# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9173 | 0 | 0.9879 | Bacterial defences: mechanisms, evolution and antimicrobial resistance. Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution. | 2023 | 37095190 |
| 9160 | 1 | 0.9878 | Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective. Numerous bacteria utilize molecular communication systems referred to as quorum sensing (QS) to synchronize the expression of certain genes regulating, among other aspects, the expression of virulence factors and the synthesis of biofilm. To achieve this process, bacteria use signaling molecules, known as autoinducers (AIs), as chemical messengers to share information. Naturally occurring strategies that interfere with bacterial signaling have been extensively studied in recent years, examining their potential to control bacteria. To interfere with QS, bacteria use quorum sensing inhibitors (QSIs) to block the action of AIs and quorum quenching (QQ) enzymes to degrade signaling molecules. Recent studies have shown that these strategies are promising routes to decrease bacterial pathogenicity and decrease biofilms, potentially enhancing bacterial susceptibility to antimicrobial agents including antibiotics and bacteriophages. The efficacy of QSIs and QQ enzymes has been demonstrated in various animal models and are now considered in the development of new medical devices against bacterial infections, including dressings, and catheters for enlarging the therapeutic arsenal against bacteria. | 2018 | 29563876 |
| 9144 | 2 | 0.9876 | Metal nanoparticles: understanding the mechanisms behind antibacterial activity. As the field of nanomedicine emerges, there is a lag in research surrounding the topic of nanoparticle (NP) toxicity, particularly concerned with mechanisms of action. The continuous emergence of bacterial resistance has challenged the research community to develop novel antibiotic agents. Metal NPs are among the most promising of these because show strong antibacterial activity. This review summarizes and discusses proposed mechanisms of antibacterial action of different metal NPs. These mechanisms of bacterial killing include the production of reactive oxygen species, cation release, biomolecule damages, ATP depletion, and membrane interaction. Finally, a comprehensive analysis of the effects of NPs on the regulation of genes and proteins (transcriptomic and proteomic) profiles is discussed. | 2017 | 28974225 |
| 8633 | 3 | 0.9876 | Bacterial interactions with arsenic: Metabolic pathways, resistance mechanisms, and bioremediation approaches. Arsenic contamination in natural waters is one of the biggest threats to human health, mainly due to its carcinogenic potential. Given its toxicity, nearly all organisms have evolved to develop an arsenic resistance mechanism. Conventional techniques of arsenic remediation suffer from various limitations of their applicability, cost and/or chemical intensive nature. In past few decades, bioremediation has emerged as a potential alternative to the conventional techniques. Microbial bioremediation, bacteria in particular, offers an eco-friendly and sustainable alternative, owing to its inherent metabolic capabilities to transform, immobilize or volatilize arsenic. Diverse biochemical pathways involving oxidation of As(III) to As(V), reduction of As(V) under anaerobic respiration or detoxification, methylation and demethylation, bioleaching and biomineralization into insoluble forms are essential mechanisms for arsenic remediation. These transformations, detoxification and resistance are regulated by specific genetic systems, including the ars operon, aio, arr and arsM, accessory genes such as arsR, arsB, acr3, arsC and arsP. The metabolic regulation of arsenic detoxification involves complex cofactor-dependent enzyme systems and environmental signal-responsive transcriptional control. Integrated approaches such as immobilization of bacteria on biochar or their encapsulation have also been known to enhance stability, reusability and stress tolerance. However, bioremediation is a very complex process due to the interrelationship of various influences such as, presence of specific microorganisms, nutrients and environmental factors. Therefore, it is of utmost importance to understand the bacterial interactions with arsenic for the development of bioremediation technologies. This review article tries to discuss the current status of arsenic bioremediation using bacteria, its field applications, challenges and future perspectives. It also includes the strengths, weaknesses, opportunities, threats (SWOT) analysis to assess the merits and demerits of using bacteria for bioremediation of arsenic. | 2025 | 41043264 |
| 8161 | 4 | 0.9876 | Integrative strategies against multidrug-resistant bacteria: Synthesizing novel antimicrobial frontiers for global health. Concerningly, multidrug-resistant bacteria have emerged as a prime worldwide trouble, obstructing the treatment of infectious diseases and causing doubts about the therapeutic accidentalness of presently existing drugs. Novel antimicrobial interventions deserve development as conventional antibiotics are incapable of keeping pace with bacteria evolution. Various promising approaches to combat MDR infections are discussed in this review. Antimicrobial peptides are examined for their broad-spectrum efficacy and reduced ability to develop resistance, while phage therapy may be used under extreme situations when antibiotics fail. In addition, the possibility of CRISPR-Cas systems for specifically targeting and eradicating resistance genes from bacterial populations will be explored. Nanotechnology has opened up the route to improve the delivery system of the drug itself, increasing the efficacy and specificity of antimicrobial action while protecting its host. Discovering potential antimicrobial agents is an exciting prospect through developments in synthetic biology and the rediscovery of natural product-based medicines. Moreover, host-directed therapies are now becoming popular as an adjunct to the main strategies of therapeutics without specifically targeting pathogens. Although these developments appear impressive, questions about production scaling, regulatory approvals, safety, and efficacy for clinical employment still loom large. Thus, tackling the MDR burden requires a multi-pronged plan, integrating newer treatment modalities with existing antibiotic regimens, enforcing robust stewardship initiatives, and effecting policy changes at the global level. The international health community can gird itself against the growing menace of antibiotic resistance if collaboration between interdisciplinary bodies and sustained research endeavours is encouraged. In this study, we evaluate the synergistic potential of combining various medicines in addition to summarizing recent advancements. To rethink antimicrobial stewardship in the future, we provide a multi-tiered paradigm that combines pathogen-focused and host-directed strategies. | 2025 | 40914328 |
| 9156 | 5 | 0.9875 | Resistance to quorum-quenching compounds. Bacteria have the remarkable ability to communicate as a group in what has become known as quorum sensing (QS), and this trait has been associated with important bacterial phenotypes, such as virulence and biofilm formation. Bacteria also have an incredible ability to evolve resistance to all known antimicrobials. Hence, although inhibition of QS has been hailed as a means to reduce virulence in a manner that is impervious to bacterial resistance mechanisms, this approach is unlikely to be a panacea. Here we review the evidence that bacteria can evolve resistance to quorum-quenching compounds. | 2013 | 24014536 |
| 9141 | 6 | 0.9875 | Metallic Nanoparticles-Friends or Foes in the Battle against Antibiotic-Resistant Bacteria? The rapid spread of antibiotic resistances among bacteria demands novel strategies for infection control, and metallic nanoparticles appear as promising tools because of their unique size and tunable properties that allow their antibacterial effects to be maximized. Furthermore, their diverse mechanisms of action towards multiple cell components have suggested that bacteria could not easily develop resistance against nanoparticles. However, research published over the last decade has proven that bacteria can indeed evolve stable resistance mechanisms upon continuous exposure to metallic nanoparticles. In this review, we summarize the currently known individual and collective strategies employed by bacteria to cope with metallic nanoparticles. Importantly, we also discuss the adverse side effects that bacterial exposure to nanoparticles may have on antibiotic resistance dissemination and that might constitute a challenge for the implementation of nanoparticles as antibacterial agents. Overall, studies discussed in this review point out that careful management of these very promising antimicrobials is necessary to preserve their efficacy for infection control. | 2021 | 33673231 |
| 9192 | 7 | 0.9875 | Antimicrobial peptides: Sustainable application informed by evolutionary constraints. The proliferation and global expansion of multidrug-resistant (MDR) bacteria have deepened the need to develop novel antimicrobials. Antimicrobial peptides (AMPs) are regarded as promising antibacterial agents because of their broad-spectrum antibacterial activity and multifaceted mechanisms of action with non-specific targets. However, if AMPs are to be applied sustainably, knowledge of how they induce resistance in pathogenic bacteria must be mastered to avoid repeating the traditional antibiotic resistance mistakes currently faced. Furthermore, the evolutionary constraints on the acquisition of AMP resistance by microorganisms in the natural environment, such as functional compatibility and fitness trade-offs, inform the translational application of AMPs. Consequently, the shortcut to achieve sustainable utilization of AMPs is to uncover the evolutionary constraints of bacteria on AMP resistance in nature and find the tricks to exploit these constraints, such as applying AMP cocktails to minimize the efficacy of selection for resistance or combining nanomaterials to maximize the costs of AMP resistance. Altogether, this review dissects the benefits, challenges, and opportunities of utilizing AMPs against disease-causing bacteria, and highlights the use of AMP cocktails or nanomaterials to proactively address potential AMP resistance crises in the future. | 2022 | 35752270 |
| 9155 | 8 | 0.9875 | Polyphenols and their nanoformulations as potential antibiofilm agents against multidrug-resistant pathogens. The emergence of multidrug-resistant (MDR) pathogens is a major problem in the therapeutic management of infectious diseases. Among the bacterial resistance mechanisms is the development of an enveloped protein and polysaccharide-hydrated matrix called a biofilm. Polyphenolics have demonstrated beneficial antibacterial effects. Phenolic compounds mediate their antibiofilm effects via disruption of the bacterial membrane, deprivation of substrate, protein binding, binding to adhesion complex, viral fusion blockage and interactions with eukaryotic DNA. However, these compounds have limitations of chemical instability, low bioavailability, poor water solubility and short half-lives. Nanoformulations offer a promising solution to overcome these challenges by enhancing their antibacterial potential. This review summarizes the antibiofilm role of polyphenolics, their underlying mechanisms and their potential role as resistance-modifying agents. | 2024 | 38305223 |
| 9159 | 9 | 0.9875 | Quorum sensing inhibitors (QSIs): a patent review (2019-2023). INTRODUCTION: The collective behavior of bacteria is regulated by Quorum Sensing (QS), in which bacteria release chemical signals and express virulence genes in a cell density-dependent manner. Quorum Sensing inhibitors (QSIs) are a large class of natural and synthetic compounds that have the potential to competitively inhibit the Quorum Sensing (QS) systems of several pathogens blocking their virulence mechanisms. They are considered promising compounds to deal with antimicrobial resistance, providing an opportunity to develop new drugs against these targets. AREAS COVERED: The present review represents a comprehensive analysis of patents and patent applications available on Espacenet and Google Patent, from 2019 to 2023 referring to the therapeutic use of Quorum Sensing inhibitors. EXPERT OPINION: Unlike classical antibiotics, which target the basic cellular metabolic processes, QSIs provide a promising alternative to attenuating virulence and pathogenicity without putting selective pressure on bacteria. The general belief is that QSIs pose no or little selective pressure on bacteria since these do not affect their growth. To date, QSIs are seen as the most promising alternative to traditional antibiotics. The next big step in this area of research is its succession to the clinical stage. | 2025 | 40219759 |
| 8162 | 10 | 0.9874 | Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. The emergence of nanotechnology has created unprecedented hopes for addressing several unmet industrial and clinical issues, including the growing threat so-termed "antibiotic resistance" in medicine. Over the last decade, nanotechnologies have demonstrated promising applications in the identification, discrimination, and removal of a wide range of pathogens. Here, recent insights into the field of bacterial nanotechnology are examined that can substantially improve the fundamental understanding of nanoparticle and bacteria interactions. A wide range of developed nanotechnology-based approaches for bacterial detection and removal together with biofilm eradication are summarized. The challenging effects of nanotechnologies on beneficial bacteria in the human body and environment and the mechanisms of bacterial resistance to nanotherapeutics are also reviewed. | 2021 | 34558234 |
| 8160 | 11 | 0.9874 | Quorum Sensing in Gram-Negative Bacteria: Strategies to Overcome Antibiotic Resistance in Ocular Infections. Truly miraculous medications and antibiotics have helped save untold millions of lives. Antibiotic resistance, however, is a significant issue related to health that jeopardizes the effectiveness of antibiotics and could harm everyone's health. Bacteria, not humans or animals, become antibiotic-resistant. Bacteria use quorum-sensing communication routes to manage an assortment of physiological exercises. Quorum sensing is significant for appropriate biofilm development. Antibiotic resistance occurs when bacteria establish a biofilm on a surface, shielding them from the effects of infection-fighting drugs. Acylated homoserine lactones are used as autoinducers by gram-negative microscopic organisms to impart. However, antibiotic resistance among ocular pathogens is increasing worldwide. Bacteria are a significant contributor to ocular infections around the world. Gram-negative microscopic organisms are dangerous to ophthalmic tissues. This review highlights the use of elective drug targets and treatments, for example, combinational treatment, to vanquish antibiotic-resistant bacteria. Also, it briefly portrays anti-biotic resistance brought about by gram-negative bacteria and approaches to overcome resistance with the help of quorum sensing inhibitors and nanotechnology as a promising medication conveyance approach to give insurance of anti-microbials and improve pathways for the administration of inhibitors of quorum sensing with a blend of anti-microbials to explicit target destinations and penetration through biofilms for treatment of ocular infections. It centres on the methodologies to sidestep the confinements of ocular anti-biotic delivery with new visual innovation. | 2024 | 37497706 |
| 9182 | 12 | 0.9874 | Harnessing CRISPR/Cas9 in engineering biotic stress immunity in crops. There is significant potential for CRISPR/Cas9 to be used in developing crops that can adapt to biotic stresses such as fungal, bacterial, viral, and pest infections and weeds. The increasing global population and climate change present significant threats to food security by putting stress on plants, making them more vulnerable to diseases and productivity losses caused by pathogens, pests, and weeds. Traditional breeding methods are inadequate for the rapid development of new plant traits needed to counteract this decline in productivity. However, modern advances in genome-editing technologies, particularly CRISPR/Cas9, have transformed crop protection through precise and targeted modifications of plant genomes. This enables the creation of resilient crops with improved resistance to pathogens, pests, and weeds. This review examines various methods by which CRISPR/Cas9 can be utilized for crop protection. These methods include knocking out susceptibility genes, introducing resistance genes, and modulating defense genes. Potential applications of CRISPR/Cas9 in crop protection involve introducing genes that confer resistance to pathogens, disrupting insect genes responsible for survival and reproduction, and engineering crops that are resistant to herbicides. In conclusion, CRISPR/Cas9 holds great promise for advancing crop protection and ensuring food security in the face of environmental challenges and increasing population pressures. The most recent advancements in CRISPR technology for creating resistance to bacteria, fungi, viruses, and pests are covered here. We wrap up by outlining the most pressing issues and technological shortcomings, as well as unanswered questions for further study. | 2025 | 40663257 |
| 9174 | 13 | 0.9873 | Developing Phage Therapy That Overcomes the Evolution of Bacterial Resistance. The global rise of antibiotic resistance in bacterial pathogens and the waning efficacy of antibiotics urge consideration of alternative antimicrobial strategies. Phage therapy is a classic approach where bacteriophages (bacteria-specific viruses) are used against bacterial infections, with many recent successes in personalized medicine treatment of intractable infections. However, a perpetual challenge for developing generalized phage therapy is the expectation that viruses will exert selection for target bacteria to deploy defenses against virus attack, causing evolution of phage resistance during patient treatment. Here we review the two main complementary strategies for mitigating bacterial resistance in phage therapy: minimizing the ability for bacterial populations to evolve phage resistance and driving (steering) evolution of phage-resistant bacteria toward clinically favorable outcomes. We discuss future research directions that might further address the phage-resistance problem, to foster widespread development and deployment of therapeutic phage strategies that outsmart evolved bacterial resistance in clinical settings. | 2023 | 37268007 |
| 8635 | 14 | 0.9873 | Techniques for enhancing the tolerance of industrial microbes to abiotic stresses: A review. The diversity of stress responses and survival strategies evolved by microorganism enables them to survive and reproduce in a multitude of harsh environments, whereas the discovery of the underlying resistance genes or mechanisms laid the foundation for the directional enhancement of microbial tolerance to abiotic stresses encountered in industrial applications. Many biological techniques have been developed for improving the stress resistance of industrial microorganisms, which greatly benefited the bacteria on which industrial production is based. This review introduces the main techniques for enhancing the resistance of microorganisms to abiotic stresses, including evolutionary engineering, metabolic engineering, and process engineering, developed in recent years. In addition, we also discuss problems that are still present in this area and offer directions for future research. | 2020 | 31206805 |
| 6507 | 15 | 0.9873 | What Are the Drivers Triggering Antimicrobial Resistance Emergence and Spread? Outlook from a One Health Perspective. Antimicrobial resistance (AMR) has emerged as a critical global public health threat, exacerbating healthcare burdens and imposing substantial economic costs. Currently, AMR contributes to nearly five million deaths annually worldwide, surpassing mortality rates of any single infectious disease. The economic burden associated with AMR-related disease management is estimated at approximately $730 billion per year. This review synthesizes current research on the mechanisms and multifaceted drivers of AMR development and dissemination through the lens of the One Health framework, which integrates human, animal, and environmental health perspectives. Intrinsic factors, including antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs), enable bacteria to evolve adaptive resistance mechanisms such as enzymatic inactivation, efflux pumps, and biofilm formation. Extrinsic drivers span environmental stressors (e.g., antimicrobials, heavy metals, disinfectants), socioeconomic practices, healthcare policies, and climate change, collectively accelerating AMR proliferation. Horizontal gene transfer and ecological pressures further facilitate the spread of antimicrobial-resistant bacteria across ecosystems. The cascading impacts of AMR threaten human health and agricultural productivity, elevate foodborne infection risks, and impose substantial economic burdens, particularly in low- and middle-income countries. To address this complex issue, the review advocates for interdisciplinary collaboration, robust policy implementation (e.g., antimicrobial stewardship), and innovative technologies (e.g., genomic surveillance, predictive modeling) under the One Health paradigm. Such integrated strategies are essential to mitigate AMR transmission, safeguard global health, and ensure sustainable development. | 2025 | 40558133 |
| 9168 | 16 | 0.9873 | Novel approaches to bacterial infection therapy by interfering with bacteria-to-bacteria signaling. The growing challenge of antimicrobial resistance and the paucity of novel antibiotics underscore the importance of developing novel therapeutics. Bacterial cell-to-cell signaling constitutes a novel drug target. Quorum sensing (QS) is a cell-to-cell signaling mechanism that refers to the ability of bacteria to respond to chemical hormone-like molecules called autoinducers. QS is responsible for controlling a plethora of virulence genes in several bacterial pathogens. Antagonists to autoinducers will intercept bacterial intercellular communication, hindering their ability to act in a coordinated manner to express virulence traits. Moreover, since QS is not involved directly in essential processes, such as bacterial growth, one can reason that inhibition of QS will not yield a selective pressure for the development of resistance. | 2007 | 17402841 |
| 9169 | 17 | 0.9873 | Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance. Bacteria use a cell-to-cell communication activity termed "quorum sensing" to coordinate group behaviors in a cell density dependent manner. Quorum sensing influences the expression profile of diverse genes, including antibiotic tolerance and virulence determinants, via specific chemical compounds called "autoinducers". During quorum sensing, Gram-negative bacteria typically use an acylated homoserine lactone (AHL) called autoinducer 1. Since the first discovery of quorum sensing in a marine bacterium, it has been recognized that more than 100 species possess this mechanism of cell-to-cell communication. In addition to being of interest from a biological standpoint, quorum sensing is a potential target for antimicrobial chemotherapy. This unique concept of antimicrobial control relies on reducing the burden of virulence rather than killing the bacteria. It is believed that this approach will not only suppress the development of antibiotic resistance, but will also improve the treatment of refractory infections triggered by multi-drug resistant pathogens. In this paper, we review and track recent progress in studies on AHL inhibitors/modulators from a biological standpoint. It has been discovered that both natural and synthetic compounds can disrupt quorum sensing by a variety of means, such as jamming signal transduction, inhibition of signal production and break-down and trapping of signal compounds. We also focus on the regulatory elements that attenuate quorum sensing activities and discuss their unique properties. Understanding the biological roles of regulatory elements might be useful in developing inhibitor applications and understanding how quorum sensing is controlled. | 2013 | 23720655 |
| 8287 | 18 | 0.9873 | Characterizing the Mechanism of Action of an Ancient Antimicrobial, Manuka Honey, against Pseudomonas aeruginosa Using Modern Transcriptomics. Manuka honey has broad-spectrum antimicrobial activity, and unlike traditional antibiotics, resistance to its killing effects has not been reported. However, its mechanism of action remains unclear. Here, we investigated the mechanism of action of manuka honey and its key antibacterial components using a transcriptomic approach in a model organism, Pseudomonas aeruginosa We show that no single component of honey can account for its total antimicrobial action, and that honey affects the expression of genes in the SOS response, oxidative damage, and quorum sensing. Manuka honey uniquely affects genes involved in the explosive cell lysis process and in maintaining the electron transport chain, causing protons to leak across membranes and collapsing the proton motive force, and it induces membrane depolarization and permeabilization in P. aeruginosa These data indicate that the activity of manuka honey comes from multiple mechanisms of action that do not engender bacterial resistance.IMPORTANCE The threat of antimicrobial resistance to human health has prompted interest in complex, natural products with antimicrobial activity. Honey has been an effective topical wound treatment throughout history, predominantly due to its broad-spectrum antimicrobial activity. Unlike traditional antibiotics, honey-resistant bacteria have not been reported; however, honey remains underutilized in the clinic in part due to a lack of understanding of its mechanism of action. Here, we demonstrate that honey affects multiple processes in bacteria, and this is not explained by its major antibacterial components. Honey also uniquely affects bacterial membranes, and this can be exploited for combination therapy with antibiotics that are otherwise ineffective on their own. We argue that honey should be included as part of the current array of wound treatments due to its effective antibacterial activity that does not promote resistance in bacteria. | 2020 | 32606022 |
| 8176 | 19 | 0.9873 | Overcoming Multidrug Resistance in Bacteria Through Antibiotics Delivery in Surface-Engineered Nano-Cargos: Recent Developments for Future Nano-Antibiotics. In the recent few decades, the increase in multidrug-resistant (MDR) bacteria has reached an alarming rate and caused serious health problems. The incidence of infections due to MDR bacteria has been accompanied by morbidity and mortality; therefore, tackling bacterial resistance has become an urgent and unmet challenge to be properly addressed. The field of nanomedicine has the potential to design and develop efficient antimicrobials for MDR bacteria using its innovative and alternative approaches. The uniquely constructed nano-sized antimicrobials have a predominance over traditional antibiotics because their small size helps them in better interaction with bacterial cells. Moreover, surface engineering of nanocarriers offers significant advantages of targeting and modulating various resistance mechanisms, thus owe superior qualities for overcoming bacterial resistance. This review covers different mechanisms of antibiotic resistance, application of nanocarrier systems in drug delivery, functionalization of nanocarriers, application of functionalized nanocarriers for overcoming bacterial resistance, possible limitations of nanocarrier-based approach for antibacterial delivery, and future of surface-functionalized antimicrobial delivery systems. | 2021 | 34307323 |