# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5134 | 0 | 0.9372 | Genomic analysis and antibiotic resistance of a multidrug-resistant bacterium isolated from pharmaceutical wastewater treatment plant sludge. Pharmaceutical wastewater treatment plants (PWWTPs) serve as reservoirs for antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). In this study, a multiantibiotic-resistant strain of Acinetobacter lwoffii (named N4) was isolated from the dewatered sludge of a PWWTP. N4 exhibited high resistance to both antibiotics and metals, with minimum inhibitory concentrations (MICs) of chloramphenicol and cefazolin reaching 1024 mg·L(-1) and MICs of Cu(2+) and Zn(2+) reaching 512 mg·L(-1). Co-sensitization experiments revealed that when antibiotics are co-existing with heavy metal ions (such as TET and Cd(2+), AMP and Cu(2+)) could enhance the resistance of N4 to them. Whole-genome sequencing of N4 revealed a genome size of 0.37 Mb encoding 3359 genes. Among these, 23 ARGs were identified, including dfrA26, bl2be(CTXM), catB3, qnrB, rosB, tlrC, smeD, smeE, mexE, ceoB, oprN, acrB, adeF, ykkC, ksgA and sul2, which confer resistance through mechanisms such as efflux pumps, enzyme modification and target bypass. Additionally, the N4 genome contained 187 genes associated with human disease and 249 virulence factors, underscoring its potential pathogenicity. Overall, this study provides valuable insights into ARBs in PWWTPs and highlights the potential risks posed by multidrug-resistant strains such as N4. | 2025 | 39626482 |
| 5416 | 1 | 0.9299 | Limited predictive power of known resistance genes for phenotypic drug resistance in clinical Mycobacterium abscessus complex from Beijing in China. Mycobacterium abscessus complex (MABC) is an emerging pathogen with intrinsic multidrug resistance. Genomic sequencing technology has been widely applied to predict bacterial resistance in other bacteria, but the catalog of known resistance-determining genes to explain phenotypic resistance in the MABC is incomplete for many antibiotics. Eighty-one MABC strains were isolated from sputum samples of patients with pulmonary disease in the Beijing Chest Hospital. All isolates were tested for minimum inhibitory concentrations (MICs) to eight antibiotics and underwent whole-genome sequencing (WGS). Of the total 81 MABC isolates, six strains exhibited clarithromycin (CLM) resistance by day 3 in culture, but only one (16.7%, 1/6) contained a mutation in the rrl gene. All M. abscessus strains contained the erm (41)28T (100.0%, 49/49) polymorphism and exhibited CLM-induced resistance after 14 days in culture. Of the 61 imipenem-resistant strains, 12 (19.7%, 12/61) had mutations in the bla gene. Although there were four (4.9%) amikacin-resistant, nine (11.1%) linezolid-resistant, eight (9.9%) clofazimine-resistant, 23 (28.4%) bedaquiline-resistant, and 27 (33.3%) cefoxitin-resistant strains, no known mutations associated with resistance to these antibiotics were found. These results suggest that the explanatory power of known resistance genes for clinical MABC resistance is limited and that other unidentified genes or novel resistance mechanisms may be involved. | 2025 | 40422286 |
| 9359 | 2 | 0.9295 | Investigation of Pseudomonas aeruginosa strain PcyII-10 variants resisting infection by N4-like phage Ab09 in search for genes involved in phage adsorption. Bacteria and their bacteriophages coexist and coevolve for the benefit of both in a mutualistic association. Multiple mechanisms are used by bacteria to resist phages in a trade-off between survival and maintenance of fitness. In vitro studies allow inquiring into the fate of virus and host in different conditions aimed at mimicking natural environment. We analyse here the mutations emerging in a clinical Pseudomonas aeruginosa strain in response to infection by Ab09, a N4-like lytic podovirus and describe a variety of chromosomal deletions and mutations conferring resistance. Some deletions result from illegitimate recombination taking place during long-term maintenance of the phage genome. Phage variants with mutations in a tail fiber gene are selected during pseudolysogeny with the capacity to infect resistant cells and produce large plaques. These results highlight the complex host/phage association and suggest that phage Ab09 promotes bacterial chromosome rearrangements. Finally this study points to the possible role of two bacterial genes in Ab09 phage adhesion to the cell, rpsB encoding protein S2 of the 30S ribosomal subunit and ORF1587 encoding a Wzy-like membrane protein involved in LPS biosynthesis. | 2019 | 30990839 |
| 6190 | 3 | 0.9290 | Identifying Escherichia coli genes involved in intrinsic multidrug resistance. Multidrug resistance is a major cause of clinical failure in treating bacterial infections. Increasing evidence suggests that bacteria can resist multiple antibiotics through intrinsic mechanisms that rely on gene products such as efflux pumps that expel antibiotics and special membrane proteins that block the penetration of drug molecules. In this study, Escherichia coli was used as a model system to explore the genetic basis of intrinsic multidrug resistance. A random mutant library was constructed in E. coli EC100 using transposon mutagenesis. The library was screened by growth measurement to identify the mutants with enhanced or reduced resistance to chloramphenicol (Cm). Out of the 4,000 mutants screened, six mutants were found to be more sensitive to Cm and seven were more resistant compared to the wild-type EC100. Mutations in 12 out of the 13 mutants were identified by inverse polymerase chain reaction. Mutants of the genes rob, garP, bipA, insK, and yhhX were more sensitive to Cm compared to the wild-type EC100, while the mutation of rhaB, yejM, dsdX, nagA, yccE, atpF, or htrB led to higher resistance. Overexpression of rob was found to increase the resistance of E. coli biofilms to tobramycin (Tob) by 2.7-fold, while overexpression of nagA, rhaB, and yccE significantly enhanced the susceptibility of biofilms by 2.2-, 2.5-, and 2.1-fold respectively. | 2008 | 18807027 |
| 5133 | 4 | 0.9283 | Draft genome sequence of Marinobacter sp. DUT-3, a manganese-oxidizing and potential antibiotic-resistant bacterium from Bohai coastal sediments. A manganese-oxidizing bacterium, Marinobacter sp. DUT-3, was isolated from Bohai coastal sediments. A total of 24 contigs with GC content of 57.91% and 3,817 protein-coding genes were obtained by genome sequencing. Isolation of this strain suggests potential for synergistic antibiotics removal via biogenic manganese oxides and intrinsic resistance. | 2025 | 41081498 |
| 7754 | 5 | 0.9283 | Deciphering the interaction impacts between antiseptic benzethonium chloride and biofilm nitrification system: Performance, resistance mechanisms and biodegradation. Benzethonium chloride (BEC) is one of emerging bacteriostatic agents. BEC-bearing wastewater generated during sanitary applications in food and medication is easily combined with other wastewater streams to flow into wastewater treatment plants. This study focused on the long-term (231 days) impacts of BEC on the sequencing moving bed biofilm nitrification system. Nitrification performance was tolerant to low concentration of BEC (≤ 0.2 mg/L), but the nitrite oxidation was severely inhibited when the concentration of BEC was 1.0-2.0 mg/L. Partial nitrification maintained about 140 days with nitrite accumulation ratio over 80%, mainly caused by the inhibition of Nitrospira, Nitrotoga and Comammox. Notably, BEC exposure in the system might cause the co-selection of antibiotic resistance genes (ARGs) and disinfectant resistance genes (DRGs), and the resistance of biofilm system to BEC was strengthened by efflux pumps mechanism (qacEdelta1 and qacH) and antibiotic deactivation mechanism (aadA, aac(6')-Ib and blaTEM). Extracellular polymeric substances secretion and BEC biodegradation were also contributed to the system microorganisms resisting BEC exposure. In addition, Klebsiella, Enterobacter, Citrobacter and Pseudomonas were isolated and identified as BEC degrading bacteria. The metabolites of N,N-dimethylbenzylamine, N-benzylmethylamine and benzoic acid were identified, and the biodegradation pathway of BEC was proposed. This study brought new knowledge about the fate of BEC in biological treatment units and laid a foundation for its elimination from wastewater. | 2023 | 37209516 |
| 5450 | 6 | 0.9281 | Antimicrobial susceptibility, plasmid profiles and haemocin activities of Avibacterium paragallinarum strains. In this study, 18 Avibacterium paragallinarum isolates collected in Taiwan from 1990 to 2003 were serotyped and tested for resistance to antimicrobial agents. Serotyping revealed that 13 isolates were Page serovar A and 5 isolates were Page serovar C. More than 75% of the isolates were resistant to neomycin, streptomycin and erythromycin. The most common resistance pattern (15 isolates, 83.3%) was neomycin-streptomycin. Furthermore, 88.9% of the isolates were resistant to two or more antibiotics. About 72% of isolates contained plasmids (pYMH5 and/or pA14). Plasmid pYMH5 encoded functional streptomycin, sulfonamide, kanamycin and neomycin resistance genes and revealed significant homology to a broad host-range plasmid, pLS88. Plasmid pA14 encoded a putative MglA protein and RNase II, both of which might be associated with virulence. Furthermore, seven isolates showed haemocin activity. Plasmid pYMH5 is the first multidrug-resistance plasmid reported in A. paragallinarum and it may facilitate the spread of antibiotic-resistance genes between bacteria. The putative virulence plasmid pA14 and haemocin-like activity in A. paragallinarum indicate two possible mechanisms which might be responsible for the pathogenesis. | 2007 | 17485180 |
| 5228 | 7 | 0.9280 | Mycobacterium bolletii respiratory infections. Contrary to other species in the Mycobacterium chelonae-abscessus complex, we reidentified M. bolletii strains isolated from 4 respiratory patients and found these strains to be uniformly resistant to clarithromycin. No mutations previously associated with macrolide resistance in bacteria were detected in either the 23S rDNA or the genes encoding riboproteins L4 and L22. | 2009 | 19193279 |
| 2466 | 8 | 0.9279 | Genomic profiling of pan-drug resistant proteus mirabilis Isolates reveals antimicrobial resistance and virulence gene landscape. Proteus mirabilis is a gram-negative pathogen that caused significant opportunistic infections. In this study we aimed to identify antimicrobial resistance (AMR) genes and virulence determinants in two pan-drug resistant isolate "Bacteria_11" and "Bacteria_27" using whole genome sequencing. Proteus mirabilis "Bacteria_11" and "Bacteria_27" were isolated from two different hospitalized patients in Egypt. Antimicrobial susceptibility determined using Vitek 2 system, then whole genome sequencing (WGS) using MinION nanopore sequencing was done. Antimicrobial resistant genes and virulence determinants were identified using ResFinder, CADR AMR database, Abricate tool and VF analyzer were used respectively. Multiple sequence alignment was performed using MAFFT and FastTree, respectively. All genes were present within bacterial chromosome and no plasmid was detected. "Bacteria_11" and "Bacteria_27" had sizes of approximately 4,128,657 bp and 4,120,646 bp respectively, with GC content of 39.15% and 39.09%. "Bacteria_11" and "Bacteria_27" harbored 43 and 42 antimicrobial resistance genes respectively with different resistance mechanisms, and up to 55 and 59 virulence genes respectively. Different resistance mechanisms were identified: antibiotic inactivation, antibiotic efflux, antibiotic target replacement, and antibiotic target change. We identified several genes associated with aminoglycoside resistance, sulfonamide resistance. trimethoprim resistance tetracycline resistance proteins. Also, those responsible for chloramphenicol resistance. For beta-lactam resistance, only blaVEB and blaCMY-2 genes were detected. Genome analysis revealed several virulence factors contribution in isolates pathogenicity and bacterial adaptation. As well as numerous typical secretion systems (TSSs) were present in the two isolates, including T6SS and T3SS. Whole genome sequencing of both isolates identify their genetic context of antimicrobial resistant genes and virulence determinants. This genomic analysis offers detailed representation of resistant mechanisms. Also, it clarifies P. mirabilis ability to acquire resistance and highlights the emergence of extensive drug resistant (XDR) and pan-drug resistant (PDR) strains. This may help in choosing the most appropriate antibiotic treatment and limiting broad spectrum antibiotic use. | 2024 | 39223360 |
| 1784 | 9 | 0.9277 | Draft genome sequence of a multidrug-resistant emerging pathogenic isolate of Vibrio alginolyticus from the Red Sea. The marine ecosystem is a growing reservoir of antimicrobial-resistant bacteria, and thus an emerging risk to human health. In this study, we report the first draft genome sequence of multidrug-resistant Vibrio alginolyticus strain OS1T-47, isolated from an offshore site in the Red Sea. The draft genome of V. alginolyticus OS1T-47 is 5 157 150 bp in length and has DNA G + C content of 44.83%. Strain OS1T-47 possesses 22 antimicrobial resistance genes, including those associated with multidrug-resistant efflux pumps. | 2020 | 33294196 |
| 1379 | 10 | 0.9277 | Antibiotic Resistance and Genetic Profiles of Vibrio parahaemolyticus Isolated from Farmed Pacific White Shrimp (Litopenaeus vannamei) in Ningde Regions. To better understand the antibiotic resistance, virulence genes, and some related drug-resistance genes of Vibrio parahaemolyticus in farmed pacific white shrimp (Litopenaeus vannamei) in Ningde regions, Fujian province, we collected and isolated a total of 102 strains of V. parahaemolyticus from farmed pacific white shrimp in three different areas of Ningde in 2022. The Kirby-Bauer disk method was used to detect V. parahaemolyticus resistance to 22 antibiotics, and resistant genes (such as quinolones (qnrVC136, qnrVC457, qnrA), tetracyclines (tet A, tetM, tetB), sulfonamides (sulI, sulII, sulIII), aminoglycosides (strA, strB), phenicols (cat, optrA, floR, cfr), β-lactams (carB), and macrolides (erm)) were detected by using PCR. The findings in this study revealed that V. parahaemolyticus was most resistant to sulfamoxazole, rifampicin, and erythromycin, with resistance rates of 56.9%, 36.3%, and 33.3%, respectively. Flufenicol, chloramphenicol, and ofloxacin susceptibility rates were 97.1%, 94.1%, and 92.2%, respectively. In all, 46% of the bacteria tested positive for multi-drug resistance. The virulence gene test revealed that all bacteria lacked the tdh and trh genes. Furthermore, 91.84% and 52.04% of the isolates were largely mediated by cat and sulII, respectively, with less than 5% resistance to aminoglycosides and macrolides. There was a clear mismatch between the antimicrobial resistance phenotypes and genotypes, indicating the complexities of V. parahaemolyticus resistance. | 2024 | 38257979 |
| 3030 | 11 | 0.9277 | Mobile Genomic Island GEI-FN1A in Aeromonas salmonicida FN1 Contributes to the Spread of Antibiotic-Resistance Genes. Antibiotics are used to treat severe bacterial infections. However, owing to excessive antibiotic use, bacteria under high selective pressure for antibiotics develop resistance through spontaneous mutation or by acquiring antibiotic-resistance genes (ARGs) through horizontal gene transfer (HGT). Horizontal transfer of ARGs among bacteria in the environment can lead to the emergence of multidrug-resistant (MDR) bacteria that infect animals and humans, thus causing disease outbreaks. In this study, MDR strain FN1 was isolated from a feces-contaminated soil sample from a chicken farm under pressure from the antibiotic florfenicol (16 mg/L) and identified as Aeromonas salmonicida. Whole-genome sequencing and analysis revealed the 86.8-kb antibiotic-resistant genomic island, GEI-FN1A, in the FN1 genome. Genome annotation revealed that GEI-FN1A carried several ARGs, including two tetracycline-resistance genes [tetR and tet(A)], three aminoglycoside-resistance genes [aph(6), aph(3"), and aac(3)], one trimethoprim-resistance gene (dfrB4), two chloramphenicol/florfenicol-resistance genes (catB3 and floR), three macrolide-resistance genes [mphR(A), mrx(A), and mph(A)] and two sul1 genes. GEI-FN1A also contained genes encoding integrase, transposase, and recombinase, which mediate the horizontal transfer of MDR genes. These findings suggest that GEI-FN1A in A. salmonicida FN1 can potentially spread ARGs among environmental bacteria. | 2025 | 40553200 |
| 5213 | 12 | 0.9275 | Draft genome sequences of Limosilactobacillus fermentum IJAL 01 335, isolated from a traditional cereal fermented dough. Limosilactobacillus fermentum IJAL 01 335 was isolated from mawè, a spontaneously fermented cereal dough from Benin. The 1.83 Mb draft genome sequence (52.37% GC) comprises 154 contigs, 1,836 coding sequences, and 23 predicted antibiotic resistance genes, providing insights into its genetic features and potential application in food fermentation. | 2025 | 41170963 |
| 1247 | 13 | 0.9274 | Antibiotic resistance determinants of multidrug-resistant Acinetobacter baumannii clinical isolates in Algeria. Antibiotic susceptibility testing was performed on 71 Acinetobacter baumannii clinical isolates, and presence of antibiotic resistance genes was screened for by PCR amplification and sequencing. Resistance rates were very high for aminoglycosides (22-80%), fluoroquinolones (>90%), and cephalosporins (>90%) but remained low for rifampin (2.8%) or null for colistin. Antibiotic resistance encoding genes detected were as follows: blaTEM-128 gene (74.6%), aph(3')-VI (50.7 %), aadA (63.4%), ant(2″)-I (14.1%), aac(3)-Ia (91.1%), aac(6')-Ib (4.2%), mutation Ser83Leu in gyrA (94.4%), double mutations Ser83Leu and Ser80Leu (or Ser84Leu) in gyrA and parC (69.0%), and mutation I581N in RRDR of the rpoB gene. | 2013 | 23688522 |
| 5202 | 14 | 0.9274 | Complete genome sequence data of multidrug-resistant Stenotrophomonas sp. strain SXG-1. Objectives A multidrug-resistant bacterium, Stenotrophomonas sp. SXG-1, was isolated from the liver of diseased hybrid sturgeon from Guizhou province, China. Methods Whole-genome sequencing was performed on the Illumina HiSeq 2500-PE125 platform with MPS (massively parallel sequencing) Illumina technology. All good quality paired reads were assembled using the SOAPdenovo into a number of scaffolds. PHI (Pathogen Host Interactions), VFDB (Virulence Factors of Pathogenic Bacteria) and ARDB (Antibiotic Resistance Genes Database) were used to analyses pathogenicity and drug resistance. Results Here we reported the complete genome sequence of Stenotrophomonas sp. SXG-1, which comprised 4534,602bp in 4077 coding sequences (CDS) with a G+C content of 66.42%. The genome contained 4 gene islands, 72 tRNAs and 13 rRNAs. According to the annotation analysis, strain SXG-1 encoded 22 genes related to the multidrug resistance. In addition to 10 genes conferring resistance to antimicrobial drugs of different classes via alternative mechanisms, 12 genes of efflux pumps were presented, 9 of which were reported for the first time in Stenotrophomonas maltophilia. Conclusion This was the first complete genome sequence of Stenotrophomonas sp. isolated from the sturgeon. The complete genome sequence of Stenotrophomonas sp. strain SXG-1 may provide insights into the mechanism of antimicrobial resistance and prevent disease. | 2020 | 32311503 |
| 2338 | 15 | 0.9274 | Characterization of disinfectant susceptibility profiles among clinical isolates of Acinetobacter baumannii in Ardabil, Iran. Antimicrobial disinfectants have been extensively used to control hospital-acquired infections worldwide. Prolonged exposure to bacteria could promote resistance to antimicrobial disinfectants. This study evaluated the antimicrobial activity of four commonly used disinfectants; triclosan, chlorhexidine digluconate, benzalkonium chloride, and formaldehyde against Acinetobacter baumannii clinical isolates. This study also determined the prevalence and association of efflux pumps encoding genes qacE, qacED1, emrA, and aceI with tolerance to disinfectants. A total of 100 A. baumannii isolates were included in the current study. The antimicrobial disinfectants' minimum inhibitory concentration (MIC) was determined using an agar dilution method. Genes involved in resistance to disinfectants were investigated by PCR method. The benzalkonium chloride MICs ranged between 32 and 128 μg mL-1, chlorhexidine digluconate 8-64 μg mL-1, triclosan 1-32 μg mL-1, and formaldehyde 128 μg mL-1. Overall, the highest MIC90 value was identified for formaldehyde (128 μg mL-1), followed by benzalkonium chloride and chlorhexidine digluconate (64 μg mL-1, each one) and triclosan (4 μg mL-1). In the present study, the qacE, qacED1, emrA, and aceI genes were found in 91%, 55%, 100%, and 88% of isolates, respectively. The qacG gene was not identified in our A. baumannii isolates. The qacED1 gene was associated with higher MICs for all disinfectants tested (P < 0.05), while the qacE and aceI genes were associated with higher MICs for benzalkonium chloride and chlorhexidine. This study indicated that triclosan is the most effective disinfectant against A. baumannii isolates. | 2023 | 38063878 |
| 5753 | 16 | 0.9273 | Sensitization of Gram-Negative Bacteria to Aminoglycosides with 2-Aminoimidazole Adjuvants. In 2019, five million deaths associated with antimicrobial resistance were reported by The Centers for Disease Control and Prevention (CDC). Acinetobacter baumannii, a Gram-negative bacterial pathogen, is among the list of urgent threats. Previously, we reported 2-aminoimidazole (2-AI) adjuvants that potentiate macrolide activity against A. baumannii. In this study, we identify several of these adjuvants that sensitize A. baumannii to aminoglycoside antibiotics. Lead compounds 1 and 7 lower the tobramycin (TOB) minimum inhibitory concentration (MIC) against the TOB-resistant strain AB5075 from 128 μg/mL to 2 μg/mL at 30 μM. In addition, the lead compounds lower the TOB MIC against the TOB-susceptible strain AB19606 from 4 μg/mL to 1 μg/mL and 0.5 μg/mL, respectively, at 30 μM and 15 μM. The evolution of resistance to TOB and 1 in AB5075 revealed mutations in genes related to protein synthesis, the survival of bacteria under environmental stressors, bacteriophages, and proteins containing Ig-like domains. | 2023 | 37998765 |
| 5441 | 17 | 0.9273 | Presence of SXT integrating conjugative element in marine bacteria isolated from the mucus of the coral Fungia echinata from Andaman Sea. In this study, we characterize 18 cultivable bacteria associated within the mucus of the coral Fungia echinata from Andaman Sea, India. 16S rRNA gene sequence analysis showed that all the 18 strains isolated in this study from the coral mucus belong to the group Gammaproteobacteria and majority of them were identified as Vibrio core group. Our objective was to investigate the presence of the SXT/R391 integrating conjugative elements (ICEs) targeting integrase int(SXT) and SXT Hotspot IV genetic elements in these isolates. SXT/ICE initially reported in Vibrio cholerae contains many antibiotic and heavy metal resistance genes and acts as an effective tool for the horizontal transfer of resistance genes in other bacterial populations. Two of our strains, AN44 and AN60, were resistant to sulfamethoxazole, trimethoprim, chloramphenicol, and streptomycin, in addition to other antibiotics such as neomycin, ampicillin, rifampicin, and tetracycline. Using PCR followed by sequencing, we detected the SXT/ICE in these strains. The SXT integrase genes of AN44 and AN60 had a 99% and 100% identity with V. cholerae serogroup O139 strain SG24. This study provides the first evidence of the presence of SXT/R391 ICEs in Marinomonas sp. strain AN44 (JCM 18476(T) ) and Vibrio fortis strain AN60 (DSM 26067(T) ) isolated from the mucus of the coral F. echinata. | 2013 | 23083057 |
| 1271 | 18 | 0.9272 | Association of exopolysaccharide genes in biofilm developing antibiotic-resistant Pseudomonas aeruginosa from hospital wastewater. The study aimed to examine the relationship between antibiotic resistance, biofilm formation and genes responsible for biofilm formation. Sixty-six Pseudomonas aeruginosa isolates were obtained from hospital wastewater and analyzed for their antibiotic resistance. Biofilm production among the isolates was tested by indirect quantification method crystal violet assay. Biofilm-associated genes among these isolates psl, alg, and pel were also checked. The maximum resistance was observed for ampicillins (88.24%) followed by nalidixic (83.82%), and nitrofurantoin (64.71%), respectively. Biofilm phenotypes are distributed in the following categories: high 39.39% (n = 26); moderate 57.57% (n = 38), and weak 3.0% (n = 2). Among the total isolates, biofilm-associated genes were detected in 84.84% (n = 56) of isolates and the remaining isolates 15.15% (n = 10) did not harbor any genes. In this study, pslB was the most predominant gene observed (71.21%, n = 47) followed by pslA (57.57%, n = 38), pelA (45.45%, n = 30), algD (43.93%, n = 29), and pelD (27.27%, n = 18), respectively. The present study reveals that the majority of the isolates are multidrug resistant being moderate and high biofilm formers. The study implies that biofilm acts as a machinery for bacteria to survive in the hospital effluent which is an antibiotic stress environment. | 2022 | 35100165 |
| 6149 | 19 | 0.9272 | Characterization and whole-genome sequencing of an extreme arsenic-tolerant Citrobacter freundii SRS1 strain isolated from Savar area in Bangladesh. Citrobacter freundii SRS1, gram-negative bacteria, were isolated from Savar, Bangladesh. The strain could tolerate up to 80 mmol L(-1) sodium arsenite, 400 mmol L(-1) sodium arsenate, 5 mmol L(-1) manganese sulfate, 3 mmol L(-1) lead nitrate, 2.5 mmol L(-1) cobalt chloride, 2.5 mmol L(-1) cadmium acetate, and 2.5 mmol L(-1) chromium chloride. The whole-genome sequencing revealed that the genome size of C. freundii SRS1 is estimated to be 5.4 Mb long, and the G + C content is 51.7%. The genome of C. freundii SRS1 contains arsA, arsB, arsC, arsD, arsH, arsR, and acr3 genes for arsenic resistance; czcA, czcD, cbiN, and cbiM genes for cobalt resistance; chrA and chrB genes for chromium resistance; mntH, sitA, sitB, sitC, and sitD genes for manganese resistance; and zntA gene for lead and cadmium resistance. This novel acr3 gene has never previously been reported in any C. freundii strain except SRS1. A set of 130 completely sequenced strains of C. freundii was selected for phylogenomic analysis. The phylogenetic tree showed that the SRS1 strain is closely related to the C. freundii 62 strain. Further analyses of the genes involved in metal and metalloid resistance might facilitate identifying the mechanisms and pathways involved in high metal resistance in the C. freundii SRS1 strain. | 2023 | 36332226 |