitutes an unusual bacterial model in lysozyme resistance. Lysozyme is an important and widespread compound of the host constitutive defense system, and it is assumed that Enterococcus faecalis is one of the few bacteria that are almost completely lysozyme resistant. On the basis of the sequence analysis of the whole genome of E. faecalis V583 strain, we identified two genes that are potentially involved in lysozyme resistance, EF_0783 and EF_1843. Protein products of these two genes share significant homology with Staphylococcus aureus peptidoglycan O-acetyltransferase (OatA) and Streptococcus pneumoniae N-acetylglucosamine deacetylase (PgdA), respectively. In order to determine whether EF_0783 and EF_1843 are involved in lysozyme resistance, we constructed their corresponding mutants and a double mutant. The DeltaEF_0783 mutant and DeltaEF_0783 DeltaEF_1843 double mutant were shown to be more sensitive to lysozyme than the parental E. faecalis JH2-2 strain and DeltaEF_1843 mutant were. However, compared to other bacteria, such as Listeria monocytogenes or S. pneumoniae, the tolerance of DeltaEF_0783 and DeltaEF_0783 DeltaEF_1843 mutants towards lysozyme remains very high. Peptidoglycan structure analysis showed that EF_0783 modifies the peptidoglycan by O acetylation of N-acetyl muramic acid, while the EF_1843 deletion has no obvious effect on peptidoglycan structure under the same conditions. Moreover, the EF_0783 and EF_1843 deletions seem to significantly affect the ability of E. faecalis to survive within murine macrophages. In all, while EF_0783 is currently involved in the lysozyme resistance of E. faecalis, peptidoglycan O acetylation and de-N-acetylation are not the main mechanisms conferring high levels of lysozyme resistance to E. faecalis.200717785473