# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5077 | 0 | 0.9985 | Development of a new integrated diagnostic test for identification and characterization of pathogens. Animal diseases directly cause multi-million dollar losses world-wide. Therefore a rapid, highly specific, cost-effective diagnostic test for detecting a large set of bacterial virulence and antimicrobial resistance genes simultaneously is necessary. Hence, our group, the BCBG (Bacterial Chips Bacterial Genes) group, proposes developing a powerful molecular tool (DNA microarray) to detect a broad range of infectious agents, their endogenous main virulence factors and antibiotic resistance genes simultaneously. Effectively, a 70-mer oligonucleotide microarray capable of detecting the presence or absence of 169 Escherichia coli virulence genes or virulence marker genes as well as their variants, in addition to 30 principal antimicrobial resistance genes previously characterized in E. coli strains was developed by our group. This microarray was validated with a large collection of well characterized pathogenic and reference E. coli strains. Moreover, we are developing a new powerful clinical diagnostic microarray tool, to identify pathogenic bacteria of veterinary interest. The commercialization of this assay would allow same day diagnosis of infectious agents and their antibiotic resistance resulting in early treatment. In addition, this technology is also applicable to microbial quality control of food and water. | 2006 | 17058497 |
| 9799 | 1 | 0.9985 | Microbiology and drug resistance mechanisms of fully resistant pathogens. The acquisition of vancomycin resistance by Gram-positive bacteria and carbapenem resistance by Gram-negative bacteria has rendered some hospital-acquired pathogens impossible to treat. The resistance mechanisms employed are sophisticated and very difficult to overcome. Unless alternative treatment regimes are initiated soon, our inability to treat totally resistant bacteria will halt other developments in medicine. In the community, Gram-positive bacteria responsible for pneumonia could become totally resistant leading to increased mortality from this common infection, which would have a more immediate impact on our current lifestyles. | 2004 | 15451497 |
| 5108 | 2 | 0.9985 | Surveillance of antimicrobial resistance: the WHONET program. Genes expressing resistance to each antimicrobial agent emerged after each agent became widely used. More than a hundred such genes now spread selectively through global networks of populations of bacteria in humans or animals treated with those agents. Information to monitor and manage this spread exists in the susceptibility test results of tens of thousands of laboratories around the world. The comparability of those results is uncertain, however, and their storage in paper files or in computer files with diverse codes and formats has made them inaccessible for analysis. The WHONET program puts each laboratory's data into a common code and file format at that laboratory, either by serving as or by translating from its own computer reporting system. It then enables each medical center to analyze its files in ways that help it monitor and manage resistance locally and to merge them with files of other centers for collaborative national or global surveillance of resistance. | 1997 | 8994799 |
| 8855 | 3 | 0.9985 | Transposon Insertion Sequencing Elucidates Novel Gene Involvement in Susceptibility and Resistance to Phages T4 and T7 in Escherichia coli O157. Experiments using bacteriophage (phage) to infect bacterial strains have helped define some basic genetic concepts in microbiology, but our understanding of the complexity of bacterium-phage interactions is still limited. As the global threat of antibiotic resistance continues to increase, phage therapy has reemerged as an attractive alternative or supplement to treating antibiotic-resistant bacterial infections. Further, the long-used method of phage typing to classify bacterial strains is being replaced by molecular genetic techniques. Thus, there is a growing need for a complete understanding of the precise molecular mechanisms underpinning phage-bacterium interactions to optimize phage therapy for the clinic as well as for retrospectively interpreting phage typing data on the molecular level. In this study, a genomics-based fitness assay (TraDIS) was used to identify all host genes involved in phage susceptibility and resistance for a T4 phage infecting Shiga-toxigenic Escherichia coli O157. The TraDIS results identified both established and previously unidentified genes involved in phage infection, and a subset were confirmed by site-directed mutagenesis and phenotypic testing of 14 T4 and 2 T7 phages. For the first time, the entire sap operon was implicated in phage susceptibility and, conversely, the stringent starvation protein A gene (sspA) was shown to provide phage resistance. Identifying genes involved in phage infection and replication should facilitate the selection of bespoke phage combinations to target specific bacterial pathogens.IMPORTANCE Antibiotic resistance has diminished treatment options for many common bacterial infections. Phage therapy is an alternative option that was once popularly used across Europe to kill bacteria within humans. Phage therapy acts by using highly specific viruses (called phages) that infect and lyse certain bacterial species to treat the infection. Whole-genome sequencing has allowed modernization of the investigations into phage-bacterium interactions. Here, using E. coli O157 and T4 bacteriophage as a model, we have exploited a genome-wide fitness assay to investigate all genes involved in defining phage resistance or susceptibility. This knowledge of the genetic determinants of phage resistance and susceptibility can be used to design bespoke phage combinations targeted to specific bacterial infections for successful infection eradication. | 2018 | 30042196 |
| 4885 | 4 | 0.9985 | A Review of the Diagnostic Approaches for the Detection of Antimicrobial Resistance, Including the Role of Biosensors in Detecting Carbapenem Resistance Genes. Antimicrobial resistance (AMR) is a rapidly growing global concern resulting from the overuse of antibiotics in both agricultural and clinical settings, the lack of surveillance for resistant bacteria, and the low quality of some available antimicrobial agents. Resistant pathogens are no longer susceptible to common clinical antimicrobials, which decreases the effectiveness of medicines used to treat infections caused by these organisms. Carbapenems are an important class of antibiotics due to their broad-spectrum effectiveness in treating infections caused by Gram-positive and Gram-negative organisms. Carbapenem-resistant bacteria have been found not only in healthcare but also in the environment and food supply chain, where they have the potential to spread to pathogens and infect humans and animals. Current methods of detecting AMR genes are expensive and time-consuming. While these methods, like polymerase chain reactions or whole-genome sequencing, are considered the "gold standard" for diagnostics, the development of inexpensive, rapid diagnostic assays is necessary for effective AMR detection and management. Biosensors have shown potential for success in diagnostic testing due to their ease of use, inexpensive materials, rapid results, and portable nature. Biosensors can be combined with nanomaterials to produce sensitive and easily interpretable results. This review presents an overview of carbapenem resistance, current and emerging detection methods of antimicrobial resistance, and the application of biosensors for rapid diagnostic testing for bacterial resistance. | 2025 | 40725449 |
| 9790 | 5 | 0.9985 | Emerging antibiotic resistance: carbapenemase-producing enterobacteria. Bad new bugs, still no new drugs. Antimicrobial resistance (AMR) is a global health security threat requiring actions across government sectors and society. Many factors are involved in this phenomenon, being overuse of antibiotics, incorrect antibiotic prophylaxis, and use of antibiotics for zootechnic reasons the main causes of the increasing rate of multi-drug resistant (MDR) bacteria. The impact of resistance to antimicrobials is an important threat due also to the emergence of MDR Gram-negative bacteria resistant to carbapenems, and the lack of the research for new active molecules. The production of extended spectrum beta-lactamase enzymes has been the first threatening mechanism for Gram-negative resistance to antibiotics, which prompted the development of new classes of antibiotics such as carbapenems. Unfortunately, resistance to carbapenems developed because of multiple mechanisms including efflux pumps, porin mutations and enzyme production, being the latter particularly relevant in terms of diffusion due to the genes located within plasmids that drive their horizontal diffusion. In this scenario, antimicrobial stewardship programs (ASP) are a mandatory resource in fighting the resistance spread. The reduction of total amount of antibiotics administration in the hospital setting and guiding prescribers in the correct administration of antibiotics for the smallest period possible, at the correct dosage, can be defined as the first goals of an ASP. Anyway, in an efficacious ASP, apart from antibiotic administration, efforts must been made in ensuring the lowest probability of spreading of MDR by efficacious measures of isolation of carriers, and by offering tools for a rapid diagnosis of viral infections avoiding the administration of unnecessary antibiotics. A continuous audit of the ASP programs and a correct assessment of the allergy to drugs such as penicillin have to complete the program. Currently, only a few options are available for patients with an infection sustained by Gram-negative MDR bacteria. All the options actually available are based on the administration of colystin, an old drug whose real efficacy is reduced due to its relevant toxicity, or on the administration of recently proposed drugs such as ceftolozane-tazobactam, ceftazidime-avibactam and meropenem-vaborbactam. All these new drugs do not have a novel mechanism of action and have limited spectrum in term of activity against MDR bacteria. In conclusion, antimicrobial resistance is a global emergence and AMP is the most powerful tool actually available. Few limited options are available to treat infections due to Carbapenem Resistant Enterobacteria. Antimicrobial molecules with true novel mechanism of action are needed to win the fight against antimicrobial resistance. | 2019 | 31846984 |
| 4852 | 6 | 0.9985 | Recent trends in antibiotic resistance in European ICUs. PURPOSE OF REVIEW: Antimicrobial resistance is an emerging problem in ICUs worldwide. As numbers of published results from national/international surveillance studies rise rapidly, the amount of new information may be overwhelming. Therefore, we reviewed recent trends in antibiotic resistance in ICUs across Europe in the past 18 months. RECENT FINDINGS: In this period, infections caused by methicillin-resistant Staphylococcus aureus appeared to stabilize (and even decrease) in some countries, and infection rates due to Gram-positive bacteria resistant to vancomycin, linezolid or daptomycin have remained low. In contrast, we are witnessing a continent-wide emergence of infections caused by multiresistant Gram-negative bacteria, especially Escherichia coli and Klebsiella pneumoniae, with easily exchangeable resistance genes located on plasmids, producing enzymes such as extended spectrum β-lactamases and carbapenamases. In the absence of new antibiotics, prevention of infections, reducing unnecessary antibiotic use, optimizing adherence to universal hygienic and infection control measures, and improving implementation of diagnostic tests are our only tools to combat this threat. SUMMARY: As the epidemiology of antibiotic resistance in ICUs is rapidly changing toward more frequently occurring epidemics and endemicity of multi and panresistant Gram-negative pathogens, better infection control and improved diagnostics will become even more important than before. | 2011 | 21986462 |
| 9927 | 7 | 0.9985 | Induction of beta-lactamase enzymes: clinical applications for the obstetric-gynecologic patient. The emergence of bacteria resistant to antibiotics has resulted in intensive research for new and improved beta-lactam antibiotics. Many improvements in antimicrobial agents are based on a knowledge of the mechanism responsible for resistance. This has led to the development of new extended-spectrum antibiotic compounds. However, several features have been noted since the development of extended-spectrum antibiotics, such as the rapid development of bacterial resistance, the induction of beta-lactamase enzyme activity by these stable antibiotics, failure to detect induced enzyme activity and resistance in the laboratory, and beta-lactam antagonism. The resistance of bacteria to antimicrobial agents has obvious impact on the selection of appropriate therapy against infections caused by these pathogens. Gram-negative anaerobic bacteria, such as Bacteroides fragilis and Bacteroides bivius, are organisms frequently recovered from women whose initial therapy for pelvic infection failed. The transfer of antimicrobial resistance in bacteria indicates that these organisms have a system for the spread of such resistance. Therefore determination of antimicrobial susceptibilities and prompt eradication of isolates from infected patients are necessary to delay the emergence of resistant organisms. | 1987 | 3548378 |
| 4891 | 8 | 0.9984 | From food to hospital: we need to talk about Acinetobacter spp. Some species of the genus Acinetobacter are admittedly important hospital pathogens. Additionally, various animal and plant foods have been linked to the presence of Acinetobacter, including resistant strains. However, due to isolation difficulties and the lack of official standard methods, there is a dearth of work and epidemiological data on foodborne diseases caused by this microorganism. Considering that Acinetobacter spp. may represent a serious public health problem, especially because of their resistance to carbapenems and colistin, and because of the fact that these pathogens may transfer resistance genes to other bacteria, studies are needed to evaluate the pathogenicity of both food and clinical isolates and to search for them using control strategies, such as the adoption of more efficient disinfection measures and use of antimicrobial substances (AMS). In contrast, AMS production by strains of the genus Acinetobacter has already been described, and its potential for application against other Gram-negative food or clinical pathogens, reveals a new field to be explored. | 2020 | 33134199 |
| 9815 | 9 | 0.9984 | Prospecting gene therapy of implant infections. Infection still represents one of the most serious and ravaging complications associated with prosthetic devices. Staphylococci and enterococci, the bacteria most frequently responsible for orthopedic postsurgical and implant-related infections, express clinically relevant antibiotic resistance. The emergence of antibiotic-resistant bacteria and the slow progress in identifying new classes of antimicrobial agents have encouraged research into novel therapeutic strategies. The adoption of antisense or "antigene" molecules able to silence or knock-out bacterial genes responsible for their virulence is one possible innovative approach. Peptide nucleic acids (PNAs) are potential drug candidates for gene therapy in infections, by silencing a basic gene of bacterial growth or by tackling the antibiotic resistance or virulence factors of a pathogen. An efficacious contrast to bacterial genes should be set up in the first stages of infection in order to prevent colonization of periprosthesis tissues. Genes encoding bacterial factors for adhesion and colonization (biofilm and/or adhesins) would be the best candidates for gene therapy. But after initial enthusiasm for direct antisense knock-out or silencing of essential or virulence bacterial genes, difficulties have emerged; consequently, new approaches are now being attempted. One of these, interference with the regulating system of virulence factors, such as agr, appears particularly promising. | 2009 | 19882546 |
| 4759 | 10 | 0.9984 | Recent advances in rapid antimicrobial susceptibility testing systems. INTRODUCTION: Until recently antimicrobial susceptibility testing (AST) methods based on the demonstration of phenotypic susceptibility in 16-24 h remained largely unchanged. AREAS COVERED: Advances in rapid phenotypic and molecular-based AST systems. EXPERT OPINION: AST has changed over the past decade, with many rapid phenotypic and molecular methods developed to demonstrate phenotypic or genotypic resistance, or biochemical markers of resistance such as β-lactamases associated with carbapenem resistance. Most methods still require isolation of bacteria from specimens before both legacy and newer methods can be used. Bacterial identification by MALDI-TOF mass spectroscopy is now widely used and is often key to the interpretation of rapid AST results. Several PCR arrays are available to detect the most frequent pathogens associated with bloodstream infections and their major antimicrobial resistance genes. Many advances in whole-genome sequencing of bacteria and fungi isolated by culture as well as directly from clinical specimens have been made but are not yet widely available. High cost and limited throughput are the major obstacles to uptake of rapid methods, but targeted use, continued development and decreasing costs are expected to result in more extensive use of these increasingly useful methods. | 2021 | 33926351 |
| 4249 | 11 | 0.9984 | Detection of essential genes in Streptococcus pneumoniae using bioinformatics and allelic replacement mutagenesis. Although the emergence and spread of antimicrobial resistance in major bacterial pathogens for the past decades poses a growing challenge to public health, discovery of novel antimicrobial agents from natural products or modification of existing antibiotics cannot circumvent the problem of antimicrobial resistance. The recent development of bacterial genomics and the availability of genome sequences allow the identification of potentially novel antimicrobial agents. The cellular targets of new antimicrobial agents must be essential for the growth, replication, or survival of the bacterium. Conserved genes among different bacterial genomes often turn out to be essential (1, 2). Thus, the combination of comparative genomics and the gene knock-out procedure can provide effective ways to identify the essential genes of bacterial pathogens (3). Identification of essential genes in bacteria may be utilized for the development of new antimicrobial agents because common essential genes in diverse pathogens could constitute novel targets for broad-spectrum antimicrobial agents. | 2008 | 18392984 |
| 9791 | 12 | 0.9984 | Beta-lactam resistance and the effectiveness of antimicrobial peptides against KPC-producing bacteria. Bacterial resistance is a problem that is giving serious cause for concern because bacterial strains such as Acinetobacter baumannii and Pseudomonas aeruginosa are difficult to treat and highly opportunistic. These bacteria easily acquire resistance genes even from other species, which confers greater persistence and tolerance towards conventional antibiotics. These bacteria have the highest death rate in hospitalized intensive care patients, so strong measures must be taken. In this review, we focus on the use of antimicrobial peptides (AMPs) as an alternative to traditional drugs, due to their rapid action and lower risk of generating resistance by microorganisms. We also present an overview of beta-lactams and explicitly explain the activity of AMPs against carbapenemase-producing bacteria as potential alternative agents for infection control. | 2022 | 36042694 |
| 4858 | 13 | 0.9984 | Successful interventions for gram-negative resistance to extended-spectrum beta-lactam antiobiotics. Antibiotic resistance among nosocomial pathogens in this country's hospitals adds significantly to patient morbidity and mortality, and the cost of health care. Optimism for identifying antimicrobial agents that would "solve the problem" of resistance has been replaced by a much more guarded and realistic view of the battle between humans and pathogenic microorganisms. Efforts now are more appropriately directed toward limiting, rather than completely eliminating, resistance, generally by either infection control or antibiotic control measures, and sometime combinations of the two. Methicillin-oxacillin resistance in Staphylococcus aureus (MRSA) results from the expression of an acquired penicillin-binding protein (PBP 2a) that is not transferable in vitro. In most hospitals, even those with high percentages of MRSA, relatively few resistant clones are identified, suggesting transmission of individual strains throughout the hospital population. Because person-to-person spread is so important in transmission of MRSA, strategies aimed at preventing transmission of the resistant strains are remarkably effective when strictly enforced. Ceftazidime resistance in Enterobacteriaceae results from point mutations within genes that encode widely prevalent and often transferable plasmid-mediated enzymes. In addition, mutations of these genes that allow hydrolysis of cephalosporins usually result in decreased activity against other drugs, including the penicillins and beta-lactamase inhibitors. Effective measures to control ceftazidime-resistant Enterobacteriaceae have as their cornerstone limiting administration of antibiotics that select for the emergence and spread of these mutations, especially ceftazidime. The importance of infection-control techniques in limiting the prevalence of ceftazidime-resistant Enterobacteriaceae is less well established. Methods that are informed by a detailed understanding of the molecular mechanisms of resistance and resistance spread offer the best hope for limiting dissemination of antibiotic-resistant bacteria in a cost-effective manner. | 1999 | 10456609 |
| 9798 | 14 | 0.9984 | Fight Against Antimicrobial Resistance: We Always Need New Antibacterials but for Right Bacteria. Antimicrobial resistance in bacteria is frightening, especially resistance in Gram-negative Bacteria (GNB). In 2017, the World Health Organization (WHO) published a list of 12 bacteria that represent a threat to human health, and among these, a majority of GNB. Antibiotic resistance is a complex and relatively old phenomenon that is the consequence of several factors. The first factor is the vertiginous drop in research and development of new antibacterials. In fact, many companies simply stop this R&D activity. The finding is simple: there are enough antibiotics to treat the different types of infection that clinicians face. The second factor is the appearance and spread of resistant or even multidrug-resistant bacteria. For a long time, this situation remained rather confidential, almost anecdotal. It was not until the end of the 1980s that awareness emerged. It was the time of Vancomycin-Resistance Enterococci (VRE), and the threat of Vancomycin-Resistant MRSA (Methicillin-Resistant Staphylococcus aureus). After this, there has been renewed interest but only in anti-Gram positive antibacterials. Today, the threat is GNB, and we have no new molecules with innovative mechanism of action to fight effectively against these bugs. However, the war against antimicrobial resistance is not lost. We must continue the fight, which requires a better knowledge of the mechanisms of action of anti-infectious agents and concomitantly the mechanisms of resistance of infectious agents. | 2019 | 31470632 |
| 9506 | 15 | 0.9984 | Nisin resistance in Gram-positive bacteria and approaches to circumvent resistance for successful therapeutic use. Antibiotic resistance among bacterial pathogens is one of the most worrying problems in health systems today. To solve this problem, bacteriocins from lactic acid bacteria, especially nisin, have been proposed as an alternative for controlling multidrug-resistant bacteria. Bacteriocins are antimicrobial peptides that have activity mainly against Gram-positive strains. Nisin is one of the most studied bacteriocins and is already approved for use in food preservation. Nisin is still not approved for human clinical use, but many in vitro studies have shown its therapeutic effectiveness, especially for the control of antibiotic-resistant strains. Results from in vitro studies show the emergence of nisin-resistant bacteria after exposure to nisin. Considering that nisin has shown promising results for clinical use, studies to elucidate nisin-resistant mechanisms and the development of approaches to circumvent nisin-resistance are important. Thus, the objectives of this review are to identify the Gram-positive bacterial strains that have shown resistance to nisin, describe their resistance mechanisms and propose ways to overcome the development of nisin-resistance for its successful clinical application. | 2021 | 33689548 |
| 9800 | 16 | 0.9984 | Regulation of beta-lactamase induction in gram-negative bacteria: a key to understanding the resistance puzzle. Infections caused by drug-resistant microorganisms have posed a medical challenge since the advent of antimicrobial therapy. With the emergence of resistant strains, new antibiotics were available and introduced with great success until this decade. The appearance of multiresistant microorganisms pose a real and immediate public health concern. Are we entering into the post-antibiotic era? Will we return to pre-antimicrobial-era conditions, with morbidity and mortality resulting from untreatable infectious complications? The race to stay ahead of multiresistance involves not only continued drug development and selective use but elucidation of bacterial regulation of resistance. One way to ensure continued success of antimicrobial therapy is the identification of new bacterial targets--genes and their products involved in regulating or mediating resistance. Discussion will focus on one well-defined resistance mechanism in Gram-negative bacteria, the chromosomally located amp operon, responsible for one mechanism of beta-lactam resistance. | 1994 | 7723996 |
| 5103 | 17 | 0.9984 | Revolutionising bacteriology to improve treatment outcomes and antibiotic stewardship. LABORATORY INVESTIGATION OF BACTERIAL INFECTIONS GENERALLY TAKES TWO DAYS: one to grow the bacteria and another to identify them and to test their susceptibility. Meanwhile the patient is treated empirically, based on likely pathogens and local resistance rates. Many patients are over-treated to prevent under-treatment of a few, compromising antibiotic stewardship. Molecular diagnostics have potential to improve this situation by accelerating precise diagnoses and the early refinement of antibiotic therapy. They include: (i) the use of 'biomarkers' to swiftly distinguish patients with bacterial infection, and (ii) molecular bacteriology to identify pathogens and their resistance genes in clinical specimens, without culture. Biomarker interest centres on procalcitonin, which has given good results particularly for pneumonias, though broader biomarker arrays may prove superior in the future. PCRs already are widely used to diagnose a few infections (e.g. tuberculosis) whilst multiplexes are becoming available for bacteraemia, pneumonia and gastrointestinal infection. These detect likely pathogens, but are not comprehensive, particularly for resistance genes; there is also the challenge of linking pathogens and resistance genes when multiple organisms are present in a sample. Next-generation sequencing offers more comprehensive profiling, but obstacles include sensitivity when the bacterial load is low, as in bacteraemia, and the imperfect correlation of genotype and phenotype. In short, rapid molecular bacteriology presents great potential to improve patient treatments and antibiotic stewardship but faces many technical challenges; moreover it runs counter to the current nostrum of defining resistance in pharmacodynamic terms, rather than by the presence of a mechanism, and the policy of centralising bacteriology services. | 2013 | 24265945 |
| 9787 | 18 | 0.9984 | CRISPR-Cas, a Revolution in the Treatment and Study of ESKAPE Infections: Pre-Clinical Studies. One of the biggest threats we face globally is the emergence of antimicrobial-resistant (AMR) bacteria, which runs in parallel with the lack in the development of new antimicrobials. Among these AMR bacteria pathogens belonging to the ESKAPE group can be highlighted (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) due to their profile of drug resistance and virulence. Therefore, innovative lines of treatment must be developed for these bacteria. In this review, we summarize the different strategies for the treatment and study of molecular mechanisms of AMR in the ESKAPE pathogens based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins' technologies: loss of plasmid or cellular viability, random mutation or gene deletion as well directed mutations that lead to a gene's loss of function. | 2021 | 34206474 |
| 4758 | 19 | 0.9984 | Development of New Tools to Detect Colistin-Resistance among Enterobacteriaceae Strains. The recent discovery of the plasmid-mediated mcr-1 gene conferring resistance to colistin is of clinical concern. The worldwide screening of this resistance mechanism among samples of different origins has highlighted the urgent need to improve the detection of colistin-resistant isolates in clinical microbiology laboratories. Currently, phenotypic methods used to detect colistin resistance are not necessarily suitable as the main characteristic of the mcr genes is the low level of resistance that they confer, close to the clinical breakpoint recommended jointly by the CLSI and EUCAST expert systems (S ≤ 2 mg/L and R > 2 mg/L). In this context, susceptibility testing recommendations for polymyxins have evolved and are becoming difficult to implement in routine laboratory work. The large number of mechanisms and genes involved in colistin resistance limits the access to rapid detection by molecular biology. It is therefore necessary to implement well-defined protocols using specific tools to detect all colistin-resistant bacteria. This review aims to summarize the current clinical microbiology diagnosis techniques and their ability to detect all colistin resistance mechanisms and describe new tools specifically developed to assess plasmid-mediated colistin resistance. Phenotyping, susceptibility testing, and genotyping methods are presented, including an update on recent studies related to the development of specific techniques. | 2018 | 30631384 |