MYOTIS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
362100.9194Antimicrobial Resistance in Physiological and Potentially Pathogenic Bacteria Isolated in Southern Italian Bats. The spread of antimicrobial resistance is one of the major health emergencies of recent decades. Antimicrobial-resistant bacteria threaten not only humans but also populations of domestic and wild animals. The purpose of this study was to evaluate the distribution of antibiotic resistance (AMR) and multidrug resistance (MDR) in bacterial strains isolated from six Southern-Italian bat populations. Using the disk diffusion method, we evaluated the antimicrobial susceptibility of 413 strains of Gram-negative bacteria and 183 strains of Gram-positive bacteria isolated from rectal (R), oral (O) and conjunctival (C) swabs of 189 bats belonging to 4 insectivorous species (Myotis capaccinii, Myotis myotis, Miniopterus schreibersii and Rhinolophus hipposideros). In all bat species and locations, numerous bacterial strains showed high AMR levels for some of the molecules tested. In both Gram-negative and Gram-positive strains, the resistance patterns ranged from one to thirteen. MDR patterns varied significantly across sites, with Grotta dei Pipistrelli in Pantalica displaying the highest levels of MDR (77.2% of isolates). No significant differences were found across different bat species. Monitoring antibiotic resistance in wildlife is a useful method of evaluating the impact of anthropic pressure and environmental pollution. Our analysis reveals that anthropic contamination may have contributed to the spread of the antibiotic resistance phenomenon among the subjects we examined.202336978508
847310.9116MHCII, Tlr4 and Nramp1 genes control host pulmonary resistance against the opportunistic bacterium Pasteurella pneumotropica. MHCII, Tlr4, and Nramp1 genes are each independently important in pulmonary immunity. To determine the effect of these genes on host resistance, mice carrying various combinations of functional alleles for these three genes were experimentally challenged with the opportunistic bacterium, Pasteurella pneumotropica. MHCII-/-, Tlr4d/d, and Nramp1s/s mice were significantly more susceptible to experimental infections by P. pneumotropica after intranasal challenge compared to mice carrying functional alleles at only one of those genes. P. pneumotropica were cultured from the lungs of challenged mice, and the severity of the pneumonia strongly correlated with the number of isolated bacteria. Mice with the genotype MHCII-/- Tlr4n/n genotype were less susceptible to pneumonia than MHCII+/+, Tlr4d/d mice. It is interesting that the Nramp1 gene contribution to host resistance was apparent only in the absence of functional MHCII or Tlr4 genes. These data suggest that MHCII, Tlr4, and Nramp1 genes are important to pulmonary bacterial resistance.200111261784
521220.9110Draft Genome Sequences of Pseudomonas MWU13-2625 and MWU12-2115, Isolated from a Wild Cranberry Bog at the Cape Cod National Seashore. Two highly similar Pseudomonas sp. genome sequences from wetland bog soil isolates with draft genomes of ~6.3 Mbp are reported. Although the exact taxonomic placement and environmental roles of these bacteria are unclear, predicted genes for stress tolerance, antibiotic resistance, and a type VI secretion system were detected.201830533670
612930.9105Yersinia ruckeri Infection and Enteric Redmouth Disease among Endangered Chinese Sturgeons, China, 2022. During October 2022, enteric redmouth disease (ERM) affected Chinese sturgeons at a farm in Hubei, China, causing mass mortality. Affected fish exhibited characteristic red mouth and intestinal inflammation. Investigation led to isolation of a prominent bacterial strain, zhx1, from the internal organs and intestines of affected fish. Artificial infection experiments confirmed the role of zhx1 as the pathogen responsible for the deaths. The primary pathologic manifestations consisted of degeneration, necrosis, and inflammatory reactions, resulting in multiple organ dysfunction and death. Whole-genome sequencing of the bacteria identified zhx1 as Yersinia ruckeri, which possesses 135 drug-resistance genes and 443 virulence factor-related genes. Drug-susceptibility testing of zhx1 demonstrated high sensitivity to chloramphenicol and florfenicol but varying degrees of resistance to 18 other antimicrobial drugs. Identifying the pathogenic bacteria associated with ERM in Chinese sturgeons establishes a theoretical foundation for the effective prevention and control of this disease.202438781928
362040.9104A multiple antibiotic-resistant enterobacter cloacae strain isolated from a bioethanol fermentation facility. An Enterobacter cloacae strain (E. cloacae F3S3) that was collected as part of a project to assess antibiotic resistance among bacteria isolated from bioethanol fermentation facilities demonstrated high levels of resistance to antibiotics added prophylactically to bioethanol fermentors. PCR assays revealed the presence of canonical genes encoding resistance to penicillin (ampC) and erythromycin (ermG). Assays measuring biofilm formation under antibiotic stress indicated that erythromycin induced biofilm formation in E. cloacae F3S3. Planktonic growth and biofilm formation were observed at a high ethanol content, indicating E. cloacae F3S3 can persist in a bioethanol fermentor under the highly variable environmental conditions found in fermentors.201424941895
299450.9101Molecular Characterization of Salmonella spp. Isolates from Wild Colombian Babilla (Caiman crocodilus fuscus) Isolated In Situ. Salmonella enterica is a pathogen capable of colonizing various environments, including the intestinal tract of different animals such as mammals, birds, and reptiles, which can act as carriers. S. enterica infection induces different clinical diseases, gastroenteritis being the most common, which in some cases, can evolve to septicemia and meningitis. Reptiles and amphibians have been reported as a reservoir of Salmonella, and transmission of the pathogen to humans has been documented. This study aimed to determine the presence of virulence genes and characterize the genotypic antibiotic resistance profile in Salmonella strains isolated from Caiman crocodilus fuscus obtained in situ (natural habitat) in Prado, Tolima, Colombia in a previous study and stored in a strain bank in our laboratory. Fifteen Salmonella strains were evaluated through endpoint PCR to determine the presence of resistance genes and virulence genes. The genes bla(TEM), strB, and sul1 were detected in all the strains that confer resistance to ampicillin, streptomycin, and sulfamethoxazole, as well as the virulence genes invA, pefA, prgH, spaN, tolC, sipB, sitC, pagC, msgA, spiA, sopB, sifA, lpfA, csgA, hilA, orgA, iroN, avrA, and sivH, indicating the possible role of babilla (Caiman crocodilus fuscus) as a carrier of multidrug-resistant bacteria.202236496880
252160.9098Insights into antimicrobial resistance among long distance migratory East Canadian High Arctic light-bellied Brent geese (Branta bernicla hrota). BACKGROUND: Antimicrobial resistance (AMR) is the most significant threat to global public health and ascertaining the role wild birds play in the epidemiology of resistance is critically important. This study investigated the prevalence of AMR Gram-negative bacteria among long-distance migratory East Canadian High Arctic (ECHA) light-bellied Brent geese found wintering on the east coast of Ireland. FINDINGS: In this study a number of bacterial species were isolated from cloacal swabs taken from ECHA light-bellied Brent geese. Nucleotide sequence analysis identified five species of Gram-negative bacteria; the dominant isolated species were Pantoea spp. (n = 5) followed by Buttiauxella agrestis (n = 2). Antimicrobial susceptibility disk diffusion results identified four of the Pantoea spp. strains, and one of the Buttiauxella agrestis strains resistant to amoxicillin-clavulanic acid. CONCLUSION: To our knowledge this is the first record of AMR bacteria isolated from long distance migratory ECHA light-bellied Brent geese. This indicates that this species may act as reservoirs and potential disseminators of resistance genes into remote natural ecosystems across their migratory range. This population of geese frequently forage (and defecate) on public amenity areas during the winter months presenting a potential human health risk.201527651892
306370.9091Antibiotic resistance among coliform and fecal coliform bacteria isolated from the freshwater mussel Hydridella menziesii. Freshwater mussels (Hydridella menziesii) collected from Lakes Rotoroa, Rotoiti, and Brunner, South Island, New Zealand, contained coliform and fecal coliform bacteria. The majority of these bacteria were resistant to one or more antibiotics, but none transferred streptomycin, tetracycline, or kanamycin resistance to an antibiotic-susceptible strain of Escherichia coli K-12.1976779633
544480.9090Antibiotic Susceptibility of Bacterial Pathogens That Infect Olive Flounder (Paralichthys olivaceus) Cultivated in Korea. Paralichthys olivaceus (olive flounder) is widely cultivated in Korea. However, data on the antibiotic susceptibility of bacterial pathogens that infect olive flounders in Korea are limited. The susceptibility of 84 strains of 3 pathogenic bacteria (Streptococcus spp., Vibrio spp., and Edwardsiella piscicida) to 18 antibiotics was tested using the minimum inhibitory concentration (MIC) panels, and the distribution of the MIC values for each species was confirmed. Among the panel antibiotics, nine commonly used antibiotics were selected, and the multiple antibiotic resistance (MAR) index and antibiotic resistance pattern were indicated using the disk diffusion method. It was confirmed that most of the isolates had a MAR index greater than 0.2, indicating a high-risk source. The distribution patterns of the MIC values and resistance pattern between gram-positive and gram-negative bacteria showed slightly different results. Ampicillin, erythromycin, and clindamycin were more effective against gram-positive bacteria than gram-negative bacteria. However, the MIC values of flumequine for gram-positive bacteria were higher than those of gram-negative bacteria. Through the distribution patterns of the MIC values and resistance patterns presented in this study, the need for monitoring the multidrug-resistant bacteria in aquaculture is emphasised.202235805768
523390.9083Antibiotic resistance pattern of the allochthonous bacteria isolated from commercially available spices. Spices are often used in dried form, sometimes with significant microbial contamination including pathogenic and food spoilage bacteria. The antibiotic resistance represents an additional risk for food industry, and it is worthy of special attention as spices are important food additives. During our work, we examined the microbiological quality of 50 different spices with cultivation methods on diverse selective media. The identification of the most representative bacteria was carried out using 16S rDNA gene sequence analysis. Antibiotic resistance profiling of twelve identified Bacillus species (B. subtilis subsp. stercoris BCFK, B. licheniformis BCLS, B. siamensis SZBC, B. zhangzhouensis BCTA, B. altitudinis SALKÖ, B. velezensis CVBC, B. cereus SALÖB isolate, B. tequilensis KOPS, B. filamentosus BMBC, B. subtilis subsp. subtilis PRBC2, B. safensis BMPS, and B. mojavensis BCFK2 isolate) was performed using the standard disk-diffusion method against 32 antibiotics. The study showed that the majority resistance was obtained against penicillin G (100%), oxacillin (91.67%), amoxyclav (91.67%), rifampicin (75%), and azithromycin (75%). Our findings suggest that spices harbor multidrug-resistant bacteria.202134401102
5450100.9083Antimicrobial susceptibility, plasmid profiles and haemocin activities of Avibacterium paragallinarum strains. In this study, 18 Avibacterium paragallinarum isolates collected in Taiwan from 1990 to 2003 were serotyped and tested for resistance to antimicrobial agents. Serotyping revealed that 13 isolates were Page serovar A and 5 isolates were Page serovar C. More than 75% of the isolates were resistant to neomycin, streptomycin and erythromycin. The most common resistance pattern (15 isolates, 83.3%) was neomycin-streptomycin. Furthermore, 88.9% of the isolates were resistant to two or more antibiotics. About 72% of isolates contained plasmids (pYMH5 and/or pA14). Plasmid pYMH5 encoded functional streptomycin, sulfonamide, kanamycin and neomycin resistance genes and revealed significant homology to a broad host-range plasmid, pLS88. Plasmid pA14 encoded a putative MglA protein and RNase II, both of which might be associated with virulence. Furthermore, seven isolates showed haemocin activity. Plasmid pYMH5 is the first multidrug-resistance plasmid reported in A. paragallinarum and it may facilitate the spread of antibiotic-resistance genes between bacteria. The putative virulence plasmid pA14 and haemocin-like activity in A. paragallinarum indicate two possible mechanisms which might be responsible for the pathogenesis.200717485180
8737110.9082Role of Biosynthetic Gene Cluster BGC3 in the Cariogenic Virulence of Streptococcus mutans. OBJECTIVE: To investigate the role of the biosynthetic gene cluster BGC3 of Streptococcus mutans (S. mutans) in the process of dental caries. METHODS: BGC3 and ∆BGC3 S. mutans strains were constructed and their growth curves were evaluated. Acid production capacity was assessed by evaluating pH reduction levels over identical culture periods. The survival of bacteria in phosphate citrate buffer solution (pH 3.0) was quantified. The expression levels of virulence genes (atpF, gtfC, gtfD, spaP, vicR and ftf) were analysed using the qPCR. Co-culture experiments were conducted to evaluate bacterial adaptability. Bacterial viability was determined by microscopical examination of live/dead staining. RESULTS: Deletion of BGC3 did not significantly impact S. mutans growth or acid production in biofilms. The ∆BGC3 strain exhibited enhanced acid resistance and higher expression levels of virulence genes compared to the wild type. In addition, ∆BGC3 exhibited superior bacterial viability in the co-culture system. CONCLUSION: BGC3 affected the acid resistance and expression of caries-related genes in S. mutans. The BGC3 knockout strain exhibited a more robust survival capability than the wild-type strain.202540162656
5409120.9082Presence and new genetic environment of pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) in Erysipelothrix rhusiopathiae of swine origin. Erysipelothrix rhusiopathiae is a Gram-positive bacillus that causes erysipelas in swine. In recent years, erysipelas infection among swine in China has been increasing. A combined resistance phenotype to pleuromutilins, lincosamides, and streptogramin A (PLSA phenotype) was found in some E. rhusiopathiae isolates. The aim of this study was to identify the resistance genes responsible for the PLSA phenotype in E. rhusiopathiae strains and to map the genetic environment of the identified resistance gene. A total of 46 E. rhusiopathiae isolates from 31 pig farms in China were studied. Minimum inhibitory concentrations (MICs) of 11 antimicrobial agents were determined by broth microdilution method. Seven were highly resistant to tiamulin (MICs 32 μg/ml) and clindamycin (MICs 64 μg/ml). Resistance genes responsible for the PLSA phenotype were screened by PCR. The lsa(E), spw, lnu(B), aadE and aphA3 genes were detected in strains had the PLSA phenotype, whereas none was detected in susceptible strains. The genetic environment of lsa(E) gene was determined by whole-genome sequencing and overlapping PCR assays. A novel multiresistance gene cluster, orf1-aadE-apt-spw-lsa(E)-lnu(B)-rec-orf2-orf1-aadE-sat4-aphA3, was found. Horizontal gene transfer experiments and whole-genome sequencing suggested that the lsa(E)-carrying multiresistance gene cluster was located in the chromosome. This is the first molecular characterization of PLSA resistance in E. rhusiopathiae. The lsa(E), spw and lnu(B) genes were found in E. rhusiopathiae for the first time. A novel lsa(E)-carrying multiresistance gene cluster was found. The location of lsa(E) in different gene cluster facilitates its persistence and dissemination.201525759293
5443130.9080Antibiotic resistance of Vibrio species isolated from Sparus aurata reared in Italian mariculture. Extensive use of antimicrobial agents in finfish farming and the consequent selective pressure lead to the acquisition of antibiotic resistance in aquaculture environment bacteria. Vibrio genus represents one of the main pathogens affecting gilthead sea bream. The development of antibiotic resistance by Vibrio represents a potential threat to human health by exchange of resistant genes to human pathogens through food chain. The objective of the present study was to conduct a multisite survey on the antibiotic resistance of Vibrio spp. isolated from gilthead sea bream reared in Italian mariculture. Vibrio spp. strains were isolated from skin, gills, muscles and intestinal content of 240 gilthead sea bream. A random selection of 150 strains was sequenced for species identification. Resistance against 15 antimicrobial agents was tested by the broth microdilution method. Vibrio harveyi and Vibrio alginolyticus accounted for 36.7% and 33.3% of the isolates respectively. 96% of the strains showed multiple resistance to the tested drugs, with two strains, Vibrio aestuarianus and Vibrio harveyi resistant to 10 and 9 antibiotics, respectively. Ampicillin, amoxicillin, erythromycin and sulfadiazine showed low efficacy against Vibrio spp. Rational use of antimicrobial agents and surveillance on antibiotic administration may reduce the acquisition of resistance by microorganisms of aquatic ecosystems.201425180847
3653140.9080Erythromycin-resistant lactic acid bacteria in the healthy gut of vegans, ovo-lacto vegetarians and omnivores. Diet can affect the diversity and composition of gut microbiota. Usage of antibiotics in food production and in human or veterinary medicine has resulted in the emergence of commensal antibiotic resistant bacteria in the human gut. The incidence of erythromycin-resistant lactic acid bacteria (LAB) in the feces of healthy vegans, ovo-lacto vegetarians and omnivores was analyzed. Overall, 155 LAB were isolated and characterized for their phenotypic and genotypic resistance to erythromycin. The isolates belonged to 11 different species within the Enterococcus and Streptococcus genera. Enterococcus faecium was the dominant species in isolates from all the dietary categories. Only 97 out of 155 isolates were resistant to erythromycin after Minimum Inhibitory Concentration (MIC) determination; among them, 19 isolates (7 from vegans, 4 from ovo-lacto vegetarians and 8 from omnivores) carried the erm(B) gene. The copresence of erm(B) and erm(A) genes was only observed in Enterococcus avium from omnivores. Moreover, the transferability of erythromycin resistance genes using multidrug-resistant (MDR) cultures selected from the three groups was assessed, and four out of six isolates were able to transfer the erm(B) gene. Overall, isolates obtained from the omnivore samples showed resistance to a greater number of antibiotics and carried more tested antibiotic resistance genes compared to the isolates from ovo-lacto vegetarians and vegans. In conclusion, our results show that diet does not significantly affect the occurrence of erythromycin-resistant bacteria and that commensal strains may act as a reservoir of antibiotic resistance (AR) genes and as a source of antibiotic resistance spreading.201931374082
6131150.9080Draft Genome Sequence of Eggerthia catenaformis Strain MAR1 Isolated from Saliva of Healthy Humans. Here, we report the draft genome sequence of Eggerthia catenaformis MAR1 isolated during a screen for d-cycloserine-resistant bacteria from the saliva of healthy humans. Analysis of the genome reveals that the strain has the potential to be a human pathogen and carries genes related to virulence and antibiotic resistance.201728705984
3671160.9080Antibiotic resistance genes detected in the marine sponge Petromica citrina from Brazilian coast. Although antibiotic-resistant pathogens pose a significant threat to human health, the environmental reservoirs of the resistance determinants are still poorly understood. This study reports the detection of resistance genes (ermB, mecA, mupA, qnrA, qnrB and tetL) to antibiotics among certain culturable and unculturable bacteria associated with the marine sponge Petromica citrina. The antimicrobial activities elicited by P. citrina and its associated bacteria are also described. The results indicate that the marine environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria.201627287338
1384170.9079Antimicrobial resistance in wildlife: detection of antimicrobial resistance genes in Apennine wolves (Canis lupus italicus Altobello, 1921) from Central Italy. The aim of this study was to molecularly investigate the presence of antimicrobial resistance genes (ARGs) in organ samples from 11 Apennine wolves (Canis lupus italicus) collected in Central Italy. Samples from lung, liver, spleen, kidney, tongue and intestine were investigated by PCRs targeting the following genes: tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(K), tet(L), tet(M), tet(O), tetA(P), tet(Q), tet(S), tet(X), sul1, sul2, sul3, bla(CTX-M), bla(SHV), bla(TEM) and mcr-1. A PCR positivity was highlighted for 13 out of the 21 tested genes; no positive results were obtained for tet(C), tet(D), tet(E), tet(G), sul3, bla(CTX), bla(SHV) and mcr-1 genes. All 11 animals sampled showed positivity for one or more resistance genes. The results confirm the potential role of the wolf as an indicator and/or vector of antimicrobial-resistant bacteria or ARGs.202438499909
5592180.9077Antibiotic Resistance Profile of Rarely Isolated Salmonella Serotypes from Poultry in Turkey. This study investigated five strains of each serotype of Salmonella Agona, Salmonella Heidelberg, Salmonella Hindmarsh, Salmonella Kouka, Salmonella Muenchen, Salmonella Ottmarchen, Salmonella Saintpaul and Salmonella II, isolated during the 2014-2017 period. Disc diffusion was used to identify the phenotypic profiles of antibiotic resistance to 12 antimicrobials while the presence of antibiotic resistance genes (ARGs) was detected by PCR. The most sensitive serotype was S. Kouka while the most resistant serotypes were S. Agona and S. Heidelberg. MDR was detected most frequently in S. Agona strains, followed by S. Saintpaul, S. Hindmarsch, and S. Ottmarchen. The samples were most susceptible to chloramphenicol and ceftazidime and most resistant to sulfonamide. The resistance genes were detected in phenotypically resistant strains. Among the tetracycline-resistant strains, tet (A) was the most prevalent gene. The results of this study highlight the importance of monitoring antibiotic resistance profiles and related genes, which can spread to form MDR bacteria. Salmonella spp., which significantly contribute to ARG dissemination, should be monitored constantly to protect the closely related health of humans, animals, and the environment. The level of antibiotic resistance observed in this study, even in rarely isolated Salmonella serotypes, also indicates the need for careful and selective use of antibiotics.202338756027
7057190.9077Enrichment of antibiotic resistance genes in soil receiving composts derived from swine manure, yard wastes, or food wastes, and evidence for multiyear persistence of swine Clostridium spp. The impact of amendment with swine manure compost (SMC), yard waste compost (YWC), or food waste compost (FWC) on the abundance of antibiotic resistance genes in soil was evaluated. Following a commercial-scale application of the composts in a field experiment, soils were sampled periodically for a decade, and archived air-dried. Soil DNA was extracted and gene targets quantified by qPCR. Compared with untreated control soil, all 3 amendment types increased the abundance of gene targets for up to 4 years postapplication. The abundance of several gene targets was much higher in soil amended with SMC than in soil receiving either YWC or FWC. The gene target ermB remained higher in the SMC treatment for a decade postapplication. Clostridia were significantly more abundant in the SMC-amended soil throughout the decade following application. Eight percent of Clostridium spp. isolates from the SMC treatment carried ermB. Overall, addition of organic amendments to soils has the potential to increase the abundance of antibiotic resistance genes. Amendments of fecal origin, such as SMC, will in addition entrain bacteria carrying antibiotic resistance genes. Environmentally recalcitrant clostridia, and the antibiotic resistance genes that they carry, will persist for many years under field conditions following the application of SMC.201829342372