NEARLY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
996600.9974The A to Z of A/C plasmids. Plasmids belonging to incompatibility groups A and C (now A/C) were among the earliest to be associated with antibiotic resistance in Gram-negative bacteria. A/C plasmids are large, conjugative plasmids with a broad host range. The prevalence of A/C plasmids in collections of clinical isolates has revealed their importance in the dissemination of extended-spectrum β-lactamases and carbapenemases. They also mobilize SGI1-type resistance islands. Revived interest in the family has yielded many complete A/C plasmid sequences, revealing that RA1, designated A/C1, is different from the remainder, designated A/C2. There are two distinct A/C2 lineages. Backbones of 128-130 kb include over 120 genes or ORFs encoding proteins of at least 100 amino acids, but very few have been characterized. Genes potentially required for replication, stability and transfer have been identified, but only the replication system of RA1 and the regulation of transfer have been studied. There is enormous variety in the antibiotic resistance genes carried by A/C2 plasmids but they are usually clustered in larger regions at various locations in the backbone. The ARI-A and ARI-B resistance islands are always at a specific location but have variable content. ARI-A is only found in type 1 A/C2 plasmids, which disseminate blaCMY-2 and blaNDM-1 genes, whereas ARI-B, carrying the sul2 gene, is found in both type 1 and type 2. This review summarizes current knowledge of A/C plasmids, and highlights areas of research to be considered in the future.201525910948
987810.9973Two novel trimethoprim resistance genes, dfra50 and dfra51, identified in phage-plasmids. Phage-plasmids carry a significant burden of clinically relevant antibiotic resistance genes (ARGs). Intriguingly, the majority of these ARGs are found within plasmids with phage features, with a single exception residing in a phage genome with plasmid features. Therefore, we speculate that phage genomes with plasmid features, whose sequences are highly homologous to bacterial plasmids, may carry novel ARGs. We subsequently identified 46 such phage genomes by employing Hidden Markov models (HMMs) based on plasmid-specific protein profiles andbasic local alignment search tool (BLASTn) searches against the National Center for Biotechnology Information (NCBI) RefSeq Plasmid Database. Among them, six phages harbored seven ARGs identified through a lenient-threshold search strategy, of which only two had been previously reported. The remaining five ARGs were categorized as novel ARGs since their encoded proteins differed from known ARGs. Notably, half of the phages carried trimethoprim-resistant dfrA-like genes. Functional studies characterized these genes and demonstrated that the expression of two of these dfrA genes (dfrA50 and dfrA51) can confer resistance to trimethoprim in Escherichia coli. Through genome analysis, we found that these phages with plasmid features likely contributed to the natural dissemination of these dfrA genes, as evidenced by their widespread presence in plasmids across various pathogenic bacteria. These findings underscore the importance of identifying and monitoring ARGs encoded by phage genomes with plasmid features that also function as plasmids in bacteria, aiming to proactively address the antibiotic resistance challenges posed by these phage-mediated dissemination events.202540503927
503320.9973A novel gene linked to Imipenem resistance in E. coli isolate lacking known Imipenem-resistance genes. Imipenem-resistant Escherichia coli strains represent a growing public health concern, posing a threat due to their resistance to last-resort antibiotics. Here, we present the discovery of the Imipenem-Linked Resistance Gene VIN (ILR-VIN) within E. coli isolates from Vietnam, revealing its absence in non-resistant E. coli and local bacterial species. ILR-VIN constitutes a previously unrecognized genetic element potentially linked to Imipenem resistance, with notable prevalence in Vietnamese E. coli strains.We conducted an in-depth examination of the genetic basis of Carbapenem resistance in E. coli strains causing urinary tract infections. In a set of 47 UTI strains, we identified five displaying Imipenem resistance, with four of them carrying known resistance genes. Interestingly, ECV219, despite exhibiting Imipenem resistance, lacked known resistance genes, suggesting an unreported resistance mechanism. Comparative genetic analysis revealed distinct genes in ECV219, indicating a novel Imipenem resistance gene. To assess its function, we conducted transformation experiments in E. coli Rosetta™(DE3)pLysS and performed bioinformatics analyses using BLASTp, InterProScan, and Pfam to characterize the gene's structure and potential functions.Our study identifies ILR-VIN as a novel gene linked to Imipenem resistance in E. coli isolate lacking known Imipenem-resistance genes. Experimental evidence confirmed that ILR-VIN expression enhances bacterial survival under Imipenem stress, providing direct evidence of its role in resistance. This discovery highlights the importance of ongoing research into antibiotic resistance genes to develop effective treatment strategies against antibiotic-resistant bacterial infections.202540097570
988830.9973Evolution and typing of IncC plasmids contributing to antibiotic resistance in Gram-negative bacteria. The large, broad host range IncC plasmids are important contributors to the spread of key antibiotic resistance genes and over 200 complete sequences of IncC plasmids have been reported. To track the spread of these plasmids accurate typing to identify the closest relatives is needed. However, typing can be complicated by the high variability in resistance gene content and various typing methods that rely on features of the conserved backbone have been developed. Plasmids can be broadly typed into two groups, type 1 and type 2, using four features that differentiate the otherwise closely related backbones. These types are found in many different countries in bacteria from humans and animals. However, hybrids of type 1 and type 2 are also occasionally seen, and two further types, each represented by a single plasmid, were distinguished. Generally, the antibiotic resistance genes are located within a small number of resistance islands, only one of which, ARI-B, is found in both type 1 and type 2. The introduction of each resistance island generates a new lineage and, though they are continuously evolving via the loss of resistance genes or introduction of new ones, the island positions serve as valuable lineage-specific markers. A current type 2 lineage of plasmids is derived from an early type 2 plasmid but the sequences of early type 1 plasmids include features not seen in more recent type 1 plasmids, indicating a shared ancestor rather than a direct lineal relationship. Some features, including ones essential for maintenance or for conjugation, have been examined experimentally.201830081066
574640.9973Identification of a Novel Plasmid-Borne Gentamicin Resistance Gene in Nontyphoidal Salmonella Isolated from Retail Turkey. The spread of antibiotic-resistant bacteria presents a global health challenge. Efficient surveillance of bacteria harboring antibiotic resistance genes (ARGs) is a critical aspect to controlling the spread. Increased access to microbial genomic data from many diverse populations informs this surveillance but only when functional ARGs are identifiable within the data set. Current, homology-based approaches are effective at identifying the majority of ARGs within given clinical and nonclinical data sets for several pathogens, yet there are still some whose identities remain elusive. By coupling phenotypic profiling with genotypic data, these unknown ARGs can be identified to strengthen homology-based searches. To prove the efficacy and feasibility of this approach, a published data set from the U.S. National Antimicrobial Resistance Monitoring System (NARMS), for which the phenotypic and genotypic data of 640 Salmonella isolates are available, was subjected to this analysis. Six isolates recovered from the NARMS retail meat program between 2011 and 2013 were identified previously as phenotypically resistant to gentamicin but contained no known gentamicin resistance gene. Using the phenotypic and genotypic data, a comparative genomics approach was employed to identify the gene responsible for the observed resistance in all six of the isolates. This gene, grdA, is harbored on a 9,016-bp plasmid that is transferrable to Escherichia coli, confers gentamicin resistance to E. coli, and has never before been reported to confer gentamicin resistance. Bioinformatic analysis of the encoded protein suggests an ATP binding motif. This work demonstrates the advantages associated with coupling genomics technologies with phenotypic data for novel ARG identification.202032816720
996550.9973The complete genome sequences of four new IncN plasmids from wastewater treatment plant effluent provide new insights into IncN plasmid diversity and evolution. The dissemination of antibiotic resistance genes among bacteria often occurs by means of plasmids. Wastewater treatment plants (WWTP) were previously recognized as hot spots for the horizontal transfer of genetic material. One of the plasmid groups that is often associated with drug resistance is the incompatibility group IncN. The aim of this study was to gain insights into the diversity and evolutionary history of IncN plasmids by determining and comparing the complete genome sequences of the four novel multi-drug resistance plasmids pRSB201, pRSB203, pRSB205 and pRSB206 that were exogenously isolated from the final effluent of a municipal WWTP. Their sizes range between 42,875 bp and 56,488 bp and they share a common set of backbone modules that encode plasmid replication initiation, conjugative transfer, and plasmid maintenance and control. All plasmids are transferable at high rates between Escherichia coli strains, but did not show a broad host range. Different genes conferring resistances to ampicillin, streptomycin, spectinomycin, sulfonamides, tetracycline and trimethoprim were identified in accessory modules inserted in these plasmids. Comparative analysis of the four WWTP IncN plasmids and IncN plasmids deposited in the NCBI database enabled the definition of a core set of backbone genes for this group. Moreover, this approach revealed a close phylogenetic relationship between the IncN plasmids isolated from environmental and clinical samples. Phylogenetic analysis also suggests the existence of host-specific IncN plasmid subgroups. In conclusion, IncN plasmids likely contribute to the dissemination of resistance determinants between environmental bacteria and clinical strains. This is of particular importance since multi-drug resistance IncN plasmids have been previously identified in members of the Enterobacteriaceae that cause severe infections in humans.201222326849
515860.9973Distinct adaptation and epidemiological success of different genotypes within Salmonella enterica serovar Dublin. Salmonella Dublin is a host-adapted, invasive nontyphoidal Salmonella (iNTS) serovar that causes bloodstream infections in humans and demonstrates increasing prevalence of antimicrobial resistance (AMR). Using a global dataset of 1303 genomes, coupled with in vitro assays, we examined the evolutionary, resistance, and virulence characteristics of S. Dublin. Our analysis revealed strong geographical associations between AMR profiles and plasmid types, with highly resistant isolates confined predominantly to North America, linked to IncC plasmids co-encoding AMR and heavy metal resistance. By contrast, Australian isolates were largely antimicrobial-susceptible, reflecting differing AMR pressures. We identified two phylogenetically distinct Australian lineages, ST10 and ST74, with a small number of ST10 isolates harbouring a novel hybrid plasmid encoding both AMR and mercuric resistance. Whereas the ST10 lineage remains globally dominant, the ST74 lineage was less prevalent. ST74 exhibited unique genomic features including a larger pan genome compared to ST10 and the absence of key virulence loci, including Salmonella pathogenicity island (SPI)-19 which encodes a type VI secretion system (T6SS). Despite these genomic differences, the ST74 lineage displayed enhanced intracellular replication in human macrophages and induced less pro-inflammatory responses compared with ST10, suggesting alternative virulence strategies that may support systemic dissemination of ST74. The Vi antigen was absent in all ST10 and ST74 genomes, highlighting challenges for serotyping and vaccine development, and has implications for current diagnostic and control strategies for S. Dublin infections. Collectively, this study represents the most comprehensive investigation of S. Dublin to date and, importantly, has revealed distinct adaptations of two genotypes within the same serovar, leading to different epidemiological success. The regional emergence and evolution of distinct S. Dublin lineages highlight the need to understand the divergence of intra-serovar virulence mechanisms which may impact the development of effective control measures against this important global pathogen.202540560760
434570.9973Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. Traditional genetic association studies are very difficult in bacteria, as the generally limited recombination leads to large linked haplotype blocks, confounding the identification of causative variants. Beta-lactam antibiotic resistance in Streptococcus pneumoniae arises readily as the bacteria can quickly incorporate DNA fragments encompassing variants that make the transformed strains resistant. However, the causative mutations themselves are embedded within larger recombined blocks, and previous studies have only analysed a limited number of isolates, leading to the description of "mosaic genes" as being responsible for resistance. By comparing a large number of genomes of beta-lactam susceptible and non-susceptible strains, the high frequency of recombination should break up these haplotype blocks and allow the use of genetic association approaches to identify individual causative variants. Here, we performed a genome-wide association study to identify single nucleotide polymorphisms (SNPs) and indels that could confer beta-lactam non-susceptibility using 3,085 Thai and 616 USA pneumococcal isolates as independent datasets for the variant discovery. The large sample sizes allowed us to narrow the source of beta-lactam non-susceptibility from long recombinant fragments down to much smaller loci comprised of discrete or linked SNPs. While some loci appear to be universal resistance determinants, contributing equally to non-susceptibility for at least two classes of beta-lactam antibiotics, some play a larger role in resistance to particular antibiotics. All of the identified loci have a highly non-uniform distribution in the populations. They are enriched not only in vaccine-targeted, but also non-vaccine-targeted lineages, which may raise clinical concerns. Identification of single nucleotide polymorphisms underlying resistance will be essential for future use of genome sequencing to predict antibiotic sensitivity in clinical microbiology.201425101644
994180.9973CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) system, a genome editing technology, was shown to be versatile in treating several antibiotic-resistant bacteria. In the present study, we applied the CRISPR/ Cas9 technology to kill extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. ESBL bacteria are mostly multidrug resistant (MDR), and have plasmid-mediated antibiotic resistance genes that can be easily transferred to other members of the bacterial community by horizontal gene transfer. To restore sensitivity to antibiotics in these bacteria, we searched for a CRISPR/Cas9 target sequence that was conserved among >1,000 ESBL mutants. There was only one target sequence for each TEM- and SHV-type ESBL, with each of these sequences found in ~200 ESBL strains of each type. Furthermore, we showed that these target sequences can be exploited to re-sensitize MDR cells in which resistance is mediated by genes that are not the target of the CRISPR/Cas9 system, but by genes that are present on the same plasmid as target genes. We believe our Re-Sensitization to Antibiotics from Resistance (ReSAFR) technology, which enhances the practical value of the CRISPR/Cas9 system, will be an effective method of treatment against plasmid-carrying MDR bacteria.201626502735
989390.9973Phage-Plasmids Spread Antibiotic Resistance Genes through Infection and Lysogenic Conversion. Antibiotic resistance is rapidly spreading via the horizontal transfer of resistance genes in mobile genetic elements. While plasmids are key drivers of this process, few integrative phages encode antibiotic resistance genes. Here, we find that phage-plasmids, elements that are both phages and plasmids, often carry antibiotic resistance genes. We found 60 phage-plasmids with 184 antibiotic resistance genes, providing resistance for broad-spectrum-cephalosporins, carbapenems, aminoglycosides, fluoroquinolones, and colistin. These genes are in a few hot spots, seem to have been cotranslocated with transposable elements, and are often in class I integrons, which had not been previously found in phages. We tried to induce six phage-plasmids with resistance genes (including four with resistance integrons) and succeeded in five cases. Other phage-plasmids and integrative prophages were coinduced in these experiments. As a proof of concept, we focused on a P1-like element encoding an extended spectrum β-lactamase, bla(CTX-M-55). After induction, we confirmed that it is capable of infecting and converting four other E. coli strains. Its reinduction led to the further conversion of a sensitive strain, confirming that it is a fully functional phage. This study shows that phage-plasmids carry a large diversity of clinically relevant antibiotic resistance genes that they can transfer across bacteria. As plasmids, these elements seem plastic and capable of acquiring genes from other plasmids. As phages, they may provide novel paths of transfer for resistance genes because they can infect bacteria that are distant in time and space from the original host. As a matter of alarm, they may also mediate transfer to other types of phages. IMPORTANCE The dissemination of antimicrobial resistance is a major threat to global health. Here, we show that a group of temperate bacterial viruses (phages), termed phage-plasmids, commonly encode different and multiple types of resistance genes of high clinical importance, often in integrons. This is unexpected, as phages typically do not carry resistance genes and, hence, do not confer upon their hosts resistance via infection and genome integration. Our experiments with phage-plasmids isolated from clinical settings confirmed that they infect sensitive strains and render them antibiotic resistant. The spread of antibiotic resistance genes by phage-plasmids is worrisome because it dispenses cell-to-cell contact, which is necessary for canonical plasmid transfer (conjugation). Furthermore, their integrons become genetic platforms for the acquisition of novel resistance genes.202236154183
5745100.9973F Plasmids Are the Major Carriers of Antibiotic Resistance Genes in Human-Associated Commensal Escherichia coli. The evolution and propagation of antibiotic resistance by bacterial pathogens are significant threats to global public health. Contemporary DNA sequencing tools were applied here to gain insight into carriage of antibiotic resistance genes in Escherichia coli, a ubiquitous commensal bacterium in the gut microbiome in humans and many animals, and a common pathogen. Draft genome sequences generated for a collection of 101 E. coli strains isolated from healthy undergraduate students showed that horizontally acquired antibiotic resistance genes accounted for most resistance phenotypes, the primary exception being resistance to quinolones due to chromosomal mutations. A subset of 29 diverse isolates carrying acquired resistance genes and 21 control isolates lacking such genes were further subjected to long-read DNA sequencing to enable complete or nearly complete genome assembly. Acquired resistance genes primarily resided on F plasmids (101/153 [67%]), with smaller numbers on chromosomes (30/153 [20%]), IncI complex plasmids (15/153 [10%]), and small mobilizable plasmids (5/153 [3%]). Nearly all resistance genes were found in the context of known transposable elements. Very few structurally conserved plasmids with antibiotic resistance genes were identified, with the exception of an ∼90-kb F plasmid in sequence type 1193 (ST1193) isolates that appears to serve as a platform for resistance genes and may have virulence-related functions as well. Carriage of antibiotic resistance genes on transposable elements and mobile plasmids in commensal E. coli renders the resistome highly dynamic.IMPORTANCE Rising antibiotic resistance in human-associated bacterial pathogens is a serious threat to our ability to treat many infectious diseases. It is critical to understand how acquired resistance genes move in and through bacteria associated with humans, particularly for species such as Escherichia coli that are very common in the human gut but can also be dangerous pathogens. This work combined two distinct DNA sequencing approaches to allow us to explore the genomes of E. coli from college students to show that the antibiotic resistance genes these bacteria have acquired are usually carried on a specific type of plasmid that is naturally transferrable to other E. coli, and likely to other related bacteria.202032759337
9883110.9973Plasmids in Gram negatives: molecular typing of resistance plasmids. A plasmid is defined as a double stranded, circular DNA molecule capable of autonomous replication. By definition, plasmids do not carry genes essential for the growth of host cells under non-stressed conditions but they have systems which guarantee their autonomous replication also controlling the copy number and ensuring stable inheritance during cell division. Most of the plasmids confer positively selectable phenotypes by the presence of antimicrobial resistance genes. Plasmids evolve as an integral part of the bacterial genome, providing resistance genes that can be easily exchanged among bacteria of different origin and source by conjugation. A multidisciplinary approach is currently applied to study the acquisition and spread of antimicrobial resistance in clinically relevant bacterial pathogens and the established surveillance can be implemented by replicon typing of plasmids. Particular plasmid families are more frequently detected among Enterobacteriaceae and play a major role in the diffusion of specific resistance genes. For instance, IncFII, IncA/C, IncL/M, IncN and IncI1 plasmids carrying extended-spectrum beta-lactamase genes and acquired AmpC genes are currently considered to be "epidemic resistance plasmids", being worldwide detected in Enterobacteriaceae of different origin and sources. The recognition of successful plasmids is an essential first step to design intervention strategies preventing their spread.201121992746
4842120.9972Plasmid-borne AmpC beta-lactamases. Historically, it was thought that ampC genes encoding class C beta-lactamases were located solely on the chromosome but, within the last 12 years, an increasing number of ampC genes have been found on plasmids. These have mostly been acquired by ampC-deficient pathogenic bacteria, which consequently are supplied with new and additional resistance phenotypes. This review discusses the phylogenetic origin of the plasmid-encoded AmpC beta-lactamases, their occurrence, and mode of spread, as well as their hydrolytic properties.200212166675
4948130.9972Yersinia pestis antibiotic resistance: a systematic review. Yersinia pestis, the cause of plague and a potential biological weapon, has always been a threatening pathogen. Some strains of Y. pestis have varying degrees of antibiotic resistance. Thus, this systematic review was conducted to alert clinicians to this pathogen's potential antimicrobial resistance. A review of the literature was conducted for experimental reports and systematic reviews on the topics of plague, Y. pestis, and antibiotic resistance. From 1995 to 2021, 7 Y. pestis isolates with 4 antibiotic resistance mechanisms were reported. In Y. pestis 17/95, 16/95, and 2180H, resistance was mediated by transferable plasmids. Each plasmid contained resistance genes encoded within specific transposons. Strain 17/95 presented multiple drug resistance, since plasmid 1202 contained 10 resistance determinants. Strains 16/95 and 2180H showed single antibiotic resistance because both additional plasmids in these strains carried only 1 antimicrobial determinant. Strains 12/87, S19960127, 56/13, and 59/13 exhibited streptomycin resistance due to an rpsl gene mutation, a novel mechanism that was discovered recently. Y. pestis can acquire antibiotic resistance in nature not only via conjugative transfer of antimicrobial-resistant plasmids from other bacteria, but also by gene point mutations. Global surveillance should be strengthened to identify antibiotic-resistant Y. pestis strains by whole-genome sequencing and drug susceptibility testing.202235255676
9973140.9972Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module. The F plasmid or F-factor is a large, 100-kbp, circular conjugative plasmid of Escherichia coli and was originally described as a vector for horizontal gene transfer and gene recombination in the late 1940s. Since then, F and related F-like plasmids have served as role models for bacterial conjugation. At present, more than 200 different F-like plasmids with highly related DNA transfer genes, including those for the assembly of a type IV secretion apparatus, are completely sequenced. They belong to the phylogenetically related MOB(F12)A group. F-like plasmids are present in enterobacterial hosts isolated from clinical as well as environmental samples all over the world. As conjugative plasmids, F-like plasmids carry genetic modules enabling plasmid replication, stable maintenance, and DNA transfer. In this plasmid backbone of approximately 60 kbp, the DNA transfer genes occupy the largest and mostly conserved part. Subgroups of MOB(F12)A plasmids can be defined based on the similarity of TraJ, a protein required for DNA transfer gene expression. In addition, F-like plasmids harbor accessory cargo genes, frequently embedded within transposons and/or integrons, which harness their host bacteria with antibiotic resistance and virulence genes, causing increasingly severe problems for the treatment of infectious diseases. Here, I focus on key genetic elements and their encoded proteins present on the F-factor and other typical F-like plasmids belonging to the MOB(F12)A group of conjugative plasmids.201830022749
4847150.9972Escherichia coli β-Lactamases: What Really Matters. Escherichia coli strains belonging to diverse pathotypes have increasingly been recognized as a major public health concern. The β-lactam antibiotics have been used successfully to treat infections caused by pathogenic E. coli. However, currently, the utility of β-lactams is being challenged severely by a large number of hydrolytic enzymes - the β-lactamases expressed by bacteria. The menace is further compounded by the highly flexible genome of E. coli, and propensity of resistance dissemination through horizontal gene transfer and clonal spread. Successful management of infections caused by such resistant strains requires an understanding of the diversity of β-lactamases, their unambiguous detection, and molecular mechanisms underlying their expression and spread with regard to the most relevant information about individual bacterial species. Thus, this review comprises first such effort in this direction for E. coli, a bacterial species known to be associated with production of diverse classes of β-lactamases. The review also highlights the role of commensal E. coli as a potential but under-estimated reservoir of β-lactamases-encoding genes.201627065978
9900160.9972On the origin of plasmid-borne, extended-spectrum, antibiotic resistance mutations in bacteria. Many antibiotic resistance mutations arise in pathogenic bacteria that harbor plasmids (R-plasmids). Resistance to third generation cephalosporins, for instance, largely occurs by one or more point mutations in plasmid bla genes that expand the resistance spectrum of beta-lactamases. Here I review relevant evidence underlying the worldwide emergence of extended spectrum beta-lactamases (ESBLs). The conclusion reached is that the origin of these resistance-conferring mutations cannot be explained by a series of single point mutation and selection events. Instead, highly advantageous stochastic processes might exist that generate alterations in the sequence or the conformation of particular regions in chromosomal or plasmid genomes such as bla, i.e., recombination or mutation. Several explanations for the origin of ESBLs are reviewed but direct experimental evidence to support or to invalidate them is still lacking. The cellular conditions under which ESBLs arise are unknown; however, involvement of nutritional stresses inside natural animal hosts and of plasmid conjugal functions appear likely.19989533872
9884170.9972Incompatibility Group I1 (IncI1) Plasmids: Their Genetics, Biology, and Public Health Relevance. Bacterial plasmids are extrachromosomal genetic elements that often carry antimicrobial resistance (AMR) genes and genes encoding increased virulence and can be transmissible among bacteria by conjugation. One key group of plasmids is the incompatibility group I1 (IncI1) plasmids, which have been isolated from multiple Enterobacteriaceae of food animal origin and clinically ill human patients. The IncI group of plasmids were initially characterized due to their sensitivity to the filamentous bacteriophage If1. Two prototypical IncI1 plasmids, R64 and pColIb-P9, have been extensively studied, and the plasmids consist of unique regions associated with plasmid replication, plasmid stability/maintenance, transfer machinery apparatus, single-stranded DNA transfer, and antimicrobial resistance. IncI1 plasmids are somewhat unique in that they encode two types of sex pili, a thick, rigid pilus necessary for mating and a thin, flexible pilus that helps stabilize bacteria for plasmid transfer in liquid environments. A key public health concern with IncI1 plasmids is their ability to carry antimicrobial resistance genes, including those associated with critically important antimicrobials used to treat severe cases of enteric infections, including the third-generation cephalosporins. Because of the potential importance of these plasmids, this review focuses on the distribution of the plasmids, their phenotypic characteristics associated with antimicrobial resistance and virulence, and their replication, maintenance, and transfer.202133910982
9964180.9972Diversity and Global Distribution of IncL/M Plasmids Enabling Horizontal Dissemination of β-Lactam Resistance Genes among the Enterobacteriaceae. Antibiotic resistance determinants are frequently associated with plasmids and other mobile genetic elements, which simplifies their horizontal transmission. Several groups of plasmids (including replicons of the IncL/M incompatibility group) were found to play an important role in the dissemination of resistance genes encoding β-lactamases. The IncL/M plasmids are large, broad host range, and self-transmissible replicons. We have identified and characterized two novel members of this group: pARM26 (isolated from bacteria inhabiting activated sludge from a wastewater treatment plant) and pIGT15 (originating from a clinical strain of Escherichia coli). This instigated a detailed comparative analysis of all available sequences of IncL/M plasmids encoding β-lactamases. The core genome of these plasmids is comprised of 20 genes with conserved synteny. Phylogenetic analyses of these core genes allowed clustering of the plasmids into four separate groups, which reflect their antibiotic resistance profiles. Examination of the biogeography of the IncL/M plasmids revealed that they are most frequently found in bacteria of the family Enterobacteriaceae originating from the Mediterranean region and Western Europe and that they are able to persist in various ecological niches even in the absence of direct antibiotic selection pressure.201526236726
9881190.9972Plasmids and the spread of resistance. Plasmids represent one of the most difficult challenge for counteracting the dissemination of antimicrobial resistance. They contribute to the spread of relevant resistance determinants, promoting horizontal gene transfer among unrelated bacteria. Undistinguishable plasmids were identified in unrelated bacterial strains isolated at huge geographically distant area, with no apparent epidemiological links. These plasmids belong to families that are largely prevalent in naturally occurring bacteria, usually carry multiple physically linked genetic determinants, conferring resistance to different classes of antibiotics simultaneously. Plasmids also harbour virulence factors and addiction systems, promoting their stability and maintenance in the bacterial host, in different environmental conditions. The characteristics of the most successful plasmids that were at the origin of the spread of carbapenemase, expanded-spectrum β-lactamase, and plasmid-mediated quinolone resistance genes are discussed in this review.201323499304